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Nowadays, deep learning has made great achievements in the field of rotating machinery fault diagnosis. But in the practical
engineering scenarios, when facing a large number of unlabeled data and variable operating conditions, only using a deep
learning algorithm may reduce the performance. In order to solve the above problem, this paper uses a method of
combining transfer learning with deep learning. First, the deep shrinkage residual network is constructed by adding soft
thresholds to extract the characteristics of bearing vibration data under noise redundancy. Then, the joint maximum mean
deviation (JMMD) criterion and conditional domain adversarial (CDA) learning domain adapting network are used to
align the source and target domains. At the same time, adding transferable semantic augmentation (TSA) regular items
improves alignment performance between classes. Finally, the proposed model is verified by three experiments: variable
load, variable speed, and variable noise, which overcomes the shortcomings of traditional deep learning and shallow

transfer learning algorithms.

1. Introduction

With the development of modern industry toward intelli-
gence, the health management mode of industrial equipment
based on big data has become a hot research field. To achieve
the goal of real-time monitoring of mechanical health and
performance, it is increasingly important to speed up the
establishment of a stable and reliable Prognostic and Health
Management (PHM) [1]. In an industrial system, all working
elements are in a relatively coupled working state, and any
failure may affect the normal operation of the whole mechan-
ical system. Since the measured signals are usually transient
and dynamic, it is difficult to achieve early diagnosis of mon-
itoring and failure by using the traditional time-frequency
analysis method [2]. In order to ensure the highest possible
uptime, the way of system maintenance should change to
the way of real-time monitoring and predictive prevention
[3]. To achieve these purposes, the intelligent fault diagnosis
method has become an important research field in recent
years.

The intelligent fault diagnosis method is developed on
the basis of traditional machine learning and deep learning.
Different from the traditional method of extracting fault fea-
ture signals manually, the intelligent fault diagnosis method
does not require much prior knowledge about signal pro-
cessing but directly extracts useful information from the
vibration data collected and realizes early fault diagnosis in
a data-driven way [4]. Among them, artificial neural net-
work (ANN), support vector machine (SVM), deep neural
network (DNN), and other models are the most widely used
models for intelligent fault diagnosis [5, 6]. Merainani et al.
[7] used a self-organizing feature map (SOM) neural net-
work to identify and classify gearbox faults automatically
and used a self-organizing and adaptive algorithm to identify
gearbox early faults effectively. Lu et al. [8] used the stacked
denoising autoencoder (SDA) for greedy layer-wise training
and achieved higher accuracy than ANN and SVM in diag-
nosing signals containing ambient noise and fluctuating
working conditions. In the development process of intelli-
gent fault diagnosis, algorithms and data are always the
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two most important cores. As the complexity of the system
and the volume of data acquired increase, the cost of labeling
data increases. When facing a large number of unlabeled
data, it is difficult to guarantee an ideal accuracy simply by
relying on the general deep learning network. At the same
time, it is impossible for monitoring data to maintain the
same spatial distribution throughout the survey period, con-
sidering the actual engineering conditions. The joint distri-
bution of data changes with the change of mechanical
speed, load, and noise. Therefore, in practical applications,
the generalization performance based on intelligent fault
diagnosis may be reduced.

Therefore, transfer learning as a new fault diagnosis tool
solves the above problems well. Moreover, the theory of
transfer learning has been continuously supplemented and
perfected and has proved its applicability in various fields
[9, 10]. The focus of transfer learning is how to solve new
problems according to the knowledge that has been learned
and reuse the learned knowledge through the similarity of
the intrinsic characteristics of things [11]. Deep learning is
superior in extracting the high-dimensional abstract features
of data. It can map two groups of data with different distri-
butions (source domain and target domain) into the same
space. At this time, it can reduce the difference between fea-
tures by transfer learning, which can not only accurately
classify the source domain data but also achieve the purpose
of domain adaptation. For some tasks with little difference in
distribution, better results can be achieved in the target
domain only by transferring the parameters of the pre-
trained network to the untrained network. However, in prac-
tice, the source and target domains have different feature
spaces, but they can be aligned by minimizing the measure-
ment differences between domains. Indicators for measuring
the distribution differences between domains include KL
divergence, maximum mean discrepancies (MMD), Wasser-
stein distance, and CORAL loss [12]. These indexes are
added to the loss function, and then, the adaptive purpose
is achieved through gradient descent. However, this shallow
adaptive layer is still inadequate because it can only achieve
the effect of domain adaptation globally, while overlapping
confusion can occur in some domains with smaller discrim-
ination. Deep transfer learning (DTL) based on deep net-
work inherits the ability of the deep neural network to
extract strong signal features. On the other hand, it over-
comes the shortcomings of robustness and generalization
of shallow transfer learning. Zheng et al. [13] summarized
DTL into the following five methods: instance reweighting
approach, feature transfer approach, classifier adaptation
approach, deep learning-based approach, and adversarial-
based approach. Han et al. [14] used the data of known
working conditions to pretrain the CNN and realized the
fault diagnosis under unknown working conditions based
on CNN by fine-tuning the weight parameters. An et al.
[15] used a multicore MMD domain adaptive framework
to make the features of different domains approach each
other in the reproducing kernel Hilbert space, which
improved the stability and accuracy of the results. Wen
et al. [16] used ResNet-50 combined with transfer learning
to extract the characteristics of time domain fault signals
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converted to RGB images and had achieved the most
advanced results on the test dataset. These studies show
the validity of deep transfer learning in the diagnosis of
mechanical variable conditions, but there are still some
problems that need further study: (1) Most transfer learning
methods do not take into account the joint distribution
between the classifier output labels and the input data but
only the marginal distribution of the data. (2) The effect of
the nonlinear feature extraction capability of the deep learn-
ing framework on domain adaptation was not discussed in
the process of innovation of the transfer learning algorithm.

In view of the problems above, this paper conducts
related research through the following ideas.

(1) Two modules are constructed to achieve domain
adaptation for the source domain and target domain.
On the one hand, using the joint distribution differ-
ences of input features and output labels, domain
adaptations are made in feature extraction and clas-
sification layers by JMMD. On the other hand, cross-
entropy was used between feature and prediction
labels to conduct domain adversarial training to
reduce domain drift. The two modules not only real-
ize the maximum distinction between classes but
also realize domain adaptation under multimode
conditions. Meanwhile, transferable semantic aug-
mentation (TSA) regular terms are added to the loss
function to enhance the implicit characteristics of
the source domain and improve the effect of domain
adaptation

(2) A deep shrinkage residual network is constructed as
the main network for feature extraction of one-
dimensional vibration signals. By setting a soft
threshold in the residual block, the noise in the orig-
inal signal is suppressed, so that the fault character-
istics can be better adapted in the mapping space,
and the robustness of the whole algorithm frame-
work is enhanced

(3) The datasets used in the experiment are the CWRU
bearing dataset and the Canadian-Ottawa bearing
dataset. The validity of the deep denoising domain
adaptive network proposed in this paper is verified
by the three scenarios of staged operation, continu-
ous operation, and antinoise, and the most advanced
results are obtained

2. Transfer Learning Method

2.1. Preliminaries. In transfer learning, “domain” and “task”
are the two most important concepts. The domain and task
are separately divided into the source domain, target
domain, source task, and target task [11]. This paper intends
to solve the problem of unsupervised domain adaptation
where training data has labels and test data does not have
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sample’s features and the ith sample’s labels. Among them,
superscript s denotes the source domain, ¢ denotes target
domain, and K denotes the number of domains. Here also
denotes a domain as D={Z,P(X)}, where & is the d
-dimensional feature space of the souce domain and target
domain, and P(X) is the marginal probability distribution,
X ={x;,%,,-x,} ¢ Z. For a domain D={Z,P(X)}, T={
%,P(Y|X)} is used to represent a task of domain adapta-
tion. Among them, % is the label space and P(Y|X) is the
marginal probability distribution, that is, the marginal dis-
tribution relationship between feature vector X and label
space % under the mapping of prediction function f(-).
In the network training period, only the source domain
has label space, but the target domain does not have label
space, so the training of prediction function f(-) can only
rely on the source domain data. In the case of transfer,
D,#D, or T,#T, is often present. Therefore, training
the prediction function f(-) only through the source
domain data will lead to limited generalization ability of
the model. In order to achieve domain adaptation, it is
necessary to integrate the differences between target
domain data features and source domain data features into
network training, so that the target domain data in the test
set can be correctly mapped to its corresponding label
space in the case of P(X,) # P,(X,).

2.2. IMMD and CDA. Borgwardt et al. [17] first proposed
the maximum mean discrepancies (MMD) method to mea-
sure the difference between the two distributions in the sta-
tistical sense. Given the data characteristic distributions X
and X, of the source domain and target domain, MMD
can be defined as follows:
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where # represents the reproducing kernel Hilbert space
(RKHS), and the data is mapped from high-dimensional
feature space to low-dimensional space through kernel
function ¢. In practical application, the domain adapta-
tion of data through MMD under complex multimodal
conditions is very limited, and the kernel parameters are
difficult to optimize. Gretton et al. [18] proposed a con-
vex combination of multiple cores for effective mapping
estimation to achieve depth domain adaptation. However,
when Multikernel MMD (MK-MMD) is used for depth
domain adaptation, the feature can only be transferred
at the top layer by deepening the number of network
layers, and the transfer of label distribution P(Yg) and
Q(Y,) still stays at the classification layer. In order to
fully consider the joint distribution of feature space and
label space in the field, Long et al. [19] proposed the
joint maximum mean deviation (JMMD) method, which
is defined as
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TABLE 1: Parameters of the GRL.

Layers Parameters
Fcl out_features = 2048
Dropoutl P=0.5
Fc2 out_features = 1024
Dropout2 P=0.5
Fc3 out_features = 2

where Z* represents the output of the activation function of
the Ith level network, ®" ¢'(x')=¢!'(x!)®-- ® ¢!H(xl).
Compared with formula (1), JMMD calculates the mapping
of each layer of feature space in tensor product Hilbert space
when measuring distance. The feature samples are mapped
to a fixed diameter hypersphere through the activation func-
tion, so that the samples with similar features gather more
closely in the feature space; that is, the distance between classes
is expanded and the distance between classes is reduced, so as
to balance the training difficulty between different distributed
data [20]. In order to enhance domain adaptation, this paper
adopts the idea of the domain adversarial neural network for
reference and forms a depth adversarial domain adaptation
network by adding the gradient reversal layer (GRL) after
the feature extraction layer. The structural parameters of
GRL are the same as those in literature [21], which are all three
fully connected layers. The specific parameters are shown in
Table 1.

Unlike the MMD method that takes the space metric dis-
tance, adversarial-based domain training follows the idea of
a game in the generative adversarial network, so that the
source domain and the target domain can be aligned in the
network training. The domain adversarial network is gener-
ally divided into feature extraction layer Gy, classification

layer G,, and domain identification layer G, and the param-
eters of each layer are represented by 6, 6, and 6, respec-

tively. GRL is also called the domain discriminator. Its
function is to maximize the classification loss between
source domain and target domain and confuse target
domain data with source domain data. The classifier in the
network realizes the accurate classification of data by mini-
mizing the classification loss. Different from the generative
adversarial network, the domain adversarial network does
not need a generator. In order to carry out adversarial train-
ing, we multiply the error of the gradient inversion layer by a
negative parameter —A, so that the network training objec-
tives before and after the GRL layer are opposite, achieving
adversarial training [22]. At the end of the adversarial train-
ing, it shows that the loss of the domain discriminator has
reached the maximum, so the domain discriminator has
aligned the source domain and the target domain to the
greatest extent. However, domain adversarial training still
has the same defect as MMD. It only calculates the marginal
distribution of P(X) and Q(X) and ignores its joint distribu-
tion. Similar to JMMD, in order to solve the problem P(X|

Y,) # Q(X,, Y,), it is necessary to consider the joint distri-
bution of the sign extraction layer and classification layer.



The multidimensional and multifeature data in the feature
layer and classification layer of the domain adversarial net-
work are matrix operated by means of mean mapping x ®
y. In the GRL layer, the source field label is set to 0, and
the target field label is set to 1. In order to prevent the loss
function value of individual samples from tending to infinity
due to nontransfer, so that the domain adversarial training
cannot converge effectively, before the training, the entropy
criterion is applied to the label prediction probability corre-
sponding to the feature [21]. The loss function formed by
the above form is a conditional domain adversarial (CDA)
loss function, which is defined as

C-1
__chlogpc’ (3)

Zlog 1-D(F(x; Gf) 64)]

- nitw(H(pf)) ;log{D(F(x; ;Qf) ;9d>].
(4)

2.3. Transferable Cross-Entropy Loss Learning. The methods
of CDA and JMMD use the depth transferable features of the
source domain and target domain to achieve domain adap-
tation. Therefore, superimposing the two in a transfer learn-
ing module can theoretically achieve the effect of
complementary advantages, as JMMD not only reduces the
difference of marginal distribution but also reduces the dif-
ference of joint distribution, and domain confrontation
helps to reduce the phenomenon of domain drift in the pro-
cess of domain adaptation. Transfer learning is widely
applied in image recognition, and many transfer learning
methods have achieved good results in the open dataset.
However, compared with some image public datasets, the
bearing fault signals also have the characteristics of high
coupling, nonlinearity, and nonstationary. Therefore, in
order to further enhance the domain adaptability of bearing
fault diagnosis, we should make full use of the labeled sam-
ples in the source domain. As shown in Figure 1, Li et al.
[23] proposed a transferable semantic augmentation (TSA)
method to enhance the adaptability of the classifier by
implicitly generating source features to target semantics.
For bearings of the same structure, the high-dimensional
characteristics of vibration signals will migrate in all direc-
tions in the transfer learning, and the high-frequency char-
acteristics induced by resonance will transfer along a
certain direction of bearing frequency. Therefore, a quantita-
tive measurement method is needed to highlight the direc-
tion that has the greatest impact on domain adaptation.
Use p, and p, to represent the mean value of the feature
space of the source domain and the target domain, respec-
tively, and use Ap® = puf — p to represent the difference of
the mean value of a class ¢ sample in the source domain
and the target domain. The greater the difference, the greater
the overall deviation, so the domain drift can be reduced by
means of the value of Ay‘. However, the value of Ay‘ is rel-

wHp))=1+e10, H

Lepa(05,04) = -
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Source augmentation

A ® Source domain
A ® Target domain

FiGure 1: Illustration of TSA method.

atively extensive. In order to more accurately measure the
distribution difference, it is also necessary to calculate the
covariance ) in the target class and measure the difference
of all offset directions of the target domain relative to the
source domain at the highest level of the network. Finally,
the multivariate distribution difference N(Au¢, Y;) is com-
posed of interdomain mean difference Ap and intratarget
covariance Y. It should be noted that the TSA method
focuses on using the characteristics of the source domain
to approach the target domain as much as possible. Here,
the characteristics of the highest layer of the network refer
to the output matrix f,; ~ N(Aws, £}*) of the last full con-
nection layer, which will be reflected in the following for-
mula. In network training, the loss of transfer after M
iterations is given by using cross-entropy:

2= 15, [log (Z o) %))], 5

c=1

where W and b represent the weight matrix and offset vector
of the last layer of the network and the full connection layer,
respectively. Similarly, in order to improve the domain
adaptability under unsupervised learning, it is necessary to
use the joint distribution probability of label space and fea-
ture space. At this time, the target domain space lacks anno-
tation, so we need to use the pseudolabel method and target
features to form the mutual information value £, . There-

fore, TSA is defined as follows:
Lrsa =Ly + BL v (6)

where f3 is an empirical parameter, and the value needs to be
compared and explored in the experimental part [23]. The
TSA loss function based on the interdomain characteristic
mean deviation and class conditional covariance has less
computation than the data generation antidomain adapta-
tion, and its lightweight advantage can be embedded in other
domain adaptation algorithms. Therefore, combined with
the above domain adaptation methods, the loss function of
unsupervised bearing fault transfer learning is constructed
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as follows:
Z10ss = Lmmp t Lepa + Lrsa- (7)

In the process of domain adaptation, due to the random
initialization of the network, the network parameters cannot
reflect the real domain feature distribution in the initial
stage, so the rich labels in the bearing source domain data
are used for pretraining before transfer. After the set epoch,
the classification layer can achieve better classification effect
on the source domain and then start domain adaptation.

2.4. Deep Residual Shrinkage Networks. In the deep domain
adaptation, the network backbone plays an important role
in feature transfer. To some extent, the appropriate back-
bone network is more important than the advanced transfer
algorithm [21]. In many experiments on domain adaptation,
such as CNN [24], ResNet [25], VGG [26], and AE [27]
show excellent feature extraction ability in the application
of image transfer, semantic transfer, and signal transfer.
However, there is no relevant research on which appropriate
backbone network should be selected for specific transfer
objects. The purpose of this paper is to carry out the transfer
learning for bearing faults under complex and variable
working conditions. It is hoped that the fault can be diag-
nosed early by the vibration data and labels collected from
the bearings under unknown working conditions. Consider-
ing that in the process of actual vibration signal acquisition,
the sensor collects not only the actual vibration signal of the
tested bearing but also other noise signals, such as bearing
vibration interference of other parts, noise interference of
working environment, and noise interference of transmis-
sion parts. Suppressing noise interference is always a difficult
and hot issue to extract weak signals of bearing early fault by
signal processing methods [28]. Among them, various
improved algorithms based on wavelet transform are widely
used in bearing signal noise filtering, but the premise is to
master the prior knowledge of the signal, and the design of
the filter and the selection of wavelet parameters need con-
tinuous experiments to obtain the optimal value. In addition,
the existence of noise will reduce the ability of the neural
network to extract weak early fault feature signals and make
the boundary of high-dimensional feature clusters blurred in
clustering, so that the effect of domain adaptation becomes
worse in the process of transfer. Therefore, in order to over-
come the influence of noise on the domain adaptation of the
bearing fault signal, a network layer similar to the filtering
algorithm needs to be embedded in the backbone network
to adaptively reduce the influence of noise on feature extrac-
tion. Zhao et al. [29] proposed adding a soft threshold to the
residual network to automatically learn the noise threshold,
reduce the noise interference, and realize the bearing fault
diagnosis under high noise. Based on the deep residual
shrinkage network, this paper will improve part of the net-
work structure to build the backbone network in transfer
learning.

2.4.1. Deep Residual Shrinkage Module. The residual shrink-
age module is the basic unit of the deep residual shrinkage
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FIGURE 2: A building unit entitled RSBU-CW.
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FIGURE 3: A building unit of improved pooling layer.

network, which embodies the idea of an attention mecha-
nism: by eliminating the data features with a low contribu-
tion ratio, the important features are more prominent in
the overall data features. Although this approach may elim-
inate the features conducive to transfer learning, it will
remain in the network through the identity mapping in the
residual module, but its proportion will be reduced after
the transfer of the module. A residual shrinkage building
unit with channel-wise thresholds (RSBU-CW) is shown in
Figure 2.

C and W, respectively, represent the width and channel
of the feature. Each channel of RSBU-CW has an indepen-
dent threshold. The features are reduced to a one-
dimensional vector through absolute value and global aver-
age pooling, and then, the one-dimensional vector is trans-
mitted to the fully connected network with two-layer FC.
Each channel can have an independent threshold by making
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FIGURE 4: Domain transfer network based on deep residual shrinkage residual module.

TaBLE 2: The description of class labels of CWRU.

Task Speed (rpm) Fault location Fault size (mils) Class label

OF 7 1
OF 14 2
OF 21 3
BF 7 4
0/1  1797/1772 BF 14 5
2/3  1750/1730 BF 21 6
IF 7 7
IF 14 8
IF 21 9
NA 0 10

TaBLE 3: The description of time-varying speed dataset.

Task  Speed-varying conditions Fault location g{::ls
0 Increasing speed
i &P Healthy 1
Decreasing speed
Increasing then decreasing Inner race
2 2
speed fault
Decreasing then increasing Outer race
3 3
speed fault

the number of neurons in the second layer consistent with
the number of channels of the input feature map. The
threshold T, can be defined as

> (8)

T.=0," average|Xi,j,c

where o, is the parameter of the cth layer scaled to (0, 1) and

i, j, and ¢ are the indexes of width, height, and channel of the
feature map X. In the network iterative training, the thresh-
old of each channel will change with time. When the feature
is in the range of [-t,,—7_], the channel threshold will be set
to 0, and those features X far from 0 will approach 0.

2.4.2. Improved Pooling Layer Based on Inception Module.
The inception module is proposed to solve the problem of per-
formance saturation and light weight when the number of
layers of the google net network is deepened. From
inception-V1 to V4, the model is constantly improved and
the performance is also continuously improved. The main idea
of inception is to transform large convolution blocks into
small convolution blocks through series and stacking. Because
the collected bearing data is one-dimensional vibration data,
convolution pooling needs to be carried out before being
transmitted to RSBU-CW. If the traditional large convolution
block 7 x 1 is adopted, it will not be suitable for fault diagnosis
of large bearing data in industry. In order to ensure the effect
of feature extraction and reduce the volume of network calcu-
lation, for the one-dimensional time-domain input signal of
bearing, an improved data pooling layer is shown in Figure 3.

The improved data pooling layer in the figure adopts 3
small convolution layers instead of 7 x 1 convolution layers.
The number of channels is set to 8, 16, and 16, respectively,
and the residual connection structure is added. Finally, the
extracted data feature information is output through the
maximum pooling layer.

2.4.3. Residual Block-Based Dilated Convolution. Dilated
convolution has the same convolution operation as ordinary
convolution, but dilated convolution uses a specific step to
read data in a jumping way, which can obtain a larger recep-
tive field while keeping the parameters unchanged, so that
each convolution output contains more information. There-
fore, this paper replaces the ordinary convolution in RSBU-
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FiGure 5: The change of frequency under time-varying rotational
speed conditions.

Source accuracy

Source domain
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FiGUrE 6: Division of input data.

CW with dilated convolution and increases the receptive
field by setting the dilated rate. It is assumed that the kernel
width of ordinary convolution is w. When the dilated convo-
lution with dilated rate d is introduced, the width of the
dilated convolution kernel becomes w+ (w—1)(d-1).
And one-dimensional convolution is used; the height of
the convolution kernel is always 1. Dilated convolution
improves the sparsity of bearing signal characteristics, but
at the same time, in order to ensure the continuity of vibra-
tion signal after convolution operation, the dilated rate
should not be set too large. It is verified by relevant experi-
ments that the bearing fault accuracy is higher when the
dilated rate d =2 is adopted. At this time, the receptive field
obtained by the 3 x 3 convolution kernel in RSBU-CW is
equivalent to the receptive field brought by the 5 x 5 convo-
lution kernel.

2.5. Framework of Network Training. As shown in Figure 4,
it is the network training framework proposed in this paper.
Aiming at the problem of the generalization ability of tradi-
tional deep learning for bearing fault diagnosis under vari-
able conditions, a domain transfer training network based
on the deep residual shrinkage residual module is proposed.
The whole network is composed of a backbone network
using the RSBU-CW module and deep domain transfer
algorithm. In order to improve the effect of domain transfer,
the loss function consists of explicit JMMD loss and CDA
loss and implicit TSA loss. The network is pretrained
through the bearing vibration data with known labels in

the source domain. After updating the network parameters,
the unlabeled target domain data are transferred to acceler-
ate the speed of the domain adaptation.

3. Experimental Results

In this section, two open-source bearing datasets will be used
to verify the effectiveness of the proposed method in bearing
fault diagnosis. The main framework is written by Python.
All experiments were run on a computer equipped with i7-
9300h CPU and NVIDIA GeForce GTX 1050 GPU.

3.1. Datasets

3.1.1. Case Western Reserve University (CWRU) Dataset. The
CWRU [30] bearing dataset is an open-source dataset of the
Case Western Reserve University Laboratory which is widely
used in the research of bearing fault diagnosis. In the exper-
iment, the amplitude data of SKF6205 motor bearing are
collected by the acceleration sensors installed at the motor
driving end and fan end. The data consists of normal bearing
operation data and fault bearing operation data. The fault
location and damage size are different. Detailed data descrip-
tion is shown in Table 2.

The bearing transfer tasks are {0, 1, 2, 3}, corresponding
to four different speeds, respectively. The load of the bearing
is also different at each speed. At a certain constant speed, it
is divided into 10 data types. The locations of bearing faults
are inner fault (IF), ball fault (BF), and outer fault (OF),
where NA represents normal bearing.

3.1.2. University of Ottawa Bearing Dataset. The dataset is
collected from the University of Ottawa laboratory [31]. Each
sample of this dataset is collected under time-varying rota-
tional speed conditions, which is different from the CWRU
dataset. Detailed data description is shown in Table 3.

The collection time of each sample is 10s in total, and
the sampling frequency is 200kHz. During the sampling
time, the running speed of the bearing will change, which
can be divided into four types: acceleration, deceleration,
acceleration before deceleration, and deceleration before
acceleration. As shown in Figure 5, the changes of bearing
operating speed under four operating conditions are shown,
respectively, and the speed is represented by bearing rotation
frequency. The bearing health status is divided into three
conditions: normal, inner ring fault, and outer ring fault.
Among them, the transfer task 0 — 1 indicates that the
source domain is the fault data under the accelerated run-
ning condition, and the target domain is under the condition
of bearing deceleration.

3.2. Implementation Details

3.2.1. Division of Input Data. The two datasets are slightly
different in sample balance. Among them, the number of
samples under normal working conditions of the CWRU
dataset is more than that under other working conditions,
while the sample number of Ottawa bearing data is well bal-
anced. This experiment does not deal with the sample bal-
ance but makes the number of samples in each source
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FiGureg 8: Comparison of accuracy of five methods under CWRU dataset.

domain and target domain the same. When segmenting the
bearing timing vibration signal, the method of enhanced
data will not be used, because the enhanced data may over-
lap the training data and test data in a certain period of time,
resulting in unreliable test accuracy. As shown in Figure 6, it
is a schematic diagram of the division of source domain and
target domain samples. Among them, the training sets of
source domain samples and target domain samples account
for 80%, and the test sets account for 20%. Considering the
difference in sampling frequency between the two datasets,
1024 and 8192 are taken as the sample length of the CWRU
dataset and Ottawa dataset, respectively.

3.2.2. Training Method. After the reasonable division of sam-
ples, the data of the source domain and target domain are
sent to the network for training. The one-dimensional bear-

ing vibration data sample first passes through the improved
pooling layer proposed in this paper, then passes through
four RSBU-CW modules, and finally calculates the domain
adaptive loss value through the GRL layer and classifier
layer. In network training, the updating of parameters is
divided into two stages. As shown in Figure 7, the first is
the pretraining process using the marked source domain
data, in which the target domain data does not participate
in the training process. In the second stage, the source
domain and target domain data are sent to the network at
the same time for domain adaptation, and the loss value of
domain adaptation is used for back propagation. Among
them, 50 epochs are set for pretraining nodes and 200
epochs are set for domain adaptation nodes. The gradient
descent algorithm adopts Adam, the momentum value is
set to 0.9, and the batch size is 64.
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FiGure 10: Effect of TSA regular term on transfer loss and test accuracy of target data.

3.3. Evaluation Results. In this paper, two open-source data-
sets are used to verify the effectiveness of the proposed
model for bearing fault diagnosis under variable working
conditions. In order to fit the industrial application scenario,
the applicability of the model under high noise will also be
discussed, and the results will be represented by visual
charts.

3.3.1. Results of Models. As shown in Figures 8 and 9, the test
accuracy of two datasets under five methods is shown,
respectively. The five methods are Basis, CORAL, MMD,
CDA, and the method proposed in this paper. Among them,

Basis means that it does not use any domain adaptation
method and only uses the network trained by the source
domain data to test the test set of the target domain directly.
The other three methods are common domain adaptation
methods. In order to ensure the reliability of the results, 10
experiments were carried out for each method, and the aver-
age value of the test results of the last epoch was taken as the
final result.

It can be seen from the figure that in addition to the
CORAL method, adopting other domain adaptation
methods can greatly improve the accuracy of fault diagno-
sis under variable working conditions; especially when the
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100 working conditions are greatly different, the more obvious
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<7 II i i ' ' the lifting effect is the most obvious under the domain
§ 70 1 II adaptation method. For CWRU datasets, although the pro-
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2 50 - ment, the overall accuracy is still slightly higher than
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under different loads, and the bearing data is measured
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FiGURre 12: Fault diagnosis accuracy of test dataset under Gaussian

noise.

TaBLE 4: The time cost of three backbone networks.

working condition of the Ottawa dataset is more complex,
and the speed difference between the migrated datasets is
more obvious. The change of speed will lead to the change
of fault characteristics, so the accuracy of Figure 9 is lower
than that of Figure 8 as a whole. On the whole, the pro-
posed method combines the advantages of domain con-
frontation migration and joint distribution migration. By
embedding TSA loss, it solves the problem of domain drift

in the traditional domain adaptation methods and

Backbone network SNR (dB) Training time (s)
CNN -5dB 1256s
ResNet -5dB 1302's
RSBU-CW -5dB 1109 s
CNN 5dB 1145s
ResNet 5dB 1204 s
RSBU-CW 5dB 1003s

enhances the adaptability of the classifier.

In order to further illustrate the influence of adding the
TSA regular term on the training convergence results,
Figure 10 draws the loss curve and test accuracy before
and after adding the TSA regular term. The transfer task of
the curve shown in the figure is (0, 1) in the Ottawa dataset.

It can be clearly seen that after adding the TSA regular

term, the fluctuation of the transfer loss decline curve is
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F1GURE 13: Network visualization of CWRU dataset transfer task 3 — 1.

improved, and the accuracy is significantly improved after
10 epochs. This is because before adding the TSA regular
term, the domain migration method based on confrontation
will cause the fluctuation of loss value, which will affect the
accuracy of the test set. TSA can implicitly strengthen the
migration of data features from the source domain to the
target domain, enhance the ability of the classifier to adapt
to the domain, and reduce the fluctuation of classification
effect caused by adversarial domain training.

3.3.2. Robustness of Backbone Network. Backbone networks
also have a great impact on domain adaptation. In order
to fairly compare the effects of transfer learning, compara-
tive experiments need to be carried out under the same
backbone network, so the discussion of backbone networks
has been ignored. In this paper, we choose a deep residual
shrinkage network with antinoise effect, one is because of
the need for industrial actual conditions, two is to sup-
press the effect of noise on domain migration. The actual
measured bearing vibration signals contain rich noise sig-
nals, which can cause redundancy in data-intensive places,
and denoising will help domain migration. As shown in
Figure 11, in order to simulate the actual working environ-
ment, Gaussian white noise is added to the target in the
experiment.

The experimental object is Ottawa bearing data. Three
different network structures CNN, ResNet, and RSBU-CW
are adopted to carry out the experiment according to the
set domain migration task. The noise intensity is -=5dB ~ 5

dB, 10 experiments are carried out for each migration diag-
nosis task, and finally, the average value is taken as the result.
As shown in Figure 12, the fault diagnosis accuracy of the
test set in Gaussian noise is the average of all migration
tasks. Among them, CNN and ResNet adopt convolution
blocks of the same size as RSBU-CW. From the final results,
it can be seen that the domain migration diagnosis effect of
RSBU-CW in high noise environment is better than that of
traditional CNN and ResNet and can maintain strong
robustness. This is because the backbone network adopts
the soft threshold as the shrinkage function, which effec-
tively suppresses the redundant noise features in the bearing
fault features, so as to give full play to the effect of the
domain adaptation method. Although the introduction of a
soft threshold will increase the amount of calculation of
the network, higher fault diagnosis accuracy under variable
working conditions of bearing is obtained. In order to fur-
ther compare the influence of soft threshold on model com-
plexity, Table 4 compares the training time of the three
models under the noise intensity of -5dB and 5 dB, respec-
tively. It can be seen that the improvement of the data pool-
ing layer in this paper has offset the influence brought by the
introduction of a soft threshold algorithm to a certain extent.

3.3.3. Network Visualization. Figures 13 and 14 are the net-
work visualization results embedded in the full connection
layer using t-distributed stochastic neighbor embedding (t-
SNE), where S represents the source domain sample, T rep-
resents the target domain sample, and S-Na represents the
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normal sample in the source domain. It can be seen from the
clustering results that when no domain adaptation method is
used, classes in the same domain can be effectively distin-
guished, but classes with the same source domain and target
domain cannot get the correct mapping relationship, and a
large number of overlapping regions can be found in the
graph. Under the framework proposed in this paper, the
same category between source and target domains is aligned
well. Therefore, both the accuracy of domain adaptation and
the results of network visualization prove the effectiveness of
the network framework in this paper.

4. Conclusion

Based on the deep residual shrinkage network, this paper uses
the combination of conditional domain adversarial domain
adaptation and joint distribution domain adaptation to solve
the problems of low fault diagnosis accuracy, weak antinoise
performance, and weak generalization ability caused by load
change and noise interference in the actual operating environ-
ment of rolling bearing. According to the experiments on two
open-source datasets, the conclusions are as follows:

(1) The transfer method proposed in this paper inte-
grates the advantages of adversarial domain transfer
and joint distributed transfer. At the same time, by
adding the TSA regular term, it effectively solves
the problem of domain drift under unsupervised
domain adaptation. Compared with other traditional
preadaptation methods, the accuracy is increased. At
the same time, it improves the performance of trans-
fer between different fields and expands the applica-
tion scope of intelligent fault diagnosis. It provides a
new idea to solve the problem of facing a large num-
ber of unmarked data in bearing fault diagnosis

(2) Adding a soft threshold in the backbone network
improves the robustness of the whole network frame-
work. At the same time, in the antinoise experiment,
the performance of the deep residual shrinkage network
using a soft threshold is about 3% and 6% higher than
that of the traditional CNN and ResNet networks,
respectively, which realizes the antinoise function of
bearing fault diagnosis in industry. In addition, by
improving the pooling layer based on the concept mod-
ule, the feature information in the original data is effec-
tively extracted, so that this method can transfer the
feature information in the data efficiently

(3) The two datasets, respectively, contain the variable load
and variable speed operation of the bearing. From the
diagnosis accuracy of the final test set, the greater the
change difference between the source domain and the
target domain, the more difficult the transfer. However,
the dataset collection used in this paper is carried out in
the ideal experimental environment, and there is still a
gap with the actual industrial production environment.
Therefore, it is still a challenge to carry out early fault
prediction on the bearing data without labels under
complex variable working conditions. At the same time,
there is a lack of relevant comparative experiments on
the setting of network training parameters in this paper.
In the next research, it will be combined with other
intelligent algorithms for relevant optimization

Data Availability

The data used to support the findings of this study are
available from the Case Western Reserve University Bear-
ing Data Center Website (https://csegroups.case.edu/
bearingdatacenter/pages/welcome-case-western-reserve-
university-bearing-data-center-website).
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