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Unmanned aerial vehicle (UAV) enabled mobile-edge computing (MEC) has been recognized as a promising approach for
providing enhanced coverage and computation capability to Internet of Things (IoT), especially in the scenario with
limited or without infrastructure. In this paper, we consider the UAV assisted partial computation offloading mode MEC
system, where ground sensor users are served by a moving UAV equipped with computing server. Computation bits (CB)
and computation efficiency (CE) are two vital metrics describe the computation performance of system. To reveal the CB-
CE tradeoff, an optimization problem is formulated to maximize the weighted sum of the above two metrics, by
optimizing the UAV trajectory jointly with communication resource, as well as the computation resource. As the
formulated problem is non-convex, it is difficult to be optimally solved in general. To tackle this issue, we decouple it into
two sub-problems: UAV trajectory optimization and resource allocation optimization. We propose an iterative algorithm to
solve the two sub-problems by Dinkelbach’s method, Lagrange duality and successive convex approximation technique.
Extensive simulation results demonstrate that our proposed resource allocation optimization scheme can achieve better
computational performance than the other schemes. Moreover, the proposed alternative algorithm can converge with a few
iterations.

1. Introduction

With the increasing popularity of computer terminals and
the emergence of new applications (e.g. online games, face
recognition, smart home, etc.), mobile data traffic continues
to grow at a high speed, and users’ demands for computing
power and quality of experience (QoE) are also increasing
[1]. However, the limited battery lifetime and low computing
capacity make it difficult for mobile terminal to provide good
QoE [2].

The computing offloading technology under the mobile
cloud computing (MCC) architecture was first proposed to
solve the above challenge, but the network bandwidth pres-
sure and transmission delay problem make MCC unable to
meet the application requirements well [2]. Therefore,
mobile edge computing (MEC) has received widely attention
as an advanced technology that can overcome these chal-
lenges [3]. The MEC serves are at the edge of the wireless
sensor network, providing communication, computing, stor-

age and other services to a large number of end users who
are tightly deployed [2]. MEC enables rapid data analysis
and processing, reduces the possibility of latency, and
ensures high security [2]. However, terrestrial MEC systems
have limitations in application scenario, such as infrastruc-
tures are destroyed due to natural disasters [4–6].

Unmanned aerial vehicles (UAV) can tackle this chal-
lenge due to the flexibility and controllability, they can be
flexibly deployed in most scenarios, especially in the scenario
with limited or without infrastructure. Moreover, the UAV-
enabled MEC system has more reliable line-of sight (LoS)
communication links thus improve the performance of
computation tasks offloading and computation results
downloading, significantly improved the computation per-
formance eventually [7–9]. Furthermore, the trajectory of
the UAV can be optimized to further improve the user com-
putation performance [10–17].

For the above reasons, this paper considers an UAV-
enabled MEC system. In order to achieve a good tradeoff
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between computation bits and computation efficiency of all
sensor users, a resource allocation scheme with jointly opti-
mized computation performance and UAV’s trajectory is
proposed under partial computation offloading mode.

1.1. Related Work and Motivation. Resource allocation is
one of the gordian technologies in mobile edge computing
networks, MEC systems need to continuously optimize
resource allocation algorithms to improve the computation
performance. At present, there are a lot of researches on
resource allocation in the conventional MEC networks
[18–23]. Jian et al. [18] proposed a profit maximization
problem based on the task-aware cloud radio access network
with MEC system, which jointly optimizing offloading tac-
tics, radio and computational resources allocation. In order
to minimize the energy computation of the overall user,
when multiple mobile users request for computation off-
loading to a public cloud server, Sardellitti et al. [19] defined
the offloading problem specifically as the transmit precoding
matrices of the multiple mobile users and the CPU cycles/se-
cond assigned by the cloud to each mobile user, thus propos-
ing an optimization scheme for computing and radio
resources. In order to provide high quality of experience,
the issues about content caching strategies and computation
offloading in wireless cellular network with MEC were con-
sidered, specifically, Wang et al. [20] designed the resource
allocation scheme under the premise of considering the total
network revenue, while the goal of Zhang et al. [21] is min-
imize the total delay computation during the computation
process. Consider there is a delay of user’s task completion,
in order to avoid serious delay, Ding et al. [22] formulated
a power and time allocation joint optimization scheme to
decrease the energy consumption when performing compu-
tation offloading task in a NOMA-assisted MEC network.
Du et al. [23] studied computation, communication and
bandwidth allocation problem in a mixed fog/cloud system
by considering computation resource allocation or offload-
ing decision making while considering user fairness and tol-
erable delay.

In order to tackle the problem of achieving good com-
munication and computation performance in complex envi-
ronments, the resource allocation problems in UAV-enabled
MEC networks have been studied [10, 11]. The authors of
[10] first proposed a UAV-enabled MEC network and dem-
onstrated that UAV can improve system’s computing per-
formance due to the LoS link and trajectory optimization,
a testbed was developed for performance validation and
results demonstrated that the UAV-enabled MEC reducing
the processing time of recognition. In order to improve the
computing performance, considering an UAV user is served
by cellular ground base stations (GBSs) for computation off-
loading, Cao et al. [11] formulated an effective scheme that
optimizes the computation offloading schedule and adjusts
the trajectory to minimize the time for the UAV to complete
the mission. Xiong et al. [12] studied a resource allocation
scheme to minimize the sum of the maximum delay of mul-
tiple ground users in MEC system, a Block coordinate
descent (BCD) based optimization algorithm was proposed
to alternatively optimize the offloading decisions, bit alloca-

tions and the UAV trajectory in each iteration. Hu et al. [13]
and Jeong et al. [14] proposed a resource allocation program
to minimize the consumed overall energy of the system, the
problem of jointly offloading and trajectory design in [13]
with energy budget constraints was addressed by leveraging
penalty dual decomposition-based algorithm, and the prob-
lem of jointly optimizing the bit allocation and path plan
under energy consumption constraints was solved by
leveraging successive convex approximation (SCA) strategies.
Furthermore, Messous et al. [15] considered the tradeoff
between execution time and energy consumption, a game the-
ory model was adopted to minimize the cost function combi-
nation of energy overhead and delay. Zhou et al. [16] and
Zhang et al. [17] designed resource allocation scheme by
jointly optimizing the UAV’s trajectory, the CPU frequencies,
the offloading times and transmit powers of user to maximize
the computation bits and computation efficiency, respectively.

Although a lot of literatures has been studied the
resource optimization problems in the MEC networks, and
UAV-enabled MEC system, none of the above works consid-
ered the tradeoff between computation bits and computation
efficiency. Computation bits maximization aims to maxi-
mize the number of total computation bits by offloading
and local computing. It can directly reflect the computation
performance of UAV-enabled MEC system. However, the
computation bits maximization overemphasizes the impor-
tance of computation bits, may lead to excessive energy
usage. The computation efficiency maximization overem-
phasizes the importance of efficiency, the computation bits
may too small to meet the computation requirement. In a
word, consider only one metric maximization may fall into
the trap of local (or partial) performance optimum. Thus,
we study a tradeoff problem between computation bits and
computation efficiency by jointly optimizing the UAV tra-
jectory, the CPU frequencies, the offloading times and trans-
mit powers of user in the UAV-based MEC system under the
partial computation offloading mode. From the above dis-
cussion, this is the first study of considering the tradeoff
between computation bits and computation efficiency in
the UAV-enabled MEC system.

1.2. Contributions and Organization. An UAV-assisted MEC
network is considered in the paper, where multiple ground
sensor users receive energy and computation services from
the UAV. In the system, each sensor user has an on-chip
computing microprocessor that can perform simple compu-
tation tasks, and the UAV is equipped with a power comput-
ing processor that can execute computationally heavy tasks
[11–15]. Even if the flight time is affected by battery capac-
ity, which limits computing performance, it is promising
due of the LoS links of UAV-to-ground communication
channel [7]. The objective of this paper is to reveal and
achieve a good tradeoff between the total computation bits
and the computation efficiency of all users under partial
computation offloading mode. Hence, our main contribu-
tions are summarized as follows:

(i) The resource optimization scheme is formulated in
an UAV-enabled MEC system under partial
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computation offloading mode. The tradeoff prob-
lem between computation bits and computation
efficiency of users is formulated by jointly the CPU
frequency, the offloading times, the transmit powers
of users and the trajectory of UAV, subject to the
time constraint, the maximum consumed energy
constraint, the initial and final horizontal location
constraints, and the speed constraint of the UAV.

(ii) We transform the challenging primal non-convex
problem into a form that is easier to solve by
decomposing it into two subproblems. Thus, a
two-stage alternative optimization method is pro-
posed to address the formulated original problem.
With the UAV’s trajectory fixed, the closed-form
expressions for the optimal CPU frequencies, the
offloading times and the transmit powers of users
can be derived by the Lagrangian dual method.
And the SCA method is used to optimize the trajec-
tory of the UAV.

(iii) The simulation results demonstrate that the pro-
posed resource allocation optimization scheme has
better computational performance than the disjoint
scheme. Moreover, it is seen that the convergence
speed of the alternative algorithm is good, and it
can converge after a few iterations.

The structure of the paper is as follows. The system
model is introduced in Section 2. Section 3 formulates the
resource allocation optimization problem under partial
computation offloading and decomposed into two subprob-
lems that are easy to solve. Section 4 presents the simulation
results. Finally, Section 5 concludes this paper.

2. System Model

Consider a UAV-assisted MEC system as shown in Figure 1,
where a UAV equipped with an MEC server to provide the
computation capability for the ground sensors. The UAV
is dispatched to fly from an appointed initial location to a
final location. There are M sensor users fixed on the ground,
denoted byM ≜ f1, 2,⋯,Mg. Each user offloads a portion of
its computing tasks to the UAV and carries out the rest
locally. Without loss of generality, a three-dimensional
(3D) Euclidean coordinate is adopted, where the horizon
coordinate of ground user m is denoted by qm = ½xm, ym�
,m ∈M. It is assumed that the ground users’ locations can
be detected by the UAV to facilitate the trajectory design
[7–9]. Suppose that the UAV flies at altitude HðH > 0Þ from
the ground remains unchanged during a given flight period,
H is the minimum height that can avoid obstacles on the
ground and ensure normal communication.

2.1. System Model. The period time for the UAV flight is
expressed by T . For convenience, the time duration T is
divided into N time slots with equal length, which are
expressed by a set N ≜ f1, 2,⋯,NgN . And then, the hori-
zontal plane coordinate of UAV over time slot n can be
characterized by the discrete time locations qu½n� = ½xu½n�,

yu½n��, 0 ≤ n ≤N . Hence, the distance between the ground
userm ∈M and UAV in each time slot n ∈N can be denoted

by dm½n� =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 + kqu½n� − qmk2

q
, where k⋅kdenotes the

Euclidean norm. The number of N should be large enough
to ensure that the position of the UAV in each time slot (or
the distance between the UAV and ground users) can be
regarded as constant. Particularly, the UAV’s initial and final
horizontal positions are assumed to be determined before
flight, which denoted as q0 and qF , respectively. Thus, we
have the UAV’s location and speed constraints:

qu 1½ � = q0 ð1aÞ

qu N + 1½ � = qF ð1bÞ

qu n + 1½ � − qU n½ �k k ≤ 1
N
Vmax, n ∈N ð1cÞ

where Vmax is the maximum flying speed of the UAV. We
consider block fading channel in this paper i.e., during each
T , the channel remains static. Similar to [24–26], it is
assumed that the wireless channel between the UAV and
ground users is dominated by line of sight (LoS) link, hence
the channels between the UAV and ground users are mod-
elled by the free space path loss model. Thus, the channel
power gain between the UAV and the mth user is denoted
by hm½n�, given as:

hm n½ � = β0d
−2
m n½ � = β0

H2 + qu n½ � − qmk k2 ,m ∈M, n ∈N ð2Þ

where β0 is the channel power gain at a reference distance
d0 = 1m.

2.2. Local Computation and Computation Offloading. In this
paper, the partial computation offloading mode is adopted,
the computing task of each user consists of local computing
and computation offloading to the UAV. Each user can
simultaneously perform the two tasks. Similar to the works
in [27–29], let C denote the number of CPU cycles required
to process one bit of date at each user and f m½n� denote the
CPU frequencies of the mth user at the nth slot. Thus, the
total computation bits and the total consumed energy of

x

z

y

Sensor 1
Sensor m

Sensor M
Sensor 2

Computation offloading link

Figure 1: The system model.
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themth user when performing the local computing task dur-
ing n slots are, respectively, denoted as:

Rlocal = 〠
n

k=1

Tf m k½ �
NC

,m ∈M, n ∈N ð3Þ

Elocal =
T
N
〠
n

k=1
γc f

3
m k½ �,m ∈M, n ∈N ð4Þ

where γc denote the effective capacitance coefficient of the
processor’s chip at the mth user. Furthermore, each user’s
chip architecture determines γc. In the computation offload-
ing part, as shown in Figure 2, a time-division multiple
access (TDMA) protocol is applied. The computation pro-
cess of mth user in each time slot can be divided into three
stages: offloading, computation and downloading phase. In
the offloading phase, M users execute their computation off-
loading task one after another during each slot. The UAV
performs computing tasks and sends results to the user after
all users have completed their computation offloading tasks
at the nth slot. Similar to [16, 17], compare with the ground
user, the UAV has a strong computation capability, thus, the
computation time is much less than that of ground users.
Moreover, the number of the bits related to the computation
result is very small. Thus computation time and the down-
loading time of the UAV are neglected.

According to the works in [28], the total number of bits
that the mth user offloads to the UAV at the nth slot is given
by:

BTtm n½ �
vmN

log2 1 + hm n½ �Pm n½ �
σ20

� �
,m ∈M, n ∈N ð5Þ

where B represents communication bandwidth; Pm½n�
denotes the transmit power of the mth user at the nth slot;
σ2
0 is noise power of the mth user; Ttm½n�/N , 0 ≤ tm½n� ≤ 1

denotes the lasting time for the mth user offloads the com-
putation tasks to the UAV at the nth time slot and vm
denotes the redundant data in communication.

Moreover, the sum of the total offloading time of all
users should not be greater than the duration of one time
slot, thus:

〠
M

m=1
tm n½ � ≤ 1,m ∈M, n ∈N ð6Þ

We apply the energy available constraint to each ground
user m so that the energy consumed for local computing and
task offloading cannot exceed a threshold, denoted by Γm,
m ∈M. Thus, we have:

T
N
〠
n

k=1
γc f

3
m k½ � + tm k½ �Pm k½ �� �

≤ Γm,m ∈M, n ∈N ð7Þ

Under the partial computation offloading mode, the total
computation bits CBm of the mth user is expressed as:

CBm = 〠
N

n=1

�
Tf m n½ �
NC

+ BTtm n½ �
vmN

� log2 1 + hm n½ �Pm n½ �
σ2
0

� ��
,m ∈M:

ð8Þ

The total energy consumption of the mth user is given
as:

Em = T
N
〠
N

n=1
γc f

3
m n½ � + tm k½ �pm n½ �� �

,m ∈M ð9Þ

Therefore, the computation efficiency of the mth user
can be expressed as:

3. Resource Optimization in UAV-Enabled
MEC System

Our objective is to characterize the total computation bits
CB and the computation efficiency CE tradeoff in the

UAV-enabled MEC system under the partial computation
offloading mode, by jointly optimizing CPU frequencies f m½n�, offloading times tm½n�, the UAV trajectory qu½n� and
the transmit power allocation pm½n�, subject to the initial
and final horizontal location constraints and the speed

The first slot The second slot The n the slot The N the slot...... ......

T/N

User
M

 UAV
Offloading

UAV  UserM
Download

UAV  User1
Download

User
1
 UAV

Offloading
t1(n) tM(n) ≈0 ≈0

...

...

...

...

...

...

Figure 2: Computation offloading from user to the UAV.

CEm = CBm

Em
= ∑N

n=1 Tf m n½ �/NCð Þ + BTtm n½ �/νmNð Þ log2 1 + hm n½ �Pm n½ �/σ20
� �� �� �

T/N∑N
n=1 γc f

3
m n½ � + tm n½ �pm n½ �� � ,m ∈M ð10Þ
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constraint of the UAV in (1), the time constraint in (6), and
the maximum consumed energy constraint in (7). Conse-
quently, the resource and trajectory jointly optimization
problem is formulated as:

P1 : max
f m n½ �,pm n½ �,qu n½ �,tm n½ �

ρ 〠
M

m=1
CBm + 1 − ρð Þ 〠

M

m=1
CEm

" #

s:t:C1 : f m n½ � ≥ 0, pm n½ � ≥ 0,m ∈M, n ∈N
1ð Þ, 6ð Þ, and 7ð Þ

ð11Þ

where the constant ρ is a weight coefficient, and its value
range is ½0, 1�. In the special case, when ρ = 1, the above gen-
eral problem becomes computation bits maximization prob-
lem, when ρ = 0, P1 is equivalent to the computation
efficiency maximization problem.

It is easy to observe that P1 is non-convex problem since
the presence of the non-linear couplings among the optimi-
zation variables, and the objective function is non-concave
with respect to the trajectory of the UAV. An alternative
two-stage algorithm is designed to address P1, the details
are as follows.

3.1. Optimizing Transmit Power, Offloading Times and CPU
Frequencies. For a given trajectory, P1 can be re-expressed
as:

P2 : max
f m n½ �,Pm n½ �,tm n½ �

ρ 〠
M

m=1
CBm + 1 − ρð Þ 〠

M

m=1
CEm

" #

s:t:C1, 6ð Þ, and 7ð Þ:
ð12Þ

Since the objective function is a fractional form, P2 is still
nonconvex. To obtain a tractable solution, a parameter
problem based on the Dinkelbach’s method is exploited to
tackle the objective function [30]. Thus, P2 can be solved
by iteratively solving P3, given by:

P3 : max
f m n½ �,Pm n½ �,tm n½ �

(
ρ 〠

M

m=1
CBm − 1 − ρð Þη T

N
γc f

3
m n½ � + Zm

� �

+ 1 − ρð Þ 〠
M

m=1

Tf m n½ �
NC

+ BTtm
vmN

log2 1 + hm n½ �Zm

tmσ
2
0

� �	 
)

s:t:C1, and 6ð Þ:
ð13Þ

where Zm½n� = Pm½n�tm½n�, and η is a non-negative parame-
ter. It is seen that P3 is a convex problem and can be solved
by using Lagrange duality method [31]. The Lagrangian of
P3 can be given by:

L Ξð Þ = 〠
M

m=1
〠
N

n=1

	
Tf m n½ �
NC

+ BTtm n½ �
νmN

log2 1 + hm n½ �Zm n½ �
tm n½ �σ20

� �

− 1 − ρð Þη T
N

γc f
3
m n½ � + Zm n½ �� �


− 〠
M

m=1
〠
N

n=1
λm,n

T
N

γc f
3
m n½ � + Zm n½ �� �

− Γ

� �	 


+ 〠
N

n=1
μn 1 − 〠

M

m=1
tm n½ �

( )

ð14Þ

In equation (14), λm,n,m ∈M, n ∈N and μn > 0, n ∈N
are the dual variables associated with the constraint in C1
and (6), respectively, and Ξ represents a collection of all
optimization and dual variables. Let θm,n =∑N

k=nλm,k and
gmðkÞ = γc f

3
m½k� + Zm½k� − Γm, then, the Lagrangian function

can be rewritten as:

L Ξð Þ = 〠
M

m−1
〠
N

n=1

	
Tf m n½ �
NC

+ BTtm n½ �
νmN

log2 1 + hm n½ �Zm n½ �
tm n½ �σ1/n0

� �

− 1 − ρð ÞηTN γc f
3
m n½ � + Zm n½ �� �


− 〠
M

m=1
〠
N

n=1

T
N
θm,ngm kð Þ

	 

+ 〠

N

n=1
μn 1 − 〠

M

m=1
tm n½ �

( )

ð15Þ

Thus, the Lagrangian dual function expression of P3 is
written as:

φ λm, n, μnð Þ = max
0≤f m n½ �

L Ξð Þ ð16Þ

According to equation (16), the optimal solutions of P3
can be obtained by solving its dual problem, given as:

min
λ,n,μn

φ λm, n, μnð Þ ð17Þ

Given dual variables, (17) can be decomposed into M
parallel sub-problems, given as:

Lm λm,n,ð μn, tm n½ �, Zm n½ �, f m n½ �Þ

= 〠
N

n=1

Tf m n½ �
NC

+ BTtm n½ �
vmN

log2 1 + hm n½ �Zm n½ �
tm n½ �σ20

� �� �

− 〠
N

n=1
1 − ρð Þη T

N
γc f

3
m n½ � + Zm n½ �� �� �

− 〠
N

n=1

T
N
θm,ngm nð Þ + 〠

N

n=1

μn
M

− μntm n½ �
n o

ð18Þ

Therefore, let us take the derivative of (18) with respect
to f m½n� and Zm½n�, respectively, the optimal CPU frequency
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f optm ½n� and transmit power of users poptm ½n� can be obtained,
and their expressions are:

f optm n½ � =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
3Cγc 1 − ρð Þη +∑N

k=nλm,k

 �
vuut

poptm n½ � =

0 , tm n½ � = 0,

B

vm ln 2 1 − ρð Þη +∑N
k=nλm,k

 � −
σ2
0

hm n½ �

2
4

3
5
+

, tm n½ � > 0,

8>>><
>>>:

ð19Þ

where ½x�+ = max ðx, 0Þ and max ðx, 0Þ denotes the bigger
value of x and 0.

And similar to the above, the optimal offloading time
can also be obtained by deriving the following formula for

a given trajectory qu½n�:

log2 1 + hm n½ �Zm n½ �
tm n½ �σ20

� �

−
hm n½ �Zm n½ �

ln 2 tm n½ �σ20 + hm n½ �Zm n½ �� � −
μnNvn
BT

= 0
ð20Þ

We can handle the (20) by applying the bisection
method. Finally, the dual variables can be obtained by using
subgradient method [30]. According to [30], the subgradient
ensures convergence to the optimal values within a small
margin of error.

3.2. Optimizing UAV Trajectory. For any given CPU fre-
quencies, transmit power, offloading times of users, we can
express the sub-problem about trajectory optimization as:

Due to the objective function is non-concave with respect
to qu½n�, and we can use SCA technology to handle the non-
convex problem of P4. The obtained solution can be guaran-
teed to satisfy the Karush-Kuhn-Tucker (KKT) conditions of
P4 [32]. Thus, the global underestimation can be obtained
by using the first-order Taylor expansion method.

For any local trajectory qj
u½n�, n ∈N at the jth iteration,

we have:

log2 1 + β0Pm n½ �
σ20 H2 + qu n½ � − qmk k2� �

 !
≥ yjm qu n½ �f gð Þ ð22Þ

where:

yjm qu n½ �f gð Þ

= log2 1 + Pm n½ �β0

σ2
0 H2 + qj

u n½ � − qm
��� ���2� �

0
BB@

1
CCA

−
Pm n½ �β0 log2e qu n½ �k k2 − qj

u n½ �
��� ���2� �

σ2
0H

2 + Pm n½ �β0 + σ20 qj
u n½ �

��� ���2� �
qj
u n½ �

��� ���2 +H2
� �

ð23Þ

where the equality holds when qu½n� = qj
u½n�.

By replacing the objective function of P4 with (22), the
problem (21) is approximately transformed to:

P5 : max
qu n½ �

ρ 〠
M

m=1
〠
N

n=1

BTtm n½ �
vmN

yjm qu n½ �f gð Þ
	 


+ 1 − ρð Þ 〠
M

m=1
〠
N

n=1

Btm n½ �yjm qu n½ �f gð Þ
vm γc f

3
m n½ � + tm n½ �Pm n½ �� �

" #
,

s:t: 1að Þ, 1bð Þ, and 1cð Þ:

ð24Þ

It is seen that P5 is convex and can be easily solved by
using convex optimization tools such as CVX [32]. By solv-
ing P3 and P5, the two sub-problems alternate in an iterative
manner. The specific process of the proposed algorithm is
summarized in Table 1.

Here, we give the complexity analysis for the proposed
Algorithm 1. It consists of solving resource allocation and
optimizing UAV trajectory with CVX. Let L1 and L2 denote
the number of iterations required for the Repeat 1 and
Repeat 2 of Algorithm 1, respectively. The computation
complexity of Repeat 2 isOðL2N3Þ. For Repeat 1, the first
aspect is calculate f opt,i½n� and popt,i½n�, the computation
complexity is OðL12MNÞ; the computation complexity of
bisection method for obtaining the tOpt,i is O½L1M log2ðl1/
TÞ�,where l1 denotes the tolerance error for bisection
method. The computation complexity of computing the dual
variables is OðL1/l22Þ, where l2 denotes the tolerance error for

P4 : max
qu n½ �

ρ 〠
M

m=1
〠
N

n=1

BTtm n½ �
vmN

log2 1 + Pm n½ �β0
σ2
0 H2 + qu n½ � − qmk k2� �

 !" #

+ 1 − ρð Þ 〠
M

m=1
〠
N

n=1

Btm n½ � log2 1 + Pm n½ �β0/σ20 H2 + qu n½ � − qmk k2� �� �� �
vm γc f

3
m n½ � + tm n½ �pm n½ �� �

" #

s:t: 1að Þ, 1bð Þ, and 1cð Þ:

ð21Þ
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the subgradient method. Thus, the total complexity of Algo-
rithm 1 is O½L1ð2MN +M log2ðl1/TÞ + 1/l22 + L2N

3Þ�.

4. Simulation Results

In this section, the numerical results are presented to vali-
date our proposed design. The parameter settings in the sim-
ulation process refers to the works in [16, 17]. In this paper,
assuming that there are four ground users whose locations
are set to q1 = ½3, 3�, q2 = ½3, 8�, q3 = ½8, 8�, and q4 = ½8, 3�,
and the maximum consumed energy constraints are identi-
cal for multiple ground users, i.e., Γm = Γ,m ∈M, the details
of others parameters setting are shown in Table 2.

To illustrate the effectiveness of our proposed design,
two benchmark schemes are considered. 1) The UAV flies
from the initial position to final position follow a straight
trajectory. 2) The UAV flies from the initial position to final
position follow a semi-circle trajectory.

Figure 3 shows the available CB-CE region of the trade-
off for different schemes, in which the energy consumed
threshold Γ = 1. This figure shows that available CB-CE
region of proposed scheme is bigger than that of bench-
mark’s, which indicate that through proper design the
resource allocation and trajectory, the proposed UAV-

MEC system design can achieve better computation perfor-
mance and reduce the operation cost.

We observe the values of the objective function about
the tradeoff between computation efficient CE and compu-
tation bits CB for different weight parameter ρ and maxi-
mum consumed energy in Figure 4. For the proposed
scheme, as ρ increases, the weight coefficient of the computa-
tion bits becomes larger, and the utility function gradually
approaches the CB maximization problem. As ρ changes,
we can obtain different tradeoff results between CB and CE.
Besides, as shown in Figure 4, for a fixed weight parameter
ρ, the objective function values increase with consumed
energy Γ, and the rate of increase gradually slows down.When
ρ = 0, since the value of the objective function is very small, the
figure shows a straight line close to x axis. On the other hand,
compared with CE, CB is more affected by the variation of
tradeoff factor ρ and its range of change is larger, which indi-
cates that on the premise of ensuring a large CB value, a rel-
atively large CE value can be taken to optimize the resource
allocation of the system. When ρ ∈ ½0:4, 0:8�, both CB and
CE values are relatively large, and the designed scheme
achieves a good tradeoff effect.

Figure 5 depicts the UAV’s flight trajectory in three dif-
ferent scenarios when T=2 seconds. In the first scheme, the
UAV flies in a straight line from the initial position to the
end position and the flight speed remains unchanged; the
second scheme, the trajectory of the UAV is a semi-circle
with its diameter being kqF − q0k; the last one is the optimi-
zation scheme introduced in previous sections, where the
weight parameter is set as ρ = 0:5and the maximum con-
sumed energy of user is set as Γ = 1:3 joule. By comparing
the three trajectories, it can be seen that when the weight
of each user is not considered, the trajectory of the proposed
scheme is more evenly approaching the location of four
users and providing computation service to them. This
means that when the UAV is closer to the users, the trans-
mission distance is smaller and the channel power gain is
larger, the ground user may tend to offloading more bits to
the UAV, and UAV can provide more comupution services
for the users.

Table 1: Two-stage alternative optimization algorithm.

Algorithm 1. The alternative optimization algorithm for P1.

1: Setting

Γ, T , N , Vmax, q0,qF , and the tolerance errors ξ, ξ1, inputting ρ;

2: Initialization:

The iterative index i = 1, λim,n, μ
i
n and qiu n½ �;

3: Repeat 1

Calculate f opt,i n½ � and popt,i n½ � by solving problem P3 for given
qiu n½ �;
Obtain topt,i using the bisection method to solve (20);
Update λim,n and μin using the sub gradient algorithm;

Initialize the iterative number j = 1;
Repeat 2

Solve P5 by using CVX for the given f opt,i n½ �, popt,i n½ � and topt,i
;

Update j = j + 1, and qiu n½ �;
If ∑N

n=1 q j
u n½ � − qj−1

u n½ �
��� ��� ≤ ξ

qiu n½ � = qj
u n½ �;

Break;

End

End repeat 2

Update the iterative index i = i + 1;
If max

n∈N
∑i −∑i−1

��� ��� ≤ ξ1 where ∑i = ρCBm + 1 − ρð ÞCEm

Break;

End

End repeat 1

4: Obtain solutions

Table 2: Simulation parameters.

Parameters Notation Typical values

The height of the UAV H 10m

The time length of the UAV flying T 2 sec

Communication bandwidth B 40MHz

The receiver noise power δ2 10-9 w

The number of time slots N 50

The effective switched capacitance N 10-28

The channel power gain β -50 dB

The tolerance error ξ, ξ1 10-4

The initial location of the UAV q0 [0,0]

The final location of the UAV qF [10,0]

The maximum speed of the UAV Vmax 10m/s

7Journal of Sensors



Figure 6 shows the relationship between the values of
objective function and the maximum consumed energy
under three different trajectories when ρ = 0:5. It can be
clearly seen that the value of the objective function increases
with the maximum energy consumption under different
schemes, and the objective function value of the designed
optimization proposal is significantly higher than that of
the UAV flying at a constant speed and flying in a semi-
circular trajectory. This means that the designed resource

allocation optimization algorithm by jointly optimizing the
UAV trajectory is more effective to maximize the tradeoff
between computation bits and computation efficiency.

Figure 7 shows the objective function values in three
modes of local computation, global offloading, and partial
computation offloading mode. The first mode is that the users
only perform task of local computing, and the second mode is
that the users only execute the process of offloading to the
UAV. The two benchmark modes are jointly optimized in
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the trajectory of UAV and Algorithm 1 is used to obtain the
curve of partial offloading mode presented in Figure 7. It is
obvious that the value of the objective function of offloading
mode (include global and partial) is directly proportional to
the maximum energy consumed since energy can support
users to perform computing tasks and offloading. Moreover,
it can be seen that the performance obtained by partial offload-
ing mode is better than that of global offloading modes. The
reason is that although the UAV’s computation ability is much

stronger than ground users, the ground’s energy and offload-
ing time are both limited, thus the offloading bits are also lim-
ited, let the ground user’s computation capability lain idle not
a resource-efficiency way. Moreover, users can obtain higher
quality channel state information (CSI) when performing
tasks under partial offloading mode, so they can allocate
resources dynamically and effectively. Furthermore, the per-
formance of local computing mode is inferior to global off-
loading mode and not changes as the energy increases, this
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because the ground users’ computation ability is weak in gen-
eral, within given time duration T = 2 sec, users energy con-
sumption cannot exceed Γ = 1 due to limited computation
ability.

Figure 8 is given to prove the proposed scheme can guar-
antee convergence. The figure shows the convergence perfor-
mance when the maximum consumed energy of users is set
as Γ = 1:3 joule and the weight coefficients take different
values (ρ=0.2; ρ=0.4; ρ=0.6). It is seen that the algorithm can
converge after a few iterations. Therefore, it can be concluded

that the optimization algorithm adopted in this paper has fast
convergence speed and low computational complexity.

5. Conclusion

In this paper, we studied the CB-CE tradeoff for the UAV
enabled MEC system. The tradeoff optimization problem
was formulated to maximize weighted sum of the CB and
CE of all users. To tackle the nonconvex problem of jointly
optimizing the computation performance and UAV’s
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trajectory, a two-stage alternative optimization method was
exploited to address the primal non-convex problem by for-
mulating it into two subproblems. A combination of the
Lagrange duality, SCA method and CVX solver is employed
to iteratively solve the subproblems. Simulation results dem-
onstrated that the proposed resource allocation optimization
scheme is superior to other benchmark schemes in terms of
the computational performance. Moreover, the proposed
alternative algorithm has a faster convergence speed, which
converged within fewer iterations.
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