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For most high-precision power analyzers, the measurement accuracy may be affected due to the nonlinear relationship between
the input and output signal. Therefore, calibration before measurement is important to ensure accuracy. However, the
traditional calibration methods usually have complicated structures, cumbersome calibration process, and difficult selection of
calibration points, which is not suitable for situations with many measurement points. To solve these issues, a nonlinear
calibration method based on sinusoidal excitation and DFT transformation is proposed in this paper. By obtaining the effective
value data of the current sinusoidal excitation from the calibration source, the accurate calibration process can be done, and
the calibration efficiency can be improved effectively. Firstly, through Fourier transform, the phase value at the initial moment
of the fundamental frequency is calculated. Then, the mapping relationship between the sampling value and the theoretical
calculation value is established according to the obtained theoretical discrete expression, and a cubic spline interpolation
method is used to further reduce the calibration error. Simulations and experiments show that the calibration method
presented in this paper achieves high calibration accuracy, and the results are compensation value after calibration with a
deviation of ±3 × 10−4.

1. Introduction

The calibration of a high-precision power analyzer is a key
function in the signal measurement process. The calibration
accuracy directly affects the accuracy and reliability of the
subsequent measurement of voltage, current, power, har-
monics, and other parameters [1]. There is a strict linear rela-
tionship between the input and output of ideal instrument,
and no time lag or distortion exists. However, in the practical
engineering scenario of power measurement, the relationship
between input and output is always nonlinear due to the
inherent and unchangeable characteristics of analog channel
and sensor probe. In order to compensate or eliminate the
nonlinearity of the instrument, the entire system needs to
be nonlinearly calibrated; thus, the correctness of subsequent
parameter calculations can be ensured [2–4]. The key to cal-
ibration is how to establish a mapping relationship between
sampling theoretical values and actual values for each sam-
pling point. This mapping relationship is essentially a math-

ematical relationship expression which needs to be designed
and adjusted according to actual situation [5].

Among the common calibration methods, the hardware
compensation method is usually a method that uses both
digital and analog circuits for compensation. Li [6] proposed
an accurate online calibration system for current trans-
formers, and the accuracy can reach 0.05 level. Luo [7]
designed an improved calibration system based on direct
current (DC) negative feedback for the calibration of current
transformers. The calibration uncertainty of this system
reaches 0.038% within the measuring range. The hardware
compensation method circuit [8, 9] is usually complicated,
and the circuit design process costs much. Besides, the cali-
bration range is small, and the accuracy cannot be guaran-
teed within the entire range. In addition, the design of the
hardware circuit and the zero drift of the electronic device
will also reduce the accuracy of the calibration [10, 11].
Therefore, this method is generally not used in scenes that
require precise calibration.
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The principle of the mathematical model calibration
algorithm is utilizing a limited number of sample informa-
tion to establish a mathematical model of the measurement
signal according to the principle of minimum error. In arti-
cle [12], Jin put forward a calibration method based on OC-
SVM. This method can detect the change points in the time
series and obtain better accuracy using less training data.
However, it is difficult to establish a corresponding mathe-
matical model for nonlinear systems. Wang, Kong [13],
and others classified the errors of the acoustic vector sensor
array and designed an optimization model and error self-
calibration algorithm for the acoustic vector sensor array.
This algorithm can perform quite well in parameter estima-
tion, but when the mathematical model is established, the
iterative calculation of coefficients still needs much work.
Therefore, this method is generally not used in actual pro-
jects which require a large number of data calculation [14].

The nonlinear segmented calibration method divides the
uncalibrated data into segments and then linearizes these
sections. Wang, Peng [15], and Chengxian [16] both chose
this method to do calibration work, because it can achieve
high accuracy though the accuracy often depends on the
experience of the calibrator. Moreover, if the calibration
results fail to meet the standard, it is necessary to perform
the segmented calibration again. In most cases, the calibra-
tion efficiency is not high enough; thus, the calibration
workload is relatively large. To solve this problem, a calibra-
tion algorithm based on discrete Fourier transform (DFT) is
provided in paper [17, 18]. This method directly carries on
the Fourier transform processing to the sampled data
sequence, which has the advantages of fast operation speed
and less computation. However, the algorithm is mainly
suitable for harmonic measurement, and due to the fre-
quency spectrum leakage under the frequency shift condi-
tion, the algorithm error is large.

In this paper, a nonlinear calibration method based on
sinusoidal excitation and DFT transform is presented. This
method uses the initial phase calculated by DFT to establish
the relationship of the original dense set and then establishes
the mapping relationship between the actual sampling value
and the theoretical calibration value in the selected calibra-
tion interval. After that, by interpolating the data, an ideal
calibration curve is obtained.

2. Fundamental Knowledge of the
Proposed Method

2.1. Algorithm Analysis. To implement this algorithm, it is
necessary to determine the mapping relationship between
the original sampled value and the theoretical value. For
the purpose of determining the mapping relationship, the
signal is sampled with a fixed sampling rate f s. Then, Fourier
transform is performed on the obtained discrete sequence of
sampling points to calculate the phase φ0 at the initial
moment of the fundamental frequency. Next, the initial
phase can be used to calculate the theoretical discrete expres-
sion of the original signal. The theoretical value correspond-
ing to the sampled value is calculated through the theoretical
discrete expression, and the mapping relationship between

the original sampled values and the theoretical values is
established. Then, determine the minimum calibration inter-
val. In order to make the calibration interval include the
maximum range of the signal amplitude, the interval can
be calibrated from the trough of the signal to the peak of
the wave, which is half a period. According to the initial
phase φ0 and the set standard source effective value Am,
the mapping relationship between the theoretical value and
the actual sampling value in the calibration interval is estab-
lished, and the denoising process is performed. Finally, a
smooth calibration curve is obtained by spline interpolation
for the calibration points mapped in the two-dimensional
coordinate system, and we can obtain the theoretical valued
of other sampling points from the calibration curve. The
overall flow of the algorithm is shown in Figure 1.

Take a power signal as an example for specific descrip-
tion. Performing fixed frequency sampling on the measured
original signal, the sampling rate f s is 25600Hz, the sam-
pling period N is 10, and the number of sampling points
in each period is 512; then, the fundamental frequency of
the original signal is f b = 1/Ts ×M = f s/M, and it is 50Hz.

2.2. Solve the Initial Phase by DFT. Collect N cycles of data
on the original voltage or current signal and do DFT on
the collected discrete time series fxkgðk = 0, 1,⋯,N ×M −
1Þ, M = 512, as shown in formula (1).

X f bð Þ = 〠
N×M−1

k=0
xk × e−j

2π f b
N×Mk: ð1Þ

The calculation result Xð f bÞ is a complex number, which
can be expressed as Xð f bÞ = XRð f bÞ + XIð f bÞ × i. The expres-
sions for the real and imaginary parts are

XR f bð Þ = 〠
N×M−1

k=0
xk cos 2πkf b/ N ×Mð Þ½ �,

XI f bð Þ = − 〠
N×M−1

k=0
xk sin 2πkf b/ N ×Mð Þ½ �:

ð2Þ

According to the real and imaginary parts of the com-
plex number, the initial phase φ0 = arctan ðXIð f bÞ/XRð f bÞÞ
of the current signal with the fundamental frequency f b
can be calculated, and the continuous expression of the orig-
inal signal is

y = Am × cos wt + φ0ð Þ: ð3Þ

Since the sampling points are discrete, continuous expres-
sions need to be converted into discrete expressions. The dis-
crete sequence fxkg is sampled and extracted at time t; so,
the relational expression between time t and subscript k is

t = f b × Ts × k: ð4Þ

According to formula (4), convert the continuous

2 Journal of Sensors



expression of the signal into a theoretical discrete expression:

yk = Am × cos 2πf b × Ts × k + φ0ð Þ, ð5Þ

where Am is the amplitude of the waveform output by the
calibration source. Since there is a mapping relationship
betweenyk and k and xk and k in the theoretical discrete
expression, there is also a one-to-one correspondence between
yk and xk. The fxk, ykg mapping relationship of N ×M sam-
pling points can be obtained in N sampling periods, and the
original dense set is established.

2.3. Calibration of Calibration Curve. In order to ensure that
the maximum range of the measured signal can be covered,
the calibration interval is determined to be ½Am × cos ðπÞ,
Am × cos ð2πÞ� according to the theoretical discrete expres-
sion of the original signal, which is the maximum range.
Next, take the left end point Am × cos ðπÞ of the calibration
interval as the starting point and calculate the subscript k0
corresponding to the sampling point. The calculation for-
mula of k0 is as follows:

k0 = π − φ0ð Þ ×M/ 2πð Þ: ð6Þ

The k0 calculated by the above formula is not necessarily
a positive integer. If k0 is a positive integer, then the sampled
value xk0 of the sampling point is recorded as x,0, and the
theoretical value yk0 is calculated by the theoretical discrete
expressionyk0 = Am × cos ð2πf b × Ts × k0 + φ0Þ and recorded
as y,0. If k0 is not an integer, the sampling value xk0 of the
nearest sampling point from the starting point is recorded
as x,0, and the theoretical value yk0 is recorded as y,0.

According to formula (6) and the relationship between sig-
nal fundamental frequency f b and fixed frequency sampling
frequency f s, f b = f s/M, as the frequency f b increases, the sam-
pling pointM decreases; so, the subscript of the sampling point
k0 also decreases. According to formula (5), when the amplitude
Am and f b change, the corresponding theoretical value of cali-
bration yk will change, which means that the calibration coeffi-
cient will change. The initial phase φ0 is obtained by DFT
calculation, which will not affect the calibration process.

Taking Am × cos ðπÞ as the starting point, calculate the
subscript k of subsequent sampling points in the calibration
interval. Because x,0 corresponds to the point xk0 with the
subscript k0 in the original sequence fxkg, the original
sequence fxkg starts from the subscript k0 and takes a sam-
pling point every ΔM points as the new sequence fx,g. The

points in are marked as x,1, x,2 ⋯ x,k ⋯ x,M/△M , and then the
original sequence fxigand the new sequence fx,ig have the
following mapping relationship:

x,k = xΔM×k+k0 : ð7Þ

Substituting the expression of x,k in formula (7) into the
theoretical discrete expression, the corresponding y,k is

y,k = Am × cos 2πf b × Ts × ΔM × k + k0ð Þ + φ0½ �: ð8Þ

M/ΔM calibration points can be taken in each cycle, and
N ×M/ΔM sampling points are taken as calibration points
in a total of Nsampling cycles, and a mapping relationship
of fx,k, y,kg is established.

In N sampling cycles, the sampling points in each cycle
are repeated periodically and the sampling points in each
half cycle in a cycle are mirror symmetrical. Therefore, it is
necessary to average the repeated 2N sampling points. The
process of averaging can be regarded as the process of
smoothing and removing noise. The calculation formula is
as follows:

x;;k =
x,k + x,M/ΔM−k−1 + x,k+ M/ΔMð Þ⋯+x,k+N× M/ΔMð Þ + x,N× M/ΔMð Þ−k−1

2N ,

y;;k =
y,k + y,M/ΔM−k−1 + y,k+ M/ΔMð Þ⋯+y,k+N× M/ΔMð Þ + y,N× M/ΔMð Þ−k−1

2N :

ð9Þ

After averaging, the mapping relationship of fx;;k , y;;kg
with subscript k from 0 to M/2ΔM − 1 totaling M/2ΔM
sampling points is obtained. The obtainedM/2ΔM sampling
points are the required calibration points.

There are many ways to establish the calibration rela-
tionship for fx;;k , y;;kg of M/2ΔM sampling points. The avail-
able methods include straight line fitting, polynomial fitting,
and interpolation. Straight line fitting can only guarantee the
continuity in the interval, but cannot guarantee the smooth-
ness in the calibration curve. In the polynomial curve fitting,
if there is a large deviation of some data points, the fitting
accuracy will decrease as the order increases. So, the spline
interpolation method is used in this article.

2.4. Cubic Spline Interpolation. The spline interpolation
method is a method that draws a curve of all points in the form
of variable splines [19–21]. Every two adjacent points can
determine the polynomial of each segment; so, the spline inter-
polation is composed of a series of polynomials. Cubic spline
interpolation is a widely used spline interpolation method,
and each segment is a cubic polynomial. This method has sev-
eral advantages, the piece-wise low-order interpolation polyno-
mials are easier to solve and that can improve the smoothness
of the interpolation function as good as high-order spline inter-
polation. Meanwhile, the compensation effect at adjacent fre-
quency points is better than straight line fitting.

The calculation method of cubic spline interpolation
used in this paper is explained below. The mapping between
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Figure 1: Schematic diagram of calibration algorithm.
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the original value and the spline value is as follows:

x : a = x0 < x1<⋯<xn = b

y : y0y1 ⋯ yn
: ð10Þ

The cubic spline function SðxÞ is a piece-wise cubic
equation, with intervals and n + 1 data points. The cubic
equation for each interval obeys the following conditions:

(1) In each interval½xi, xi+1�, SðxÞ = SiðxÞ is a cubic
polynomial

Si xið Þ = yi i = 0, 1,⋯, nð Þ: ð11Þ

(2) The first derivative S′ðxÞ and the second derivative
S′′ðxÞ of the cubic spline function SðxÞ are continu-
ous in ½a, b�, and SðxÞ is smooth and continuous

Therefore, the cubic polynomial created for each interval
can be written as

Si xð Þ = ai + bi x − xið Þ + ci x − xið Þ2 + di x − xið Þ3,
i = 0, 1,⋯, n − 1:

ð12Þ

The derivation process of calculating these unknown
coefficients ai, bi, ci, and di is as follows:

(1) Calculate the step length of each segment hi = xi+1
− xiði = 0, 1,⋯, n − 1Þ

(2) The formula ai = yi can be derived from the formula
SiðxiÞ = yi

(3) Derived from the formula Siðxi+1Þ = yi+1ði = 0, 1,⋯,
n − 1Þ:

ai + hibi + h2i ci + h3i di = yi+1: ð13Þ

(4) According to the differential continuity of the spline
Si′ðxi+1Þ = Si+1′ ðxi+1Þði = 0, 1,⋯, n − 2Þ,

bi + 2cihi + 3dih2i − bi+1 = 0: ð14Þ

Similarly, according to Si′′ðxi+1Þ = Si+1′′ ðxi+1Þði = 0, 1,⋯, n
− 2Þ,

2ci + 6dihi − 2ci+1 = 0: ð15Þ

(5) mi = Si′′ðxiÞ = 2ci, bi, ci, and di can be expressed by mi,
then using the Cubic spline interpolation method to
get the following results:

ai = yi,

bi =
yi+1 − yi

hi
−
hi
2 mi −

hi
6 mi+1 −mið Þ,

ci =
mi

2 ,

di =
mi+1 −mi

6hi
:

ð16Þ

(6) Substitute bi, ci, and di into formula (14):

himi + 2 hi + hi+1ð Þmi+1 + hi+1mi+2 = 6 yi+2 − yi+1
hi+1

−
yi+1 − yi

hi

� �
:

ð17Þ

When there are n − 1 equations and n + 1 unknown m
values to be solved, two additional formulas are needed to
solve this equation. Therefore, the boundary conditions are
used to limit the differential values of the two endpoints x0
and xn [22], that is, the second-order differential S′′ = 0,
which is expressed as m0 = 0 and mn = 0. The equation to
be solved can be expressed as

1 0 0 ⋯ 0

h0 2 h0 + h1ð Þ h1 0

0 h1 2 h1 + h2ð Þ h2 0

0 0 h2 2 h2 + h3ð Þ h3 ⋮

⋮ ⋱ ⋱ ⋱

0 hn−2 2 hn−2 + hn−1ð Þ hn−1

0 ⋯ 0 0 1

2
666666666666666664

3
777777777777777775

m0

m1

m1

m3

⋮

m3

2
66666666666664

3
77777777777775

= 6

0
y2 − y1
h1

−
y1 − y0
h0

y3 − y2
h2

−
y2 − y1
h1

y4 − y3
h3

−
y3 − y2
h2

⋮
yn − yn−1
hn−1

−
yn−1 − yn−2

hn−2

0

2
66666666666666666666664

3
77777777777777777777775

:

ð18Þ

So, the following step is to solve the equation to get mi
and then calculate the values of all unknown parameters bi,
ci, and di using mi, and the expression of the spline curve
SiðxÞ can be finally obtained.

According to the interpolation method, a spline curve is
drawn for the mapping relationship of fx;;k , y;;kg of M/2ΔM
points after averaging. The sequence fx;;i g contains the max-
imum range of the sampled value, which means the abscissa
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of the spline curve’s range of the sampled value is maximized
as well. There are still work to be done to deal with other
sampling points to be calibrated: first, determine which
interval of the spline curve ½x;;i , x;;i+1� the sampling value falls
within and then substitute the sampling value y;;i into the
corresponding piece-wise function SiðxÞ to calculate the cor-
responding theoretical value.

3. Implementation of the Proposed Method

3.1. Simulation. The key point of this calibration method is
to accurately establish the mapping relationship between
the measured signal sampling value and the theoretical
value.

The realization process of this method has been theoret-
ically deduced above. Now, carry out a simulation experi-
ment on this method and compare the final calibration
curve obtained by the calibration algorithm proposed above
with the calibration curve of yk and xk of the given hypoth-
esis. Calculate the errors of the two calibration curves. If the
error meets the accuracy requirements, which means the cal-
ibration curve obtained by the algorithm is close enough to
the real calibration curve, so the calibration algorithm can
be considered feasible.

Assuming that the frequency of the given original signal
is f = 50Hz, the amplitude of the signal Am is 100, the num-
ber of sampling points per period N is 512, the initial phase
φ0 is given as 60∘, and the theoretical discrete expression of
the original signal is yk = 100 × cos ðπk/256 + π/3Þ. Accord-
ing to the characteristics of the sensor, the calibration
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Figure 2: Calibration curve.
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relationship between the sampled value xk of the original sig-
nal and the theoretical value xk is as follows:

yk = f xkð Þ =
1
2 xk +

1
2 x

2
k xk ≥ 0ð Þ

1
2 xk −

1
2 x

2
k xk < 0ð Þ

8>><
>>:

: ð19Þ

The calibration curve of the available calibration rela-
tionship is shown in Figure 2:

Knowing the relationship between the theoretical dis-
crete expression yk and k and also the actual nonlinear rela-
tionship between the sampled value xk and the theoretical
value yk, xk can be inversely deduced according to xk = f −1

ðykÞ. The simulated waveform of the original sequence of
xk is shown in Figure 3, the abscissa represents time, and
the ordinate represents amplitude:

Using the method mentioned above, the mapping rela-
tionship between the sampling value xk and the theoretical
value yk is established through the theoretical discrete
expression, and the 32 sampling points obtained are cali-
brated, as shown in Figure 4:

Use cubic spline interpolation to make a continuous
smooth calibration curve SðxÞ from 32 calibration points.
Figure 5 shows the calibration curve obtained according to
cubic spline interpolation.

Compared with the calibration curve y = f ðxÞ given in
Figure 2, the calibration curve made by spline interpolation
is very close to the given calibration curve.

Substitute all the sampled values in a period into the cal-
ibration curve and the actual calibration curve, respectively,
and calculate the relative error between them. The abscissa
of Figure 6 is the sampled value, and the ordinate is the error
of the true value minus the compensation value after calibra-
tion, which can be seen from the figure is that the relative
error is less than ±3 × 10−4. Therefore, the calibration algo-
rithm proposed in this paper is feasible.

3.2. Software Verification. The principle and simulation of
the calibration algorithm based on sinusoidal excitation
and DFT transform are described above. The calibration
method firstly sets the standard source output frequency f b
and the sine signal with the maximum value of Am, collects
the original signal sequence fxkg, calculates the initial time
phase φ0 of fxkg, and obtains the discrete expression of
the original signal according to φ0. Then, determine the cal-
ibration interval of the original signal and establish the map-
ping relationship between the sampling value and the
theoretical value in the calibration interval. Finally, for the
processed calibration points, use cubic spline interpolation
to make a calibration curve and substitute all the sample
values to be calibrated into the calibration curve to calculate
the theoretical value. Figure 7 is a specific flow chart of the
algorithm.

4. Experiment Result and Analysis

To decide whether the accuracy of the calibration algorithm
on the high-precision power analyzer meets the design
requirements, an experimental test platform is built. By

Error<eth

Acquire the original signal sequence

Calculate the initial phase of the
original signal sequence

Build discrete expressions

Set the calibration interval

Establish the mapping relationship
between sampled value and

theoreticalvalue

Spline interpolation process

Output calibration values

End

Start

Signal frequency fb, amplitude Am

Set error threshold eth
Fit success

Calibrate all sampling points

N

N

Y

Y

Figure 7: Calibration algorithm flow.
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comparing the measurement data of the power analyzer
equipped with our algorithm and other high-precision test-
ing equipment, the analysis results are obtained.

The specific experimental platform of this project is
shown in Figure 8. On the right is the Fluke standard source
6003A as standard input, on the left is the power analyzer
equipped with this calibration method, and on the lower left
is Yokogawa’s WT1800 high-precision power analyzer. The
actual product is shown below. Connect the input signal of
the standard source to the power analyzer to be tested and
the Yokogawa power meter, respectively, and compare the
measurement data of the two.

Before the measurement experiment, the high-precision
power analyzer needs to be calibrated. The frequency mea-
surement range of the power meter is 10Hz-1 kHz, the volt-
age measurement range is 0.1V-1000V, and the current
range is 0.1A-80A. The voltage measurement accuracy is
0.2% of range, and current measurement accuracy is 0.1%
of range add current sensor accuracy. With fluke standard
source as input, the instrument is calibrated separately with
two methods, the traditional segmented calibration method
and the calibration method proposed in this article. After
calibration, the measured signals of the two are shown and
compared in the following Tables 1–4.

As can be seen from Table 1, the effect of the two calibra-
tion methods on voltage measurement is basically the same,
because the linearity of the voltage sensor in the actual pro-
ject is better. The nonlinearity of current sensors is usually
poor, and the calibration method proposed in this article is
usually used in the current calibration process to achieve
high-accuracy. From Tables 2–4, the proposed calibration
method is obviously better than the traditional segmented
calibration method when measuring large current and high
frequency signals. When using this method to measure volt-
age, the error of the measured value is the largest at 950V,
the error is ð951:52 − 950Þ/950 = 0:16% < 0:2%, and the volt-
age accuracy meets the requirements. When the current is

Figure 8: Experimental platform.

Table 1: Voltage measurement comparison.

AC voltage (V) signal frequency 100Hz

Standard
value

The old method The proposed method
Phase
A

Phase
B

Phase
C

Phase
A

Phase
B

Phase
C

30.00 30.01 29.98 29.97 30.00 29.96 29.95

60.00 59.96 59.98 60.02 60.05 59.98 59.94

100.00 100.02 100.04 100.01 100.08 99.96 99.96

220.00 220.11 220.13 220.05 220.16 219.92 219.90

380.00 379.90 380.28 379.86 380.24 379.88 379.85

500.00 500.04 499.77 499.85 500.31 500.47 499.97

660.00 660.39 660.56 659.67 660.67 659.64 659.78

800.00 801.18 801.28 800.79 800.85 800.83 799.69

950.00 950.95 951.58 950.62 951.52 949.50 948.89

Table 2: 100Hz current measurement comparison.

AC current (A) signal frequency 100Hz

Standard
value

The old method The proposed method
Phase
A

Phase
B

Phase
C

Phase
A

Phase
B

Phase
C

0.10 0.10 0.10 0.10 0.10 0.10 0.10

0.50 0.49 0.50 0.49 0.49 0.49 0.49

1.00 0.99 0.99 0.99 0.98 0.99 0.98

5.00 5.00 4.99 5.00 4.97 4.98 4.99

10.00 10.04 9.98 10.01 9.99 9.98 10.01

25.00 25.09 24.81 25.11 24.90 24.98 24.94

40.00 38.98 39.01 38.64 39.85 40.04 39.96

55.00 52.18 51.95 52.02 54.24 54.43 54.32

Table 3: 500Hz current measurement comparison.

AC current (A) signal frequency 500Hz

Standard
value

The old method The proposed method
Phase
A

Phase
B

Phase
C

Phase
A

Phase
B

Phase
C

0.10 0.10 0.10 0.10 0.10 0.10 0.10

0.50 0.49 0.50 0.49 0.49 0.49 0.49

1.00 0.98 0.97 0.98 0.98 0.99 0.98

5.00 5.01 4.99 5.00 4.99 5.01 4.99

10.00 10.04 9.97 10.02 9.97 9.98 10.01

25.00 25.25 24.76 25.21 24.95 24.95 24.90

40.00 38.68 38.89 38.35 39.88 40.02 39.97

55.00 51.84 51.72 51.88 54.34 54.45 54.40

Table 4: 1000Hz current measurement comparison.

AC current (A) signal frequency 1000Hz

Standard
value

The old method The proposed method
Phase
A

Phase
B

Phase
C

Phase
A

Phase
B

Phase
C

0.10 0.10 0.10 0.10 0.10 0.10 0.10

0.50 0.49 0.50 0.49 0.49 0.49 0.49

1.00 0.99 0.99 0.99 0.99 0.99 0.98

5.00 5.01 4.97 5.00 4.98 4.97 4.99

10.00 10.11 9.88 9.86 9.99 9.98 10.01

25.00 24.72 24.68 25.18 24.92 24.94 24.91

40.00 38.62 39.28 38.46 39.79 40.08 39.89

55.00 51.78 51.65 51.71 54.24 54.31 54.29
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measured at 55A, the error of the current sensor has
exceeded 2%, but the maximum error shown in Tables 2–4
is ð55 − 54:24Þ/55 = 1:38%, which meets the requirements
of current accuracy. The comparison of experimental results
verifies that the calibration method proposed in this paper is
effective in the application of nonlinear systems and has high
calibration accuracy.

5. Conclusion

In this paper, a nonlinear calibration algorithm based on
sinusoidal excitation and DFT transformation is proposed.
This algorithm overcomes the shortcomings of traditional
methods, like it is difficult to determine the segment turning
point and segment range in old methods, and multiple man-
ual calibrations are cumbersome; also, the calibration accu-
racy can decline within the overall measurement range. In
addition, this method only needs to obtain the effective value
data of the current calibration source. Even if the segment
turning point is increased, the calibration of the instrument
can be accurately completed by obtaining the effective value
data only once, which not only improves the calibration
accuracy but also avoids repeated operation of the calibra-
tion source, thus greatly improves the calibration efficiency.
The simulation experiment verifies the feasibility and accu-
racy of the algorithm, and the voltage and current parame-
ters are measured by a high-precision power analyzer
equipped with the algorithm. The experimental results show
that the measured values of the voltage and current after cal-
ibration within the range meet the accuracy requirements.
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