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In this paper, the problem of signal detection under chaotic noise was considered in the distributed detection fusion system.
The problem which is urgent and difficult has important research value. A new detection and fusion mechanism for weak
signal under chaotic noise based on a distributed system is proposed. Due to the short-term predictability of chaotic
signals and their sensitivity to small disturbances, observation of each local sensor is reconstructed in phase space
according to the Takens delay embedding theorem. The locally weighted regression (LOWESS) model is used to fit the
observation of each local sensor in the phase space. Thus, the chaotic noise is stripped out from the observation, and the
fitting error without chaotic noise is regarded as the new observation of each local sensor. Based on the new observation
without chaotic noise, an optimization model aiming at minimizing the Bayesian risk of the fusion center is established.
Under the condition that the observations of local sensors are conditionally independent, the fusion rule and the sensor
decision rules are derived. An algorithm is proposed to obtain the fusion rule and local decision rules. The simulation
results show that the proposed signal detection and fusion algorithm can effectively detect weak signals under chaotic
noise background. Specifically, the fusion performance is obviously better than that of local sensors with low SNR.

1. Introduction

Weak signal is a weak quantity which is difficult to be detected.
It refers to the signal with a low signal-to-noise ratio (SNR)
which is submerged by noise [1, 2]. The general methods of
weak signal detection include correlation test in the time
domain, sampling integral method, and spectral analysis in
the frequency domain [3]. These methods have been widely
used in radar, communication, automation, fault diagnosis,
and seismic monitoring [4–8]. With the rapid development
of science and technology, it is urgent to detect weak signals
in engineering applications. In many theoretical and practical
problems about signal processing, complex chaotic systems
exist everywhere, especially in science and engineering. There
are two reasons for using chaos as a background signal, includ-
ing the high-precision measurements can be realized by using
the simple chaotic systems, and according to the characteristic
that chaotic systems are sensitive to the initial condition, the
useful signal under the background of powerful noises can
be detected. At the same time, with the maturity of chaos the-

ory and its wide application, the combination of chaos theory
and the detection of weak signals has become a research trend.

In 1990, Leung and Haykin first introduced chaos theory
into the field of sea clutter [9]. By the end of the 20th cen-
tury, based on the characteristics of chaos, many scholars
successfully extracted weak signals under chaotic noise by
using neural networks and other methods [10–13]. In recent
years, many scholars have done a lot of research on the weak
signal under chaotic noise and put forward many effective
methods. Xing et al. aimed at the problem of weak signal
detection under strong noise background, introduced
genetic algorithm, particle swarm optimization algorithm,
and variable scale Duffing oscillator [8, 14, 15] to improve
the detection accuracy, respectively. Huang et al. determined
the threshold of Duffing chaotic system by studying multi-
scale entropy, so as to realize the detection of target signal
[16]. Wang et al. proposed the fractional-order maximum
correlation entropy algorithm for the prediction of chaotic
time series [17]. For more methods, please refer to the liter-
ature [18–21]. All of these studies mentioned above were
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carried out in a single sensor observation mode, while rele-
vant studies based on the distributed system have not been
reported.

It is well known that the distributed system has better
accuracy and survivability than a single sensor. Using the dis-
tributed system to detect weak signal has a broad prospect, and
people usually use this method for fault diagnosis [22–24].
Grzegorz proposed a method based on deep learning to solve
the defect problem of characteristic steel element through the
study of multisensor data integration [25]. Li et al. proposed a
new peer-to-peer distributed Kalman filtering method by
studying the distributed sensor network system [26]. He estab-
lished a sensor network target detection model in a nonideal
channel and studied the sensor network target detection algo-
rithm from the two perspectives of system energy consump-
tion and system detection performance [27]. Kassam et al.
proposed a generalized observation model based on the local
optimal detector to detect the signal [28, 29]. For wireless
sensor networks, Ciuonzo et al. proposed a generalized local
optimal method to detect target signals [30, 31]. Many
scholars have done in-depth research on a distributed system,
especially the professor “P. K. Varshney”, and his papers are at
the heart of the distributed detection. He has written a book on
distributed detection and fusion, which provides an introduc-
tion to decision making in a distributed computational frame-
work [32]. What is more, he has used numerous examples
throughout the book to discusses such distributed detection
processes under various different formulations and in a wide
variety of network topologies. There are extensive studies on
distributed detection fusion, including least-square fusion rule,
large deviation analysis, Rao test, and high-order spherical-
radial criterion [33–37]. In addition, some researchers have
carried out distributed detection for sparse signal or weak
signal and prove the superiority of the proposed methods
through simulation experiments [38–40]. However, most of
these studies are carried out under general noise which can
be described in terms of a definite distribution. There are
few reports on distributed detection and fusion under chaotic
noise. That is, Su et al. conducted a research on the detection
and fusion of weak pulse signals in chaotic noise background
based on the local linear model, which provided a basis for this
paper and subsequent research [41].

In this paper, the specific idea of weak signal detection
and fusion is as follows: first of all, the observation of each
local sensor was reconstructed in phase space, and the
LOWESS model was used to divest the chaotic noise. Then,
under the Bayes criterion, an optimization model was estab-
lished based on the fitting errors. The optimal local decision
rules and fusion rule were proposed. Finally, a specific algo-
rithm was designed to solve the optimal local decision rules
and fusion rule.

The structure of this paper is as follows: part 2 intro-
duces the distributed detection model under chaotic noise
based on distributed detection fusion system. Part 3 uses
phase space reconstruction to strip chaotic noise. The fourth
part establishes the distributed detection fusion model under
the Bayes criterion. Part 5 presents the experimental simula-
tions in different scenarios. Part 6 summarizes the work
done in this paper.

All the mathematical notations used in this article are
summarized in Table 1:

2. Distributed Detection of Signal under
Chaotic Noise

In this paper, the distributed detection fusion system is used
to detect weak signal under chaotic noise. This part is mainly
divided into two aspects: one is the introduction of distrib-
uted detection fusion system, and the other is hypothesis
testing of the observed signal of each local sensor under cha-
otic noise.

2.1. Distributed Detection Fusion System. The distributed
detection fusion system is composed of a fusion center and
multiple local sensors. In this paper, a distributed fusion sys-
tem is considered with a parallel structure depicted in
Figure 1, which has N local sensors and a fusion center.

As shown in Figure 1, the local sensors observe and judge
the same target independently and transmit the results to the
fusion center of the fusion system. Moreover, the fusion center
fuses the received decision results of local sensors to obtain the
final decision result.

2.2. Detection and Fusion of Weak Signal. Under the obser-
vation mechanism of the distributed system, the detection
problem of the weak signal under chaotic noise can be
divided into two parts in form. That is, the detection of the
weak signal of local sensors and the fusion processing of
local detection results by the fusion center.

2.2.1. Detection of Weak Signal by Local Sensors. Let the null
hypothesis H0 and alternative hypothesis H1 are two
hypotheses of prior probability P0 and P1, which represent
the probability without and with signal, respectively. In this
paper, the scenario is considered that the target is in a
chaotic noise environment. Each sensor observes the same
target. The observation signal of each sensor is composed
of the same chaotic signal, the same target signal, and obser-
vation white noise of each sensor. For example, when using a
sensor to monitor ships on the sea surface, the sea clutter can
be approximated as chaotic noise. The observed signal of
each sensor is a mixture of chaotic signal, target signal, and
the white noise. The problem of detecting weak signal under
chaotic noise by local sensors can be abstracted into the
following hypothesis test problem:

H0 : yk tð Þ = c tð Þ + nk tð Þ,
H1 : yk tð Þ = c tð Þ + nk tð Þ + s tð Þ,

ð1Þ

where k = 1, 2, 3,⋯,N . All local sensors observe the same
target and the observation of the kth local sensor can be
expressed as ykðtÞ. cðtÞ denote the background signal of cha-
otic noise from the interference of the environment of the
phenomenon or target. The chaotic noise contained in the
observation signal of each local sensor is the same. And nk
ðtÞ is the observed white noise of the kth local sensor, which
obeys the normal distribution with a mean value of 0 and
variance of σ2k. sðtÞ denotes the target signal, namely, weak
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signal, which is independent of chaotic noise and is the
signal of interest to us.

The weak signal to be detected is drowning under
chaotic noise. If we use equation (1) to detect the signal
directly, we should not be able to detect whether there is a
weak signal sðtÞ in the observed signal ykðtÞ accurately. It is
necessary to eliminate the interference of chaotic noise cðtÞ.
In other words, the chaotic signal can be fitted by using chaotic
characteristics to eliminate the influence of chaotic noise.
Thus, it is transformed into the following hypothesis testing
problem:

H∗
0 : yk tð Þ − c tð Þ = nk tð Þ,

H∗
1 : yk tð Þ − c tð Þ = nk tð Þ + s tð Þ:

ð2Þ

The hypothesis test of local sensors in distributed detec-
tion fusion system under chaotic noise is proposed. It provides
the hypothesis basis for the phase space reconstruction of the

Table 1: Mathematical notations and descriptions.

Mathematical notations Description

H0 The null hypothesis

H1 The alternative hypothesis

P0 The prior probability, which represents the probability without signal

P1 The prior probability, which represents the probability with signal

yk tð Þ The observation of the kth local sensor at time t

s tð Þ The target signal to be detected at time t

c tð Þ The background signal of chaotic noise at time t

nk tð Þ The observed white noise of the kth local sensor at time t

σ2k The variance of white noise

uk The decision result of the kth local sensor

u Decision vectors for all local sensors

u0 The decision result of the fusion center

γk The decision rule of the kth sensor

γ0 The fusion rule of fusion center

gk A continued vector mapping

ek The fitting errors

δ The threshold value for testing the model

τ The time delays

m The embedding dimensions

RB The Bayes risk of the detection fusion system

Tk The decision threshold of the kth local sensor

Pk
D The detection probability of the kth sensor

Pk
F The false alarm probability of the kth sensor

P0
D The detection probability of fusion center

P0
F The false alarm probability of fusion center

Cij The cost of the global decision being Hj when Hj is present

~uk The vector with the resulting decision of all local sensors except the kth sensor

Fusion center

Sensor 2Sensor 1

Phenomenon

Sensor 3 Sensor N……

y2

u1 u2 u3 uN

y1 yN
y3

u0

Figure 1: Distribution detection fusion system.
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observation signal and the construction of the local weighted
regression model in the next part.

2.2.2. Fusion of Local Detection Results. If the decision result
of the kth local sensor is

uk =
0,H0 is declared present,
1,H1 is declared present:

(
ð3Þ

The observation result of all local sensors outputs is u
= fu1, u2,⋯,uNg. The decision of the fusion center is to fuse
the decision of each local sensor and make the final decision,
which can be expressed as u0. While u0 = 1 indicates the final
decision result of fusion system is that there is a weak signal,
u0 = 0 indicates the final decision result of fusion system is
no signal, i.e.,

u0 =
0,H0 is declared present,
1,H1 is declared present:

(
ð4Þ

Supposed the local sensors in the fusion system are inde-
pendent of each other. The optimization goal of distributed
fusion system is to seek a system decision rule in order to
achieve the best performance of the fusion system:

γ = γ0, γ1, γ2,⋯,γNf g, ð5Þ

where γk and γ0 denote the fusion rule and decision rule at
the kth sensor, respectively, which map from observation
space to decision space as follows:

uk = γk ykð Þ, k = 1, 2,⋯,N ,
u0 = γ0 uð Þ = γ0 u1, u2,⋯,uNð Þ:

ð6Þ

3. Phase Space Reconstruction and
LOWESS Model

The steps of establishing a single-step prediction model for
the observed signals of the local sensor are as follows: step
1, reconstructing the phase space of observed signal; step 2,
establishing the LOWESS model; step 3, testing the advan-
tages and disadvantages of a local weighted regression
model.

3.1. Phase Space Reconstruction.Aphase space ofmdimension can
be constructed by the time delays τ and embedding dimensionsm
for the observed signal of k sensor fykðtÞ, t = 1, 2,⋯, ng. Any
phase point in reconstructed phase space can be expressed as Yk

ðtÞ = ðykðtÞ, ykðt − τÞ, ykðt − 2τÞ,⋯, ykðt − ðm − 1ÞτÞÞ′,
where t = n1, n1 + 1, n1 + 2,⋯, n and n1 = 1 + ðm − 1Þτ.

According to Takens delay embedding theorem [42],
there is a continued vector mapping gk : R

m ⟶ R for every
phase point of reconstructed phase space, that is, ykðt + 1Þ
= gðYkðtÞÞ,t = n1, n1 + 1, n1 + 2,⋯, n − 1. If the continuous
vector mapping gk or its approximation ĝk can be obtained,
the next data point ykðt + 1Þ can be predicted according to
the mapping. The time delays and embedding dimensions
can be solved by the method of multiple autocorrelations
[43] and Cao [44], respectively.

3.2. Locally Weighted Regression (LOWESS) Model. Local
polynomial fitting is a widely used nonparametric technique,
which combines the simplicity of traditional linear regres-
sion and the flexibility of nonlinear regression. It can elimi-
nate the influence of heteroscedasticity and fit the data well,
so we used the locally weighted regression model to predict.
For the reconstructed phase space, the LOWESS model of
the observed signal ykðtÞ is established to approximate the
mapping gk

where Ck = ðc0k, cð1Þ1k , c
ð1Þ
2k ,⋯,cð1Þmk, c

ð2Þ
1k ,⋯,cðsÞmkÞ′. And Ck is the

coefficient vector to be estimated in the original equation
(7) and s is the order of the LOWESS model. For any phase
point in phase space, there are some adjacent points around
it with similar evolution law. The closer the distance is, the
greater the degree of evolution similarity is. In this paper,
the Euclidean distance of these phase points is calculated
to determine these adjacent points. Suppose that a phase
point YkðtMÞ is arbitrarily selected and there are q adjacent
points YkðtiÞði = 1, 2,⋯,qÞ around it, and q ≤ 2m + 1. The
cubic functionW is used to control the influence of the error

caused by the point far away from the current point in the
modeling process. The estimated value Ĉk of the parameter
Ck is obtained by using the weighted-least-square method
to solve the equation (7).

min
Ck∈R

〠
q

i=1
yk ti + 1ð Þ − g Yk tið Þð Þ½ �2W uið Þ =min

Ck∈R
〠
q

i=1
yk ti + 1ð Þ − Ck′Yk tið Þ
h i2

W uið Þ,

ð8Þ

where

yk t + 1ð Þ ≈ g Yk tð Þð Þ,
g Yk tð Þð Þ = c0k + c 1ð Þ

1k yk tð Þ + c 1ð Þ
2k yk t − τð Þ+⋯+c 1ð Þ

mkyk t − m − 1ð Þτð Þ + c 2ð Þ
1k yk

2 tð Þ+⋯+c sð Þ
mkyk

s t − m − 1ð Þτð Þ = Ck′Yk tð Þ,
ð7Þ
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According to equation (8), the solution vector obtained by

the local-weighted-least-square method is Ĉk = ðYk′WYkÞ
−1

Yk′W ~Yk. The predicted value gðYkðtÞÞ can be obtained by
substituting Ĉk into the original equation, and the prediction
error is ekðt + 1Þ = ykðt + 1Þ − g ðYkðtÞÞ.
3.3. Testing the Advantages and Disadvantages of LOWESS
Model. Set a threshold value δ, when m = 6, τ = 7 [21], q = 4,
if the error sum of squares (sse =∑n−1

t=n1e
2
kðt + 1Þ) in LOWESS

model is less than the threshold value δ, i.e., sse < δ (according
to a large number of simulation results, let δ = 3), then the
LOWESS model can approximate the mapping g well; other-
wise, it means that the LOWESS model cannot approximate
the mapping g well and needs to be optimized again.

4. Detection Fusion Optimization Model and
Its Solutions

This paper is aimed to construct a detection and fusion
mechanism under chaotic noise based on the distributed
detection system. It is mainly divided into two parts, one is
to deal with chaotic signal, and the other is to detect and fuse
the processed signal. The specific idea is shown in Figure 2.

The first part has been dealt with in the previous section,
and followed by the second part, which is the distributed
detection fusion of prediction errors. The problem of distrib-
uted detection fusion is to seek a set of optimal rules. Aiming
at minimizing the Bayes risk of fusion center, a detection
fusion optimization model is established. The optimization
problem is a global optimization problem which involves
the decision rules of local sensors and the fusion rule of
fusion center. Because the chaotic noise has a great influence
on the target signal, it cannot be solved when calculating the
decision rules. Therefore, the chaotic noise has been stripped
away before calculating the decision rules. In this paper, it is

assumed that each local sensor is independent of each other,
i.e., the observed signals of each sensor are conditionally
independent of each other.

4.1. Detection Fusion Optimization Model. Since the chaotic
noise has been stripped off in the previous part, the new
observation of each local sensor is the fitting errors of the
LOWESS model. A distributed detection fusion system is
constructed according to the prediction error after stripping
chaotic noise, as shown in Figure 3.

Let the conditional probability density function of the
observed values ek at the kth sensor is f Ek

ðekjH jÞ, j = 0, 1
and k = 1, 2,⋯,N . And the combined conditional probabil-
ity density function of all local sensors is f ðe1, e2,⋯,eN jHiÞ
, i = 0, 1. Assume that the local observations in the fusion
system are conditional independence, namely the combined
conditional probability density function is

f e1, e2,⋯,eN Hijð Þ =
Y

f ek Hijð Þ, ð11Þ

Under the Bayesian criterion, denote the probabilities of
detection and false at the kth sensor and fusion center by Pk

D,
Pk
F , P0

D, and P0
F , respectively. The distributed detection

fusion is modeled by minimizing the following Bayes risk:

RB = 〠
1

i=0
〠
1

j=0
CijPjP u0 = i Hj

��� �
, ð12Þ

where Cij is the cost of the global decision being Hi when Hj

is present.

As Pðu0 = ijH1Þ = ðP0
DÞið1 − P0

DÞ1−i, Pðu0 = ijH0Þ = ðP0
FÞi

ð1 − P0
FÞ1−i,

W uið Þ = 1‐u3i
� �3

  i = 1, 2,⋯,qð Þ,

ui =
d Yk tMð Þ, Yk tið Þð Þ

MAX d Yk tMð Þ, Yk tið Þð Þð Þ ,

W = diag W u1ð Þ,W u2ð Þ,⋯,W uq
� �� �

,

ð9Þ

Yk =

1 yk t1ð Þ yk t1 − τð Þ ⋯ yk t1 − m − 1ð Þτð Þ yk
2 t1ð Þ ⋯ yk

s t1 − m − 1ð Þτð Þ
1 yk t2ð Þ yk t2 − τð Þ ⋯ yk t2 − m − 1ð Þτð Þ yk

2 t2ð Þ ⋯ yk
s t2 − m − 1ð Þτð Þ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 yk tq
� �

yk tq − τ
� �

⋯ yk tq − m − 1ð Þτ� �
yk

2 tq
� �

⋯ yk
s tq − m − 1ð Þτ� �

2
666664

3
777775 =

Yk t1ð Þ
Yk t2ð Þ
⋮

Yk tq
� �

2
666664

3
777775,

~Yk = yk t1 + 1ð Þ, yk t2 + 1ð Þ,⋯,yk tq + 1
� �� �′:

ð10Þ
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and then

RB = C + CFP
0
F − CDP

0
D, ð14Þ

where C = C10P1 + C00P0,CF = P1ðC01 − C11Þ,
CD = P0ðC10 − C00Þ.

Because P0
D = Pðu0 = 1jH1Þ, P0

F = Pðu0 = 1jH0Þ, then

P 0
F =〠

u

P u0 = 1 ujð ÞP u H0jð Þ,

P 0
D =〠

u

P u0 = 1 ujð ÞP u H1jð Þ:
ð15Þ

RB = 〠
1

i=0
〠
1

j=0
CijPjP u0 = i H j

��� �
= C00P0P u0 = 0 H0jð Þ + C01P1P u0 = 0 H1jð Þ

+ C10P0P u0 = 1 H0jð Þ + C11P1P u0 = 1 H1jð Þ = C00P0 1 − P0
F

� �
+ C01P1 1 − P0

D

� �
+ C10P0P

0
F + C11P1P

0
D = C00P0 − C00P0P

0
F + C01P1 − C01P1P

0
D + C10P0P

0
F

+ C11P1P
0
D = C10P1 + C00P0ð Þ + P1 C01 − C11ð ÞP0

F − P0 C10 − C00ð ÞP0
F ,

ð13Þ

Weak signal in chaotic background noise

Observation
signal of local

sensor 1

Observation
signal of local

sensor 2

Observation
signal of local

sensor N

Observation
signal of local

sensor ...

Phase space
reconstruction by

local sensor 1

Phase space
reconstruction by

local sensor 2

Phase space
reconstruction by

local sensor ...

Phase space
reconstruction by

local sensor N

One-step
prediction of

residuals

One-step
prediction of

residuals

One-step
prediction of

residuals

One-step
prediction of

residuals

Signal detection fusion by the fusion center

Signal detection
by local sensor 1

Signal detection
by local sensor 2

Signal detection
by local sensor ...

Signal detection
by local sensor N

Phase space
reconstruction
and LOWESS

model

Detection
fusion

optimization
model

y1 y 2 yk

u1
u
2 uk

0 n

Figure 2: Schematic diagram of detection fusion of weak signal under chaotic noise.
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Thus, the Bayes risk function can be expressed as

RB = C +〠
u

P u0 = 1 ujð Þ CFP u H0jð Þ − CDP u H1jð Þ½ �: ð16Þ

According to formula (10), the Bayes risk function is
determined by the decision rules of each local sensor and
the fusion rule of the fusion center. Therefore, it is necessary
to seek the optimal fusion rule for the whole system and
optimal sensor decision rules by minimizing the Bayes risk
of fusion system, i.e.,

min RB = C +〠
u

P u0 = 1 ujð Þ CFP u H0jð Þ − CDP u H1jð Þ½ �:

ð17Þ

Although the above model is relatively simple in form,
the decision rules of local sensors and the fusion rule are
complex in form. As they were coupled together, the model
may be difficult to solve. The idea of Gauss Seidel’s algo-
rithm is used to solve the rules. The conditional probability
density function can be obtained by fitting the distribution
of prediction errors by parameter estimation.

4.2. Fusion Rule and Decision Rules of Local Sensors. The
fusion rule and decision rules of the local sensor are obtained
by the detection fusion optimization model. If the decision
rules of local sensors were known, we could find out the
optimal fusion rule to when the Bayes risk reaches the min-
imum. If the fusion rule of the fusion center and the other
decision rules of local sensors were known, we could also
find out the optimal decision rule of the kth local sensor to
minimizing the Bayesian risk. The optimal fusion rule and
decision rules of local sensors can be obtained by solving
the two rules jointly.

4.2.1. Fusion Rule. Suppose that the decision rules of local
sensors were known, i.e., PðujHiÞ, i = 0, 1. If the Bayes risk
function of the fusion system was to be minimized, the con-
ditional probability needed to satisfy

P u0 = 1 ujð Þ =
1, if CFP u H0jð Þ

CDP u H1jð Þ < 1,

0, otherwise:

8><
>: ð18Þ

Then, the optimal fusion rule of the fusion center is
expressed as

P u H1jð Þ
P u H0jð Þ

>
H1

<
H0

CF

CD
: ð19Þ

4.2.2. Local Sensor Decision Rule. Suppose that the fusion
rule of fusion center was Pðu0 = 1juÞ. If the other decision
rules of local sensors were known, the decision rule at the
kth sensor could be found when the Bayes risk reach the
minimum. Denote the resulting decision of all local sensors
except the kth sensor by ~uk = ðu1, u1,⋯,uk−1, uk+1,⋯,uNÞ.
The probabilities of detection and false in the fusion system
can expressed as

…Sensor 2 Sensor 3 Sensor NSensor 1

Fusion center

u1 u2 u3 uN

e1 e2 e3 eN

u0

Figure 3: The distributed detection fusion system of fitting errors.

P0
D =〠

~uk

P u0 = 1 ~uk, ukj = 0ð ÞP ~uk, uk = 0 H1jð Þ + P u0 = 1 ~uk, ukj = 1ð ÞP ~uk, uk = 1 H1jð Þf g,

P0
F =〠

~uk

P u0 = 1 ~uk, ukj = 0ð ÞP ~uk H0jð Þ +〠
~uk

A ~ukð ÞP ~uk, uk = 1 H0jð Þ

=〠
~uk

P u0 = 1 ~uk, ukj = 0ð Þ P ~uk H1jð Þ − P ~uk, uk = 1 H1jð Þð Þ + P u0 = 1 ~uk, ukj = 1ð Þ · P ~uk, uk = 1 H1jð Þf g

=〠
~uk

P u0 = 1 ~uk, ukj = 0ð ÞP ~uk H1jð Þ +〠
~uk

A ~ukð ÞP ~uk, uk = 1 H1jð Þ:

ð20Þ

7Journal of Sensors



Then, the Bayes risk function can be expressed as

RB = Ck + CF〠
~uk

A ~ukð ÞP ~uk, uk = 1 H0jð Þ − CD〠
~uk

A ~ukð ÞP ~uk, uk = 1 H1jð Þ,

ð21Þ

where

A ~ukð Þ = P u0 = 1 ~uk, uk = 1jð Þ − P u0 = 1 ~uk, uk = 0jð Þ,
Ck = C +〠

~uk

P u0 = 1 ~uk, ukj = 0ð Þ CFP ~uk H0jð Þ − CDP ~uk H1jð Þf g:

ð22Þ

The Bayes risk function of the fusion system is

RB = Ck +
ð
ek

P uk = 1 ekjð Þ
�
CF〠

~uk

A ~ukð ÞP ~uk H0jð Þ ⋅ f Ek
ek H0jð Þ

− CD〠
~uk

A ~ukð ÞP ~uk H1jð Þf Ek
ek H1jð Þ

�
dek:

ð23Þ

If the Bayes risk function of the fusion system was to be
minimized, then

uk =
1, if

CF∑~uk
A ~ukð ÞP ~uk H0jð Þ

CD∑~uk
A ~ukð ÞP ~uk H1jð Þ <

f Ek ek H1jð Þ
f Ek ek H0jð Þ :

0, otherwise:

8><
>:

ð24Þ

The optimal decision rule at the kth sensor is expressed as

f Ek
ek ∣H1ð Þ

f Ek
ek ∣H0ð Þ

>
H1

<
H0

CF∑~uk
A ~ukð ÞP ~uk ∣H0ð Þ

CD∑~uk
A ~ukð ÞP ~uk ∣H1ð Þ : ð25Þ

Let the kth local sensor decision threshold is

Tk =
CF∑~uk

A ~ukð ÞP ~uk H0jð Þ
CD∑~uk

A ~ukð ÞP ~uk H1jð Þ : ð26Þ

Therefore, there are N optimal decision rule equations
and 2N fusion equations. According to formula (13), the
optimal fusion rule under the condition each local sensor
is independent of each other is expressed as

YN
i=1

P ui H1jð Þ
P ui H0jð Þ

>
H1

<
H0

CF

CD
: ð27Þ

The fusion rule and the decision rules of local sensors are
coupled with each other. In order to obtain the optimal deci-
sion rule of the whole system, it is necessary to solve the
optimal decision thresholds of every local sensor and opti-
mal fusion rule of the fusion center.

4.2.3. Iterative Algorithm.According to the content of the upper
part, the optimal decision rules can be simplified as a likelihood
ratio threshold decision under the condition of independent
observation of each local sensor. In other words, the optimal
rules of the fusion system can be obtained directly from the
optimal fusion rule and local sensor decision thresholds. The
decision rules of local sensors and the fusion rule of fusion cen-
ter are coupled together, and themodel may be difficult to solve.
The idea of Gauss Seidel’s algorithm is used to solve the rules.
The fusion rule and the corresponding set of local sensor deci-
sion thresholds that yield theminimum cost constitute the solu-
tion of the hypothesis testing problem in distributed detection
fusion system. The numerical iterative algorithm is initialized
by picking a set of local sensor decision thresholds and fusion
rule. The optimal fusion rule and local sensor decision thresh-
olds are obtained by minimizing the Bayes risk, respectively.
Once the first iteration is complete, the next iterations are run
identically. The numerical iteration algorithm is terminated
when the difference of Bayes risks obtained after two successive
iterations is less than the given accuracy.

Its pseudocodes are as follows:

Inputs: Prediction errors ekðtÞ;
Outputs: The optimal fusion rule γ0 and the optimal sensor decision threshold Tk;
Begin:
Initialization parameters: γ00, T

0
k, ðk = 1, 2,⋯,NÞ etc;

Termination criteria: whileðRn+1
B − Rn

B > εÞ
Step 1: According to the initial values fγ00, T0

1, T0
2,⋯, T0

Ng, calculate their corresponding Bayes risk value R0
B;

Step 2: Fixed fTn−1
1 , Tn−1

2 ,⋯, Tn−1
N g, calculate the optimal fusion rule γn0 ;

Step 3: For the first sensor, fix fγn0 , Tn
2 ,⋯, Tn

k−1, Tn−1
k+1 ,⋯, Tn−1

N g and calculate the decision threshold Tn
1 . Similarly, for the kth sensor,

fγn0 , Tn
1 ,⋯, Tn

k−1, Tn−1
k+1 ,⋯, Tn−1

N gis fixed and calculate the decision threshold Tn
k ;

Step 4: According to the fusion rule γn0 and decision threshold fTn
1 , Tn

2 ,⋯, Tn
Ng, calculate the Bayes risk value Rn

B;
Step 5: If Rn

B does not satisfied the for a given precision, then let n = n + 1 and turn step 2 to continue the cycle, otherwise stop the
cycle and output the optimal fusion rule and sensor decision threshold fγn0 , Tn

1 , Tn
2 ,⋯, Tn

Ng.
End while

Pseudocode 1:
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5. Simulations

In this paper, the binary hypothesis testing problem for a
parallel distributed detection fusion system with two local
sensors is simulated. The local sensors are independent of
each other, which are named as DM1 and DM2, respectively.
For convenience, suppose that all local sensor has the same
performance.

In order to verify the feasibility and effectiveness of the
proposed method, four simulation experiments were carried
out. A Lorenz system is used to generate the chaotic signals
based on the literature [20, 21], and the white noise in the
observation signal of the kth sensor obeys the normal distri-
bution with a mean value of 0, i.e., nkðtÞ ∼Nð0, σ2kÞ, k = 1, 2.
The signal-to-noise ratio (SNR) is used to measure the
detection threshold.

SNR = 10 lg σ2
s

σ2
c + σ2n

� �
, ð28Þ

where

σ2
s =

1
n
〠
n

t=1
s tð Þ −�s tð Þð Þ2,

σ2c =
1
n
〠
n

t=1
c tð Þ −�c tð Þð Þ2:

ð29Þ

�sðtÞ and �cðtÞ are the means of sðtÞ and cðtÞ, respectively,
σ2c and σ2s are the variance of the chaotic signal and the tar-
get signal, respectively. σ2

n is the maximum of the variance of
white noise nkðtÞ. The chaotic signal is stronger compared to
the target signal. The target signal is almost drowned out by
the chaotic signal, resulting in a low SNR. In this paper, the
chaotic signal is stripped before local sensors detect and fuse
the observation signals.

Consider Lorenz system

_x = σ y − xð Þ,
_y = −xz + rx − y,
_z = xy − bz,

8>><
>>: ð30Þ

where σ = 10, b = 8/3, r = 28, x, y, z denote the time function.
The initial points are x = 1, y = 1, z = 1 and the step length of
the integral is t = 0:01s. We apply a four-order Runge-Kutta
integral method and obtain a simulated time series of x with
10000 data. To reduce the influence of transition, we get rid
of the first and the last 3000 data and only keep the middle
4000 data, i.e., fcðtÞ, t = 1, 2, 3,⋯,4000g. For the sequence of
4000 time points, we apply the method of multiple autocorre-
lation and Cao to obtain the time delay τ = 7 and the embed-
ding dimension m = 6 of observed signals, respectively.

5.1. Detection Experiment of Weak Signal Existence in
Distributed Detection System. In this paper, the pulse signal
is used as the target signal to be detected. Suppose that the
signal is a pulse signal with a period of 100, i.e., sðtÞ = p · s1
ðtÞ, where p = 2

s1 tð Þ =
1, t = 100, 200,⋯,
0, others,

(
ð31Þ

producing a time series of 4000 and make it as fsðtÞ, t = 1,
2, 3,⋯,4000g. Two local sensors observe the same phenom-
enon. Each local sensor itself has a certain observation error.
This paper assumes that the variance of the local sensors
observation error is 0.4 and 0.6, respectively. At this time,
the SNR of two local sensors is -73.69 dB and -73.73 dB.

In this paper, two local sensors are used to observe the
same phenomenon, and the observation signals are shown
in Figure 4. Figures 4(a) and 4(b) show the purely chaotic
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(c) The observation signal y1ðtÞ is combined with the true signal,

chaotic signal, and observed white noise from the DM1
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(d) The observation signal y2ðtÞ is combined with the true signal,

chaotic signal, and observed white noise from the DM2

Figure 4: The results of signals.
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signal cðtÞ and the signal yðtÞ which contain cðtÞ and signal
sðtÞ, respectively. Figures 4(c) and 4(d) show the observation
signal y1ðtÞ of DM1 and the observation signal y2ðtÞ of
DM2, respectively. The observation signal yiðtÞ is combined
with the true signal, chaotic signal, and observed white noise
from the DMi, i = 1, 2.

Figure 4 shows that the four signals are very similar. It is
hard to differentiate directly. It seems that the influence of
weak pulse signal on chaotic noise is very weak and has been
submerged in chaotic noise. So the weak pulse signal cannot
be detected directly.

Because the weak pulse signal has a weak impact on the
chaotic signal, the delay times and embedding dimension of
these signals obtained by the same method should be the
same. In this paper, the phase space reconstruction is used
to establish a local weighted regression model for cðtÞ, yðtÞ,
y1ðtÞ, and y2ðtÞ, respectively, which can peel off the chaotic
noise signal and obtain the corresponding fitting errors.
These fitting errors are shown in Figure 5.

In Figure 5, e∗ðtÞ, eðtÞ, e1ðtÞ, and e2ðtÞ denote the fit-
ting errors of cðtÞ, yðtÞ, y1ðtÞ, and y2ðtÞ, respectively.
Phase space reconstruction and the LOWESS model can
effectively divest the chaotic noise signal. The fitting errors
increase obviously by stripping the chaotic noise, which
means that there may be weak pulse signal in the observa-

tion signals. If the observation just contains pulse signal
and chaotic noise, we could directly see whether there is
a pulse signal from the fitting error. However, if the obser-
vation contains pulse signal, chaotic noise, and the white
noise from local sensors, it was hard to judge the pulse
signal directly. The detection fusion strategy would get
more accurate results.

5.2. Performance Evaluation of LOWESS Model. In order to
verify the performance of forecasting precision from the
LOWESS model and demonstrate the advantages of this
model, the three evaluation indexes of mean square error
(MSE), mean absolute deviation (MAD), and root mean
square error (RMSE) are used to measure performance.
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Figure 5: The fitting errors of signals. (a) Fitting error of cðtÞ. (b) Fitting error of yðtÞ. (c) Fitting error of y1ðtÞ. (d) Fitting error of y2ðtÞ.

Table 2: Evaluation index of different models.

Index UR LAR LOWESS

MSE 0.1858 0.1072 0.0033

RMSE 0.4311 0.3274 0.0578

MAD 0.2168 0.1232 0.0365
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Figure 6: Iterative convergence result of fusion algorithm.
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Suppose the true value is yðtÞ and the predicted value is ŷðtÞ,
then

MSE = 1
n
〠
n

t=1
y tð Þ − y∧ tð Þð Þ2,

MAD = 1
n
〠
n

t=1
y tð Þ − ŷ tð Þj j,

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

t=1
y tð Þ − y∧ tð Þð Þ2

s
,

ð32Þ

where n denotes the number of signal. yðtÞ denotes the sig-
nal which is combined with the true and chaotic signal, i.e.,

y tð Þ = c tð Þ + s tð Þ: ð33Þ

We compare the unreconstructed model (UR) and the
linear model (LAR) with the locally weighted regression
model (LOWESS) in this paper under the same experimental
conditions, and the results are shown in Table 2.

In Table 2, it seems that the prediction effects of the
reconstructed models are better than the unreconstructed
model. That is because the reconstructed models can restore
the dynamic system of chaos well. The prediction effect of
the LOWESS model is better than the linear model. In addi-
tion, the linear model may be affected by outliers, which
leads to large prediction error. The result of evaluation
indexes from Table 2 is shown that the performance of
LOWESS in this paper is better than the other two models.

5.3. Detection of Convergence Algorithm and Performance
Evaluation. Aim to better illustrate the astringency and
advantages of detection fusion algorithm, we also show the

iterative convergence graph of the fusion algorithm and
Bayes risk of single sensor and fusion system with two local
sensors. When P0 is equal to 0.5, the iterative convergence
result is shown in Figure 6.

The value of Bayes risk (RB) gradually tends to a fixed
value when the number of iterations k increases. When k is
greater than 5, the Bayes risk does not change, which shows
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Figure 7: The results of Bayes risks and detection performance.

Table 3: Detection accuracy of different methods.

P0 SNR/dB DM 1 DM 2 Fusion center

0.9

-10 0.848 0.529 0.893

-40 0.865 0.487 0.892

-70 0.844 0.431 0.870

-100 0.836 0.431 0.864

0.7

-10 0.664 0.479 0.682

-40 0.669 0.458 0.681

-70 0.641 0.434 0.657

-100 0.639 0.444 0.663

0.5

-10 0.502 0.501 0.501

-40 0.503 0.497 0.499

-70 0.502 0.505 0.502

-100 0.504 0.501 0.498

0.3

-10 0.662 0.690 0.715

-40 0.662 0.685 0.701

-70 0.646 0.667 0.693

-100 0.635 0.667 0.695

0.1

-10 0.667 0.820 0.896

-40 0.697 0.831 0.892

-70 0.661 0.796 0.868

-100 0.637 0.800 0.868
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that the iterative has converged, at the same time, the Bayes
risk value is 0.1025. This shows that the fusion algorithm has
good convergence.

According to the optimal rules, the Bayes risks of each
local sensor and fusion center in the fusion system are calcu-
lated. The corresponding probability of detection and false
alarm are also calculated. The Bayes risks of fusion center
and single local sensor are shown in Figure 7. Figure 7(a)
shows the Bayes risks of the fusion system with two local
sensors DM1 and DM2, and Figure 7(b) shows the detection
performance of the local sensor and fusion center in the
fusion system. The detection performance is represented by
the probability of detection and false alarm.

According to Figure 7, the local sensors cooperate with
each other, which can minimize the Bayes risk value. The
fusion center result is better than the local sensor results.
This fully demonstrates the superiority of distributed detec-
tion fusion system.

5.4. Comparison of Detection Fusion Results in Different
Scenarios. In order to further illustrate the advantages of dis-
tributed detection fusion system under chaotic noise, its per-
formance is analyzed under different parameter values. The
results are shown in Table 3.

From Table 3, the results showed that the accuracy of the
fusion system is generally higher than that of the single local
sensor in different scenarios, and the partial performance of
a single local sensor may be sacrificed owing to the coupling
of optimal fusion algorithms, which leads to abnormal
detection results of local sensors. The farther the P0 value
is from 0.5, the more superiority is. When the P0 is close
to 0.5, the superiority is not obvious, even the detection
result of the fusion system is worse than that of single local
sensor. Taken as a whole, the distributed detection fusion
system has consistent advantages compared with single local
sensor observation mechanism.

The precision (P), recall (R), accuracy (ACC), and com-
prehensive evaluation index (F1) are used to evaluate the
detection performance of fusion system:

P = TP
TP + FP

, R = TP
TP + FN

, F1 =
2 × P × R
P + R

,

ACC = TP + TN
TP + FP + FN + TN

,
ð34Þ

where TP means that there is a signal in practice and is
judged to be a signal; FP means that there is actually no sig-
nal, but the judgment is a signal; TN means that there is
actually no signal and is judged to be no signal; FN means
that there is a signal in practice, but the judgment is no
signal.

Select the optimal result of the fusion system to set the
parameters, that is, SNR = −51 dB and P0 = 0:1, and the
experimental results are shown in Tables 4 and 5.

From the results shown in Tables 4 and 5, in different
scenarios, the detection performance of the fusion system
is different. When SNR is equal to -51 dB, the detection per-
formance of the fusion system increases with the decrease of

the P0 value. When P0 is equal to 0.1, the detection perfor-
mance of fusion system decreases with the decrease of SNR.

5.5. Comparison of ROC Curves of Single Sensor and Fusion
Center. In order to demonstrate the superiority of the pro-
posed method, other detection fusion methods are com-
pared with the proposed method. ROC curve is a curve
drawn according to a series of different dichotomy methods
(boundary value or decision threshold), with sensitivity (true
positive rate, TPR) as vertical coordinate and 1-specificity
(false positive rate, FPR) as horizontal coordinate, which is
used to judge the detection results. The larger the area
(AUC) under the ROC curve, the higher the accuracy of
the detection results.

Figure 8 shows that the ROC curves of a single sensor
(sensor 1 and sensor 2) and the fusion center of distributed
detection fusion system are obtained when the SNR is
-10 dB. From the results in Figure 8, the AUC value of the
fusion center is 0.974, and it is greater than that of a single
sensor, which indicates that the detection results of distrib-
uted detection fusion system have higher accuracy than that
of a single sensor.

5.6. Comparison of Results of Different Detection Fusion
Methods. In order to demonstrate the superiority of the pro-
posed method, other detection fusion methods are com-
pared with the proposed method. The prediction and
fusion of the linear model and the unreconstructed model
of the distributed sensor, namely, DS-LAR and DS-UR, are
carried out, respectively, and compared with the proposed
method in this paper. The detection fusion results of differ-
ent models are shown in Table 6.

It can be seen from Table 6 that the detection and fusion
results were obtained by using different methods when the

Table 4: Detection performance of different P0 at SNR = −51 dB.

P0 ACC P R F1
0.9 0.883 0.360 0.217 0.271

0.8 0.776 0.406 0.260 0.317

0.7 0.685 0.438 0.172 0.247

0.6 0.596 0.479 0.130 0.205

0.5 0.499 0.499 0.988 0.663

0.4 0.597 0.601 0.982 0.745

0.3 0.702 0.705 0.988 0.823

0.2 0.798 0.809 0.979 0.886

0.1 0.879 0.915 0.955 0.934

Table 5: Detection performance of different SNR at P0 = 0:1.

SNR/dB ACC P R F1
-10 0.896 0.975 0.907 0.940

-40 0.892 0.927 0.954 0.940

-70 0.868 0.903 0.955 0.929

-100 0.868 0.900 0.959 0.928

-150 0.860 0.899 0.951 0.924
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SNR is -10 dB, and the proposed method in this paper has
the highest detection accuracy. Although the precision of
the proposed method is lower than that of DS-LAR and
DS-UR, the comprehensive evaluation index (F1) is higher.
Therefore, the detection performance of the proposed
method is better than the other two methods.

6. Conclusions

In this paper, the problem of signal detection under chaotic
noise was considered in the distributed detection fusion sys-
tem. In this paper, the problem of signal detection under
chaotic noise was considered in the distributed detection
fusion system. The problem which is urgent and difficult
has important research value. And the related research is lit-
tle. The signal detection theory under the background of
chaotic noise is combined with the traditional distributed
detection fusion theory. The proposed signal processing
method and detection fusion algorithm could detect the
target signal effectively, which means important theoretical
significance and practical value. From the simulation results,
we can draw the following conclusions: the LOWESS model
could effectively remove chaotic noise; the proposed distrib-
uted fusion algorithm could converge rapidly; the results of
detection fusion is obviously better than that of a single sen-
sor; weak signals submerged in chaotic noise and white noise
could be detected effectively; the proposed method was
better than DS-LAR and DS-UR, and its detection accuracy
is higher.
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