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Reservoir fractures are essential locations to gather oil and gas. Recently, imaging logging technology has become a mainstream
method for obtaining stratigraphic information. This paper proposed a combined optimal path search strategy to effectively
identify and extract the fracture information in well logging images. Specifically, the threshold segmentation of logging images
is used to obtain the binary image. In addition, the identification of connected fractures in the logging image is transformed
into the optimal path search, and the identification and extraction of reservoir fractures are realized by constructing the
optimal path between the two ends of fractures. Finally, an improved ant colony algorithm is applied to filter irrelevant
information and extract fractures automatically by recording all the ants’ exploration trajectories in the ant colony. Compared
with previous approaches, the proposed method can eliminate irrelevant background features and merely reserve pixels
corresponding to fractures. Simultaneously, relative to the conventional strategy, the time consumption is reduced by more
than 98%. The findings of this study can help for better extracting fractures automatically and reducing manual workload.

1. Introduction

Formation fractures are discontinuous profiles widely dis-
tributed in different lithologies and gradually formed
through diagenesis or tectonic deformation. Naturally frac-
tured reservoirs store over 50% of the known petroleum
and gas reserves worldwide [1]. Accordingly, the detection
of fractures has attracted plenty of researchers because they
are vital indicators of the admissibility of petroleum and gas
reservoirs in tight formations [2] and affect reservoir proper-
ties, enrichment, and gas reservoir development [3–6]. For
instance, microfractures in shale are considered important
fluid transport networks as well as oil and gas migration
pathways and are key factors in forming oil and gas reservoirs
[7]. So far, there are many technologies for discovering
potential fractures in petroleum reservoirs, such as subsur-
face electromagnetic technology [8], tiltmeter [9], downhole
microseismic fracture monitoring [10], and radiotracer diag-
nosis [11]. Compared with these methods, the imaging log-
ging analysis technology [12] originated in 1986 has

become the mainstream method of oil and gas reservoir
exploration, which wins the favor of considerable engineers
for its intuitive and accurate display of wellbore and strati-
graphic structure. Ultrasonic imaging logging [13, 14], one
of the representative imaging logging technologies, can char-
acterize the geometric features of fractures and distinguish
various geological features more clearly. Figure 1 is a sche-
matic diagram of ultrasonic imaging logging. Each pixel in
the image corresponds to one arrival time of the ultrasonic
signal reflected from the borehole wall. A bright area indi-
cates that the arrival time of echo measured in this area is
short. Conversely, a dark area indicates long arrival time or
no reflection exists. Therefore, this paper’s task is to design
a filter which extracts pixels corresponding to fractures as
shown in Figure 2.

Due to the complexity of reservoir, it is a time-
consuming process to accurately identify fractures manually.
Accordingly, automatic identification of fractures in logging
images is of great significance [15], which prompts many
researchers to explore proper approaches. Initially, the
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scholars established mathematical models of the fractures to
characterize the characteristics. Changchun et al. regarded
the shape of fracture as a sine curve and utilized two-
dimensional Hough Transform (2D-HT) to detect fractures
with fixed patterns in the image [16]. Taiebi et al. used a multi-
scale technique based on directional filtering and Hough
Transform (HT) to extract fractures in the logging images fur-
ther [17]. Directional filtering can enhance the contrast
between the target fracture and the imaging logging back-
ground, which is positive to conduct HT for fracture segmen-
tation. Liu et al. used ant colony algorithm to ascertain the
edges of fractures. Then, the sinusoidal fracture was found
by HT [18]. Jianping et al. improved the HT according to
the characteristics of fractures in imaging well logging. For
such a sine curve with fixed periods, the initial detection step
is divided into two steps: the voting mechanism was used to
determine the baseline position of sinusoids; and then the
2D-HT determined the amplitude and initial phase parame-
ters of the sinusoidal curve [19]. Based on the baseline position
determined by voting mechanism, Yingming et al. leveraged
genetic algorithms to perform nonlinear fitting of sine-
shaped scattered points in the relevant area to realize pixel
extraction of sinusoidal regions such as fracture, bedding,
and layer boundaries of imaging logging images [20]. Since
squeeze friction in the actual drilling process will cause the
borehole wall damaged, the fracture shape is not necessarily
in standard sinusoidal shape. Hence, the method based on
mathematical models is not effective in fitting and identifying
nonstandard sinusoidal fractures.

Recently, with the rapid development of computer
vision, researchers have tried to use image segmentation to
separate pixels corresponding to fractures from the back-

ground of ultrasonic logging images and then realize the
extraction of fractures. Wang utilized the valley edge algo-
rithm to determine local dark area to accomplish rock fracture
detection without determining a threshold [21]. Xu et al. com-
bined the classification into a cascade system using the K
-nearest neighborhood (KNN) classifier, which can classify
rock structures and extract the expected features in the ultra-
sonic well logging images [22]. This method divides the image
into superpixel blocks with uniform size and moderate com-
pactness, which provides the basis for subsequent fracture rec-
ognition. Sorncharean et al. used grid unit analysis chain and
fracture unit verification to eliminate false detection of shadow
boundaries on the image, so as to realize the detection of frac-
tures on road images with uneven illumination and strong tex-
ture [23]. Zhang used the clustering-minimum spanning tree
method to extract the crack area by edge extraction and
threshold segmentation and then used theminimum spanning
tree method to detect the crack in asphalt pavement [24].
However, in actual images, simply using low-level content
information such as color, brightness, and texture of pixels is
not enough to generate a good segmentation effect, and it is
easy to produce wrong segmentation results. To sum up, all
mentioned approaches have the following issues: they fail to
identify irregular fractures because of low extraction accuracy,
and the identification and extraction efficiency is not efficient.
Recognition results often remain some noncrack information.

To address above issues, we have analysed the fractures’
semantic information in logging images and utilized the pat-
tern of fracture regions to determine fracture region. Differ-
ent from the above methods, connectivity of fracture regions
in logging images is considered a key standard where pixels
corresponding to reservoir fractures connected two ends of
an image [25]. On the other hand, heuristic algorithms have
played an increasingly vital role in similar optimization
problems. For example, Deng et al. [26] proposed multiple
strategies for global optimization problems. And Deng
et al. [27] further used an improved quantum-inspired dif-
ferential evolution algorithm to avoid premature conver-
gence and improve the global search ability. Therefore,
based on the above inference, this paper proposes a method
that combined optimal path search strategy (COPS) to iden-
tify and extract fractures in ultrasonic logging images, and
the main contributions of this research are as follows:

(1) Construct a mathematical model describing this
task. And convert fracture recognition to path search

(2) Preprocess logging images, and build a path search
space by OTSU (OTSU) threshold segmentation
algorithm

(3) Use the ant colony algorithm (ACA) to search
potential paths connecting two ends of fractures,
which extracts the entire fracture region

(4) Improve ant colony algorithm by designing a parallel
searching strategy to accelerate path search
dramatically

The paper is organized by following steps: first, the pro-
posed methods are presented by detailed computational
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Figure 1: The principle of ultrasonic image logging.
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Figure 2: The object of this paper: filtering irrelevant noise from
background and reserving fractures.
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procedure. Then, experiments are performed to analyse our
method’s performances related to accuracy and operation
rate. Besides, according to experimental results, advantages
and potential disadvantages are discussed to point out the
direction for further research. Finally, we summarize the
entire research.

2. Methods

2.1. Mathematical Model. In the stratum, different structural
planes show certain differences on account of different mor-
phological and physical characteristics. In fractured reser-
voirs, the expansion zone generated by structural fractures
is where a large amount of oil and gas transfer and accumu-
late. Consequently, the method designed in this paper is
mainly aimed at the identification and extraction of such
fractures in ultrasonic logging images. This type of fracture
is a fracture zone surrounding the wellbore and formed
along the borehole wall. The differences mainly manifest in
the color depth, shape difference, width change of the
band-shaped sinusoid, and the irregularity of the rock spot
and texture characteristics around the curve [28]. The frac-
ture presents a three-dimensional ellipse shape on the well-
bore wall, and if the cylindrical well wall is cut along its
axis, the three-dimensional elliptical fracture will be a
sinusoidal curve after unfolding on the two-dimensional
image [29–32], as shown in Figure 3.

The function of the fracture can be described by Equa-
tion (1) [33]:

y = A sin ωx + βð Þ + y0, ð1Þ

in the formula, y0 is the baseline position of the sinusoidal
crack curve, A is the amplitude of the curve, β is the initial
phase, and ω is the angular velocity.

For reservoir fractures distributed along the circumfer-
ence of the well wall, the shape of fractures can be approxi-
mately considered to be sinusoidal. However, in practice,
due to the mechanical vibration in drilling process and the
influence of geological activities, the fractures spreading in
the logging images may not show a standard sinusoidal
shape, and sometimes, it is even far from a sinusoidal form.
Hence, in the process of image processing, if a sinusoidal
shape is regarded as a prior condition of the fracture mor-
phology, the algorithm will have a high probability to gener-
ate false recognition of fractures or fail to fit the shape of
fractures well.

According to the fractures distributed around the bore-
hole wall, a feature that is obviously different from other
interference information is that the fractures connect the left
and right sides in the logging image. Therefore, we suppose
the ultrasonic logging image is G, containing an ordered pair
ðV , EÞ, where V is a vertex set composed of all pixels and E is
a set of disordered point pairs composed of elements in V ,
denoted as edge set, whose elements are edges, and a same
point pair can appear multiple times in E, denoted as G = ð
V , EÞ. As a result, for the identification and extraction of
fractures in the logging image, the problem is transformed
into finding a subset V subset of vertices in graph G that can

connect the regions on both sides of the graph; this V subset
can correspond to the area where the fracture is located.

2.2. Image Preprocessing. According to the principle of ultra-
sonic logging images, fractures are darker in the image and
appear dark gray sinusoidal shapes. Factors like the unnatu-
ral etching of the strata, extrusion deformation caused by
pressure, and the damage to the borehole wall by the drill
bit during the drilling process will leave a geometric shape
similar to the fracture or a similar gray value on the ultra-
sonic logging image. Therefore, before performing fracture
identification and extraction, it is necessary to perform
image segmentation to filter unnecessary interference infor-
mation and enhance the fracture characteristics at the same
time.

As mentioned in introduction, based on the OTSU algo-
rithm, this paper performs preliminary threshold segmenta-
tion on the original ultrasonic logging image to extract
effective fracture area information. The OTSU algorithm,
also known as the maximum between-class variance
method, is an algorithm to determine threshold. This thresh-
old is used to perform fixed threshold binarization of the
image to maximize the variance between classes. According
to the gray characteristics of the image, it is divided into
two parts: the background and the foreground. The segmen-
tation with the largest variance between the classes means
the smallest probability of misclassification. Suppose the size
of a single ultrasonic logging image is X × Y , grayscale range
R = ½0,255�, R ∈N∗, and the probability of the gray level i is

pi =
Ri

X × Y
: ð2Þ

Define the fracture area Ct , the background area Cb, and
a gray-scale threshold T ; then assign all the pixels in the
logging image to Ct and Cb according to this threshold, the
probabilities of Ct and Cb are θt and θb, respectively; so
the mean gray value of the fracture area μt and the mean
value of the background area μb are

μt = 〠
T

i=0
i∙p i ∣ Ctð Þ = 〠

T

i=0

ipi
ω tð Þ , ð3Þ

μb = 〠
255

i=T+1
i∙p i ∣ Cbð Þ = ∑255

i=0 ipi −∑T
i=0ipi

1 − ω tð Þ , ð4Þ

A

β 2π
𝜔

y0

Figure 3: General form of fractures distributed along the shaft wall.
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in the equation, ωðtÞ =∑t
i=0pi, so, in the two categories, the

variances are

σ2t = 〠
T

i=0
i − μtð Þ2p i ∣ Ctð Þ, ð5Þ

σ2b = 〠
255

i=T+1
i − μbð Þ2p i ∣ Cbð Þ: ð6Þ

According to the literature [34], this paper adopts an
easily calculated interclass variance evaluation function σ2c
as the standard of the threshold segmentation, which is
defined as follows:

σ2c =
μTω tð Þ − μ tð Þ½ �2
ω tð Þ 1 − ω tð Þ½ � , ð7Þ

among them, μT =∑255
i=0 ipi and μðtÞ =∑T

i=0ipi. Finally, find
the best threshold to transformed into

T∗ = arg max
0≤t≤255

σ2
b

� �
: ð8Þ

As shown in Figure 4, the ultrasonic logging image is
transformed into a binary image after threshold segmenta-
tion. Compared with the maximum entropy threshold seg-
mentation algorithm [35], the OTSU algorithm has a
better extraction effect in response to ultrasonic imaging log-
ging fracture identification and minimizes the interference
of background noise.

2.3. Optimal Path Search Based on OTSU Threshold
Segmentation Algorithm and Ant Colony Algorithm. As
mentioned above, the search of fracture area in logging
images can be transformed into seeking the connected area
on the left and right sides of the connection image G = ðV ,
EÞ. Therefore, the search space is established according to
the binary image segmented by a threshold value. In a binary
image, the gray value of the potential fracture area is 0,
which is a passable region; the gray value of the background
area is 1, which is an obstacle region. In this paper, the serial
number method [36] is used to establish the grid set corre-
sponding to the binary ultrasonic logging image, and the
effect is shown in Figure 5.

After rasterizing the image and establishing the search
space, it is necessary to search the area connecting the left
and right sides to determine the fracture area. For path
search using the grid method, the search efficiency is posi-
tively related to the size of the space, so an efficient and sta-
ble search algorithm is needed. Compared with other
algorithms, the ACA has strong robustness and adaptability
and has achieved good results in solving path planning [37].
Accordingly, the ACA is used to search for the fracture area.

The ACA is a swarm intelligence algorithm that simu-
lates the foraging behavior of ants in nature. By releasing
pheromones on the foraging path, the ant colony will tend
to walk on the path with higher pheromone concentration
and releasing pheromones simultaneously. Pheromone can

attract more ants and form a feedback loop. Eventually, the
entire ant colony will find the most suitable path. The search
steps of fractures area based on ACA are as follows:

(1) Suppose the number of ants in the ant colony is m,
the number of pixels in the potential fracture area
is n, and the distance between pixels Vi and V j in
the fracture area is dij ði, j = 1, 2,⋯,nÞ, the phero-
mone concentration between any target pixel points
Vi and V j in the same fracture region at time t is
τijðtÞ, and the initial pheromone concentration is
τijð0Þ = τ0. The pixel points Vio and V jo are ran-
domly selected on the left and right sides of the frac-
ture area as the starting and ending points of the
path search

(2) Let Pk
ijðtÞ be the probability of the ant k in the ant

colony moving from the pixel point i to the pixel
point j; the calculation formula is

Pk
ij tð Þ =

τij tð Þ
� �a∙ ηij tð Þ

h ib

∑r∈allowk
τir tð Þ½ �a∙ ηir tð Þ½ �b

, r ∈ allowk,

0, r ∉ allowk,

8
>>><

>>>:

ð9Þ

among them, ηijðtÞ is the heuristic function, allowk k = ð1,
2,⋯,kÞ is the set of pixels to be searched by ant k, a is the
pheromone importance factor, and b is the importance fac-
tor of the heuristic function. Through the roulette wheel
selection method, according to the transition probability of
the remaining pixels, the ant k will go to the next pixel

(3) When an ant has completed a traversal and there is
no way to go, the pheromone concentration τijðtÞ
on the path between the traversed pixels will be
updated, as shown in

τij t + 1ð Þ = 1 − ρð Þ, τij tð Þ+Δτij, 0 < ρ < 1,

Δτij = 〠
n

k=1
Δτkij, 0 < ρ < 1,

8
>><

>>:
ð10Þ

Δτkij =
Q
Lk

, the kth ant goes frompixel i to pixel j,

0, others,

8
><

>:

ð11Þ
where Δτkij represents the pheromone released by the ant k
on the connection path between the pixel Vi and V j, ρ
denotes pheromone volatile factor, Δτij represents the sum
of the pheromone concentration accumulated by all ants
on the connecting path between the pixel Vi and V j, Q is a
constant, and Lk is the length of the path that the ant k
passes
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(4) When the maximum number of iterations is
reached, the path search ends and the search path
is printed out

Through the optimal path search (OPS) algorithm based
on the OTSU algorithm and ACA, the connected areas at
both ends of the connecting image G can be traversed by dif-
ferent ants in the ant colony. When all ants’ footprints are
recorded, the fracture areas in the ultrasonic logging image
can be identified and extracted. Simultaneously, since there
are no ants traversing the nonfracture areas, these areas

can be filtered out, and only information about the fracture
areas can be retained.

2.4. Combined Optimal Path Search Strategy. Through strat-
egies mentioned above, the fracture area in the ultrasonic
logging image can be correctly identified and extracted.
However, due to the large resolution of a single logging
image, the algorithm could converge slowly and easily fall
into a locally optimal solution if the optimal path search is
performed directly. Therefore, this paper proposes the COPS
given the morphological characteristics of fracture regions
and ultrasonic logging images.

The current common ACA application is designed for
the shortest path search. The pheromone concentration Δ
τkij is calculated according to the total length of the ant’s
path, which means that the shorter path ant colonies select
to travel, the higher the pheromone concentration will be
left. Then, the overall ant colonies tend to the shortest path.
The object of this paper is the overall search of the fracture
area; that is, we hope the ant colony can traverse the entire
fracture area of the logging image as much as possible. To
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this end, change Equation (11) to

Δτkij =
Q
dij

, The kth ant goes frompixel i to pixel j,

0, others,

8
><

>:

ð12Þ

where dij represents the distance between the pixel points Vi

and V j passed by the ant. This formula uses local informa-
tion of the path that ants pass through to calculate the
released pheromone concentration. Therefore, it can
increase the probability of the ant going to the different
pixels in fracture areas and as many pixels as possible can
be traversed.

It can be seen from Equation (1) that the approximate
position of the sinusoidal fracture curve in the logging image
can be determined by the baseline y0. Thus, a specific path
search range can be determined by seeking the baseline posi-
tion, and the scale of the path search can be reduced. For any
point s1 on the sine curve, another point s2 on the curve can
be determined, which meets Xðs1Þ − Xðs2Þ = T/2, where T is
the period of the sine curve, and the midpoint S0 = ðx0, y0Þ
between s1 and s2 must fall on the baseline y0. By searching
for such point pairs and using the voting accumulation
mechanism, the ordinate information of all midpoints is
counted to determine the baseline position. Baseline posi-
tioning is performed on the binarized ultrasonic logging
image in Figure 5, and the area where the baseline is located
is cropped to get the target search area Gs, and the result
shown in Figure 6 is obtained.

In order to further improve the efficiency of ACA and
accelerate the convergence speed, the ACA in this paper is
improved by adopting a strategy searching single area path
parallelly. For the target search region Gs, the fracture area
is connected through left and right. Therefore, Gs is divided
into l different subregions Gsi ði = 1, 2,⋯,lÞ along the longi-
tudinal direction, and the fracture area within each subre-
gion Gsi is still connected from left to right. The improved

ACA is utilized to seek the path in each subarea Gsi simulta-
neously, and then all the subfracture areas searched in the
subarea are spliced to complete the identification and extrac-
tion of the fractures in the logging image. The calculation
process is shown in Figure 7. Using the strategy of searching
a single region path parallelly, the region that the algorithm
needs to traverse simultaneously is only 2Δy/Yl of the orig-
inal region, which can accelerate the search speed and make
the algorithm converge rapidly. Since the search range is
reduced and each area is searched by an independent ant
colony, it can also effectively improve the situation that the
ant colony falls into optimal local results.

3. Experiments and Results

3.1. Experiment Platform. For verifying the performance of
the optimal path search strategy proposed in this paper, we
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tested the algorithm in real logging images. Figure 8 depicts
the overall structure of the ultrasonic image well logging
instrument. The well logging tool consists of rotary ultra-
sonic transducer driven by motor, main control board
receiving ultrasonic signal and conducting signal processing,
sensor drive board driving ultrasonic transducer, and cable
for communication with a host computer. 250 points are
collected evenly by a transducer rotating one circle, and a
logging image is drawn according to the arrival time and
maximum amplitude of the echo.

The test object is the ultrasonic logging image GZ from
4423 meters to 4559 meters downhole of the Zhanjiang pro-
duction oil well. Images are provided by the Oilfield Tech-
nology Research Institute of China Oilfield Services Co.,
Ltd. (COSL). Logging image GZ is cut into 72 subimages
with a resolution of 352 × 352. The image processing algo-
rithm runs on a hardware computing platform based on an
i9-9900k processor with 64GB memory, and the program-
ming language is MATLAB R2020a. Figure 9 shows the
operation of the circumferential ultrasonic imaging logging
tool in the Zhanjiang production well.

3.2. Test Results. In order to further verify the recognition
accuracy of the proposed algorithm for different forms of
fractures and different background noise interference, five
typical fracture regions in GZ were selected for testing and
compared with the results of the common threshold seg-
mentation algorithm and the artificially marked fracture
regions as ground truth. The results are shown in
Figure 10. As shown in Figure 10, whether it is a sinusoidal
fracture, a horizontal fracture, or a fracture with obvious
background noise, the combined optimal search strategy
algorithm can eliminate the residual background noise and
more accurately preserve fracture information while com-
pared with the traditional direct threshold algorithm.

Confusion matrix, which is shown in Figure 11, is an
index for evaluating classification performance. According
to pixels’ classification in ground truth and segmentation
results of two algorithms, we calculate average “true posi-

tive” (TP), “false positive” (FP), “true negative” (TN), and
“false negative” (FN) in the above images to draw the confu-
sion matrices. Consequently, precision and recall which
determine performances of classification can be calculated as

Precision = TP
TP + FP

,

Recall =
TP

TP + FN
:

8
>><

>>:
: ð13Þ

Table 1 shows the corresponding F1 score, mean Inter-
section over Union (IoU), precision, and recall generated
by two mentioned methods. Obviously, toward fracture seg-
mentation in well logging images, the IoU can be increased
from 20.72 to 43.21, and the F1 score can be increased by
0.26. Precision and recall are commonly contradictory when
assessing the same segmentation result, and higher recall
from Maximum Entropy Threshold represents that it clas-
sifies more pixels as fractures, but its precision is reduced.
In summary, all results demonstrate that the fracture seg-
mentation generated by the proposed method is closer to
the fracture information marked manually.

Transducer

Telecommunication
cable

Main control circuit
board

Sensor drive circuit

Figure 8: Ultrasonic image well logging system.

Stabilizer

Transducer

Figure 9: Logging operation in Zhanjiang.
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3.3. Performance Analysis. Compared with the conventional
ACA, this paper proposes the COPS to perform target
decomposition and then single path search in each inde-
pendent area. Thus, it can greatly improve the search effi-
ciency. Figure 12 shows the time-consuming comparison
of fracture identification and extraction of the above five
typical logging images using conventional ACA and the
algorithm proposed in this paper to perform path search
on the computing platform of this paper. Both colony
sizes are 20, and the number of iterations is 100 while
pheromone importance factor a is 1, importance factor
of the heuristic function b is 7, and pheromone volatile
factor ρ is 0.3. It can be seen from Figure 12 that the algo-
rithm proposed in this paper has a significant efficiency
improvement.

For exploring the factor affecting segmentation further,
we conducted comparative tests by adjusting iterations as
the number of iterations determines whether the ant colony
could traverse all possible paths. We use parameters men-

tioned above with different numbers of iteration to carry
out experiments. The average time consumed and IoUs are
shown in Table 2. By observing the outcomes, while 100 is
determined as the iteration number, the proposed method
can acquire a balance between time consumed and visual
results. Accordingly, we performed 100 iterations when
using our method.

4. Discussion

In this paper, we propose an effective approach coping
with fracture recognition and extraction. Relative to con-
ventional methods, i.e., threshold segmentation and Hough
Transform, not only can the method identify fracture
regions accurately, but it can also extract pixels corre-
sponding to fracture regions to show intact shape of frac-
ture clearly.

Compared with the conventional ant colony algorithm,
one advantage is apparent acceleration in the rate of path
search by parallel search strategy as search space is reduced
by 4 times. By analysing the principle of our method,
another reason of acquiring remarkable results based on
our method is that ant colonies tend to search paths with
high concentration of pheromone. This indicates that when
an ant reaches the end of the path, the rest of ant colonies
are likely to follow it to avoid invalid searches, which have
a positive impact on filtering irrelevant information. How-
ever, due to the same reason that ants tend to search paths
with high concentration of pheromone, all fractures may
not be extracted completely when more than one fracture
exists in logging images.

On the other hand, based on prior knowledge of fracture
connectivity, the proposed method cannot extract the com-
plete fracture regions if actual fractures in logging images
are discontinuous and disconnected, which is intractable in
our completed study. Therefore, we will focus on the task
of identifying and extracting multiple fractures in the next
stage.

Sample

Ground
Truth

Maximum
entropy
threshold

Combined
optimal

path
search

Figure 10: Comparison of recognition effect.

Fracture Background

Fracture

Background
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976 116832

Fracture Background

Fracture

Background

3792 2304

12208 105600

Figure 11: Confusion matrices: Maximum Entropy Threshold (a)
and ours (b).

Table 1: Accuracy assessment for segmentation results.

Parameters Precision Recall
F1

score
Mean IoU

(%)

Maximum Entropy
Threshold

0.2370 0.6620 0.3432 20.72

Ours 0.7579 0.5013 0.6035 43.21
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5. Summary and Conclusions

In this paper, the COPS algorithm is proposed which filters
background interference information and automatically
extracts fractures in ultrasonic logging images. The method’s
key is to convert the target recognition in the fracture area
into optimal path search and search the path according to
the fracture’s feature that connected on both sides of the
image. The main remarks of this study are as follows:

(1) Establish a mathematical model of the fracture,
determine the reference position of the fracture
through the voting accumulation mechanism, and
appropriately cut the area where the crack is located
according to the reference position

(2) The images obtained by cutting are further cut along
the vertical direction to obtain each subregion with
partial fracture information, and the ACA was used
to search and extract the fractures in each subspace

(3) The fractures extracted from each subspace are
spliced to obtain a complete fracture

Experiments and analysis have been conducted to illus-
trate our method’s advantages and potential disadvantages.
In the next stage, we will concentrate on improving multiple
fractures extraction in a well logging image.
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