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With the popularity of wireless networks and smart devices, wireless signal-based passive target sensing and localization have
become a hot research topic and attracted numerous researchers’ interests. The existing passive localization solutions require
multiple receivers, which is not practical for real-world applications. In response to this compelling problem, in this paper, we
propose a practical single access point-based passive moving target localization system. Concretely, it first utilizes multiple
antennas of the access point to form an antenna array and extended antenna, to capture channel state information (CSI) at
different spatial locations. Then, leveraging the obtained CSI, the signal parameters, including the angle of arrival (AoA) and
time of flight (ToF), are estimated. Based on the estimated signal parameters and the locations of the antenna array and
extended antenna, finally, the passive localization of the moving target is realized. Comprehensive experiments are conducted
under the real-world scenario with two different test platforms, and the experimental results show the proposed algorithm’s
median localization can reach 1.087m when the number of antennas is 4 and the signal bandwidth is 80MHz, demonstrating
the effectiveness of the proposed algorithm.

1. Introduction

With the ubiquitous penetration of wireless signals and high
levels of public acceptance of smart devices, passive localiza-
tion has become a research hotspot, with important applica-
tions, including security surveillance [1] and elderly care [2].
During the last few years, diverse methods have been used
for the passive localization, such as visible light [3, 4], infra-
red [5, 6], and ultrasound [7, 8]. Some of these systems can
realize an impressive localization accuracy. However, for the
real-world passive localization, the Wi-Fi-based system
stands out as a particularly promising method, due to the
pervasive availability of Wi-Fi access points (APs) [9], espe-
cially with the emergence and use of PHY channel state
information (CSI) in recent years [10].

Typically, Wi-Fi-based localization systems can be
divided into two main categories. The first one works in an
active manner, which always employs multiple receivers (or
single receiver) to capture signal travels from the transmitter
to the receiver directly and extract signal parameters, such as

received signal strength (RSS) [11], angle of arrival (AoA)
[12], time of flight (ToF) [13], and angle of departure
(AoD) [14], to realize indoor localization of the transmitter.
For example, BMW [15] employs the output of the 9-axis
sensor coupled with the pedestrian dead reckoning (PDR)
algorithm to get a location estimation. On this basis, BMW
fuses the estimated location with the RSS localization result
via Kalman filter, to realize the localization of the user.
Leveraging the CSI obtained by multiple receivers, the classic
system SpotFi [16] estimates the signal AoA and combines
the extracted AoA with the received signal strength (RSS)
to realize the localization of the signal transmitter. Combin-
ing the CSI with deep learning, DeepFi [17] trains all weights
of the deep network as fingerprints in the off-line training
phase and employs a greedy learning algorithm to reduce
complexity. During the online localization phase, DeepFi uses
a probabilistic method based on the radial basis function to
realize localization. ToneTrack [18] proposes a novel algo-
rithm, which combines time-of-arrival (ToA) data from differ-
ent transmissions as a mobile device hops across different
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channels, approaching time resolutions previously not possi-
ble with a single narrowband channel. On this basis, it can
accurately estimate the signal ToF and achieve localization
based on the estimated ToF. Recent workM3 [19] jointly esti-
mates AoA, relative ToF (rToF), and AoD based on the CSI
extracted from a single receiver and pinpoints the transmitter
based on these extracted parameters, under the line-of-sight
(LoS) scenario. Some other researchers [20] first construct
constraints by using ToF differences between reflection paths
and direct path. Then, with the help of AoA, they develop a
Particle Swarm Optimization- (PSO-) based searching algo-
rithm to realize the target and reflection point localization.

The other one is the device-free localization system,
which works in a passive manner, indicating they achieve
the localization without the requirement for having the user
carry any wireless-enabled devices [21–25]. Essentially, this
kind of system focus on estimating parameters of the signal
reflected from the target. On this basis, these systems utilize
the estimated signal parameters and the spatial location of
the receiver to construct geometric constraints, so as to real-
ize passive localization of the target. For instance, IndoTrack
[12] estimates the Doppler and AoA of the signal reflected
by the target through the CSI obtained by multiple receivers,
which are deployed in different spatial locations. Then, it
estimates target velocity and location to rebuild the absolute
trajectory of the moving target through the proposed proba-
bilistic comodeling of spatialtemporal Doppler and AoA
information, which are estimated from the CSI obtained by
multiple receivers. Leveraging the incoherence between the
direct signal and target-induced reflection (TIR), MaTrack
[26] estimates the AoA of the TIR and combines the esti-
mated AoA with the locations of receivers to achieve passive
target localization. By using the three-dimensional multiple
signal classification (3D-MUSIC) algorithm and the pro-
posed interference cancellation algorithm, our previous
work [27] estimates the AoA, ToF, and Doppler frequency
shift (DFS) of the TIR under the through-the-wall (TTW)
scenario, so as to achieve TTW passive moving target local-
ization. Some other systems, such as Widar 2.0 [28] and
mD-Track [14], use SAGE [29], cross-correlation, and other
algorithms to estimate more signal parameters, including
ToF, AoA, AoD, and DFS, and construct geometric con-
straints based on the estimated signal parameters and
locations of transmitter and receiver, to achieve passive
localization of the target. These systems rely on accurate sig-
nal parameters estimation, indicating the resolvability is
important for these systems. So, some recent works attempt
to enlarge the antenna array by physically moving the
antenna and form a larger bandwidth by combining adjacent
channels via channel hopping [30, 31], so as to further
improve the signal parameter estimation accuracy and local-
ization accuracy.

Although promising, it is not difficult to see that all
above mentioned passive localization systems strongly rely
on the assumption, that is, no matter how many receivers
are involved in passive localization, the location of the trans-
mitter is fixed and preacquired. This assumption could be
broken easily under the real-world scenario, since the user
may move their device (such as laptop and cell phone, which

may act as the signal transmitter), driving the location of
transmitter unpredictable and finally lead to a failure in pas-
sive localization. So, we ask the following question: is it pos-
sible to realize the passive localization with only one
receiver, while holding no requirement for the preobtaining
location of the transmitter?

In this paper, we propose a single receiver-based passive
localization system SR-PLoc, which employs the CSI mea-
surements obtained by a single receiver to achieve passive
localization of the target without preobtaining the location
of the transmitter or assuming it is never changed. The
essential observation lies in SR-PLoc is that the phase errors
[31], including carrier frequency offset (CFO), sample fre-
quency offset (SFO), and packet detection delay (PDD), are
caused by the unsynchronization between transmitter and
receiver and hardware imperfection, indicating all propaga-
tion paths (including the direct path from the transmitter
to the receiver and the TIR) recorded by CSI, undergo the
same phase error. Leveraging this fact, SR-PLoc first uses
multiple antennas of the receiver to form an antenna array
and extended antenna, so as to capture the CSI at different
locations. Based on the obtained CSI, SR-PLoc estimates
AoA and ToF of the direct signal and TIR. Finally, SR-
PLoc combines the estimated signal parameters with the
locations of the antenna array and extended antenna to con-
struct geometric constraints, so as to realize the passive
localization of the moving target. Unlike the previous works,
the proposed SR-PLoc achieves the passive localization of
the moving target with only one receiver, while holding no
need for preobtaining the location of the transmitter. We
build two test platforms and carry out rich experiments
under the real-world scenario. The experimental results
demonstrate the effectiveness and practicability of the pro-
posed algorithm.

2. Materials and Methods

SR-PLoc aims to realize passive localization of moving target
with a single receiver; the whole localization process mainly
includes three steps, as Figure 1 shows.

2.1. CSI Obtaining and Signal Parameter Estimation. Con-
sidering a receiver with multiple antennas, SR-PLoc builds
a uniform linear array (ULA) with antenna spacing of half-
wavelength and extended antenna to capture the CSI at
different locations, as Figure 1 shows. At time t, the reported
CSI measurements extracted from ULA and extended
antenna can be expressed as

h tð Þ =
h1,1 tð Þ ⋯ h1,K tð Þ
⋮ ⋱ ⋮

hI,1 tð Þ ⋯ hI,K tð Þ

2664
3775

c tð Þ = c1 tð Þ⋯ cK tð Þ½ �

8>>>>><>>>>>:
, ð1Þ

where hi,k is the CSI corresponding to kth subcarrier of the i
th antenna of the ULA, ckðtÞ is the CSI extracted from the k
th subcarrier of the extended antenna, and I and K are the
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number of antenna and subcarrier, respectively. Taking the
multipath effect into consideration, the received signal is a
superposition of multiple signals. Thereby, we have

hi,k = 〠
r∈GR

hri,k + 〠
d∈GD

hdi,k + ni,k,

ck = 〠
r∈GR

crk + 〠
d∈GD

cdk + nk,

8>>><>>>: ð2Þ

where hi,k is the CSI extracted from the kth subcarrier of the ith
antenna; GR and GD are the sets of the direct path and reflec-
tion path components, respectively; ck is the CSI extracted
from the kth subcarrier of the extended antenna; and ni,k
and nk are the noise. Without loss of generality, for any prop-
agation path l ∈ fGD ∪GRg, one can see that the CSI extracted
from ULA and extended antenna can be denoted as

hli,k = αle
−j2πf kτl × e−jπ i−1ð Þ× f k/f cð Þ×sin θlð Þ + nli,k,

clk = αl′e−j2πf kτl
′ + nlk,

8<: ð3Þ

where αl, τl, θl, and nli,k are the attenuation, ToF, AoA, and
noise of the lth propagation path, respectively, corresponding
to the ULA; f c is the central frequency; f k = f c + ðk − 1ÞΔf is
the frequency of the kth subcarrier;Δf is the frequency spacing
between two adjacent subcarriers; and αl′, τl′, and nlk are the
attenuation, ToF, and noise of the lth propagation path,
respectively, corresponding to the extended antenna. In prac-
tice, due to the phase error induced by PDD, CFO, SFO, the
real CSI extracted from the antenna array and extended
antenna can be denoted as

hli,k = αle
−j2πf kτl × e−jπ i−1ð Þ× f k/f cð Þ×sin θlð Þ × e−j2πf k λb+λoð Þe−j2πβ + nli,k,

clk = αl′e−j2πf kτl × e−j2πf k λb+λoð Þe−j2πβ + nlk,

(
ð4Þ

where λb and λo are the time offset introduced by the PDD and
SFO, respectively, and e−j2πβ is the phase offset induced by

CFO. When the target moves within the detection area, the
propagation path length of the TIR changes accordingly,
which introduces a nonnegligible DFS to the human-induced
reflection (HIR) f D= f c × vt/c, where vt is the speed of path
length change and c is the speed of light. Considering the time
interval between two adjacent CSI packets is Δt, at time ðt +
ΔtÞ, we have

h t + Δtð Þ = h tð Þ × e−j2πΔt×f D = h tð Þφ vð Þ,
c t + Δtð Þ = c tð Þ × e−j2πΔt×f D = c tð Þφ vð Þ:

(
ð5Þ

Taking the first CSI measurements as a reference, for a CSI
trace with M measurements, we have

H = 1, φ vð Þ,⋯,φM−1 vð Þ� �
⊗ h tð Þ,

C = 1, φ vð Þ,⋯,φM−1 vð Þ� �
⊗ c tð Þ,

(
ð6Þ

where ⊗ represents the Kronecker product. Based on the
above analysis, it can be seen that, through the phase difference
between antennas, subcarriers, and measurements, the CSI
trace describes the AoA, ToF, and the DFS, respectively. So,
the 3D-MUSIC algorithm, presented in our previous work
[27], is used to estimate signal AoA, ToF, and DFS jointly.
Taking the CSI received by the array as an example, here, we
briefly describe the estimation process. First, we rewrite the
CSI trace as

H = exp −j2πf1τð Þ 1, φ vð Þ,⋯,φM−1 vð Þ� �T
⊗ 1, ω θð Þ,⋯,ωI−1 θð Þ� �T ⊗ 1, ξ τð Þ,⋯,ξK−1 τð Þ

h iT
,

ð7Þ

where

ξ τð Þ = e−j2πΔf τ,

ω θð Þ = e−j2πf k d sin θ/cð Þ

(
: ð8Þ
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Figure 1: System overview of SR-PLoc.
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Then, the three-dimensional smoothing is performed on
H to eliminate the influence of coherent signals on parameter
estimation. After that, the eigenvalue decomposition is con-
ducted on the autocorrelation matrix of H′, which is the
smoothed form of H. Based on the Minimum Description
Length (MDL) criterion [32], the dimension of noise subspace
is estimated, so the noise subspace En, spanned by small eigen-
values, can be extracted. At last, the signal AoA, ToF, and DFS
is estimated via the function

P θ, τ, vð Þ3D =
1

aH θ, τ, vð ÞEnEH
n a θ, τ, vð Þ� � , ð9Þ

where aðθ, τ, vÞ is the corresponding steering matrix and f⋅gH
is the conjugate transpose operator. In a similar way, SR-PLoc
uses the CSI extracted from the extended antenna to realize the
joint estimation of DFS and ToF. Due to the phase error intro-
duced by the PDD, CFO, and SFO, the estimated ToF is not
the absolute signal ToF. However, the signal AoA and rToF
between different propagation paths are not contaminated,
since the phase error is the same for all paths, as discussed
above. So, based on the estimated signal parameters, SR-
PLoc filters out moving target introduced reflection by analyz-
ing the DFS and employs its AoA and rToF to achieve passive
moving target localization.

2.2. Passive Moving Target Localization. Assuming the coor-
dinates of the transmitter, moving target, antenna array, and
extended antenna are lT ½xt , yt�, lR½xr , yr�, lA½xa, ya�, and lE½xe,
ye�, respectively, as Figure 2 shows, then, based on the esti-
mated signal parameters and previous discussion, we have

lT − lAk k2 + Δτ × c + εTA = ~τta × c,

lT − lEk k2 + Δτ × c + εTE = ~τte × c,

lR − lTk k2 + lR − lAk k2 + Δτ × c + εTRA = ~τr × c,

8>><>>: ð10Þ

where k⋅k2 is two-norm operator; Δτ × c is the distance corre-
sponding to the ToF offset induced by phase error; εTA, εTE,
and εTRA are the estimating error; ~τta and ~τte are the estimated
ToF of the direct path from transmitter to the antenna array

and extended antenna, respectively; and ~τr is the estimated
ToF of the moving target induced reflection arrives at the
antenna array. Combining the AoA of the direct path esti-
mated by the antenna array with the first two equations in
Equation (10), the following constraints can be built

lT − lAk k2 − lT − lEk k2 + εTA − εTE = ~τta − ~τteð Þ × c,

xt − xað Þ
yt − yað Þ = tan ~φ + εφ

� �
,

8><>:
ð11Þ

where ~φ is the estimated AoA of the direct path from the trans-
mitter to the antenna array and εφ is the AoA estimating error.
Leveraging Equation (11), the location of the transmitter can
be calculated

xt = tan ~φ + εφ
� �

yt − yað Þ + xa,

yt =
W × ya − xa − xeð Þ2 − y2e + y2a + d1 + εTE − εTAð Þ2 + Γya

W − 2ye + 2ya + Γ
, yt < ya,

yt =
W × ya − xa − xeð Þ2 − y2e + y2a + d1 + εTE − εTAð Þ2 − Γya

W − 2ye + 2ya − Γ
, yt > ya,

8>>>>>>><>>>>>>>:
ð12Þ

where

W = 2 tan ~φ + εφ
� �

xa − xeð Þ,
d1 = ~τta − ~τteð Þ × c,

Γ = 2
d1 + εTE − εTAð Þ
cos ~φ + εφ

� � :

8>>>><>>>>:
ð13Þ

When yt = ya, it indicates the AoA of the direct path
reaches 90 degrees. At this time, the localization of the trans-
mitter can be achieved via the rToF. After obtaining the loca-
tion of the transmitter, one can see that

~τr − ~τtað Þ × c = lR − lTk k2 + lR − lAk k2 − lT − lAk k2 + εTRA − εTA,
ð14Þ

Antenna array

SDR X 310

RF channel for
extended antenna External clock source

UBX-160 RF boards

4 RF channels

Workstation

GNU Radio

Inside SDR X310

Figure 2: The receiver of the SDR test platform. The receiver is composed of three independent X310, which can provide 6 RF channels to
receive the wireless signal, and the signal bandwidth can reach up to 100MHz.
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which is an elliptic equation, indicating the moving target is
located on an ellipse whose focus is transmitter and antenna
array. Meanwhile, based on the estimated AoA of the moving
target induced reflection, we have

arctan
xr − xað Þ
yr − yað Þ

� �
= eθ + εθ, ð15Þ

whereeθ is the estimated AoA of the TIR and εθ is the AoA esti-
mating error. Leveraging the constraints given in Equations
(14) and (15), finally, the location of the moving target can
be calculated as

xr = tan eθ + εθ
� 	

yr − yað Þ + xa,

yr =
Z × ya − xa − xtð Þ2 − y2t + y2a ± 2Uya/cos eθ + εθ

� 	� 	
+U2

Z − 2yt + 2ya ± 2U/cos eθ + εθ
� 	� 	 ,

8>>>><>>>>:
ð16Þ

where

Z = 2 tan eθ + εθ
� 	

xa − xtð Þ,

U =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xt − xað Þ2 + yt − yað Þ2

q
+ ~τr − ~τtað Þ × c − εTRA + εTA,

8><>:
ð17Þ

So far, by using the AoA (extracted from the CSI obtained
by the antenna array) and the rToF (extracted from the CSI
obtained by the antenna array and extended antenna), SR-
PLoc realizes the passive moving target localization. Since the
reflection paths are weaker than the direct signal traveling
from the transmitter to the receiver, SR-PLoc employs the
CSI-CR algorithm proposed in our previous work [33] to
reduce the direct path induced interference to further improve
the ToF estimation accuracy, during the parameter estimation
process.

3. Results and Discussion

3.1. Implementation. To verify and evaluate the performance
of SR-PLoc, comprehensive experiments are carried out in a
typical indoor office room, which, as Figure 3 shows, con-
tains office furniture such as computers, work desks, and
bookcases. Multiple test locations, which are denoted as blue
dots, are selected for the moving target. At the same time, to
fully analyze the system performance, multiple test locations
are selected for the transmitter and extended antenna, which
are denoted as green and red boxes, respectively. To accu-
rately obtain the ground truth of the reflection, the tester is
asked to stand at the test reflection locations and wave an
iron plate to generate the reflection path.

To test the performance of the proposed algorithm with
different configurations (i.e., different bandwidth and the
number of antennas), two test platforms are constructed,
as Figures 2 and 4 show.

(i) As presented in Figure 2, the first one is the Software
Defined Radio (SDR) platform. The receiver includes
three USRP X310 devices [34] with six RF UBX-160
cards, which are synchronized via the OctoClock-G
[35] to ensure antennas (including antenna array
and extended antenna) can sample the spatial signal
simultaneously. The transmitter contains a USRP
X310 device with two RF UBX-160 cards to send the
signal. The workstation equipped with GNU radio is
used to control SDR equipment, to send the signal,
or extract CSI from the received OFDM signal, which
can cover a bandwidth up to 100MHz

(ii) The second one is a commercial access point (AP)
equipped with Broadcom 4366C0 wireless NIC
and NexMon tool [36]. A computer with Ubuntu
18.04 operating system controls an AP, which acts
as the receiver, to complete the CSI data extraction
via instructions set. Another AP with the same
configuration is used as the transmitter to send
the signal. The receiver of this platform contains
four antennas, which can collect CSI with a band-
width up to 80MHz based on the IEEE 802.11 ac
protocol

During the experiment, the default signal bandwidth is
80MHz, the central frequency is 5GHz, the number of
antennas in the antenna array is 3, the CSI packet transmis-
sion rate is 200Hz (i.e., the transmitter sends 200 packets per
second), and the number of the extended antenna is 1. Both
transmitter and receiver are placed 1.5 meters above the
ground. Before the test, the power splitter is used to measure
the phase difference among different RF channels. The mea-
sured phase difference will be used to compensate for the
initial phase offset to make sure the AoA can be estimated
effectively. Leveraging the data collected from these plat-
forms, the system evaluation is conducted from three
aspects. At first, the localization accuracy of the transmitter
is briefly analyzed. Next, the impact of the transmitter’s loca-
tion on the moving target localization accuracy is analyzed.
At last, the localization accuracy of the moving target with
different configurations is inspected, including the impact
of the signal bandwidth, number of antennas in the ULA,
and location of the extended antenna.

Transmitter
Reflection point Antenna array

Extended antenna

5mR2 T1 T3

T4

T5

3m

T2

R1

T1

T2

T3

T4

Figure 3: The diagram of the testbed.
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3.2. Performance Evaluation. At first, the transmitter locali-
zation performance of SR-PLoc is analyzed via the compar-
ison with SIFI [37], which expands multiple antennas of a
single receiver to capture CSI at different locations and esti-
mate ToA to realize localization. The localization performance
comparison is presented in Figure 5, via the Cumulative Dis-
tribution Function (CDF) of the localization error. One can
see from the result, SR-PLoc’s median localization error is
about 1.016m, which is slightly better than SIFI’s 1.110m
when the extended antenna is at R1. The error under the ratio
of 66.7% of SR-PLoc can reach 1.220m, which is 0.121m
lower than that of SIFI, demonstrating the effectiveness of
the proposed SR-PLoc in transmitter localization. When the
extended antenna is at R2, one can see that the transmitter
localization accuracy is further improved. Concretely, SR-
PLoc’s median localization error and error under the ratio of
66.7% can reach 0.821m and 1.088m, respectively. The reason
for this enhancement is that the layout of the receiver is more
suitable for localization when the distance between the
extended antenna and the antenna array is increased within
a reasonable range. However, for the real-world application,
this distance should not be too large; otherwise, it will cause
inconvenience to the deployment of the receiver.

After the transmitter localization performance evalua-
tion, next, the impact of the transmitter’s location on the
moving target localization accuracy is analyzed and the
result is presented in Figure 6. Overall, it can be seen that,
on the one hand, SR-PLoc performs better when the
extended antenna is at R2. This can be explained by that
the transmitter localization accuracy is higher when the
extended antenna is at the R2, resulting in an improvement
of moving target localization accuracy. On the other hand,
when the transmitter is at T2 and T3, the localization accu-
racy moving target is better than that of the transmitter at T1
and T4. Taking the median localization error as an example,
when the extended antenna is at R1, the median localization
error can reach 1.592m, 0.959m, 0.759m, and 1.211m when
the transmitter is at T1, T2, T3, and T4, respectively. A sim-
ilar trend can be observed when the extended antenna is at
R2. This is because T1 and T4 are at the edge of the test area,
indicating the transmitter is close to the wall and furniture,
which may introduce strong reflection and cause a decrease
in the accuracy of parameter estimation and finally lead to a
failure in filtering out the moving target induced reflection.

With different signal bandwidths, the localization accu-
racy of the moving target is analyzed. From Figure 7, it is
not hard to observe that the moving target localization
performance is boosted with the increase of the signal

Four RF channels

WAN
LAN

BCM4366C0
SoC

ASUS AC 86 U

Figure 4: The receiver of the IEEE 802.11n protocol-based Broadcom 4366C0 test platform. This receiver can provide 4 RF channels to
receive the wireless signal and the signal bandwidth can reach up to 80MHz.
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Figure 5: The transmitter localization accuracy comparison.
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Figure 6: The impact of transmitter’s location on the moving target
localization accuracy.
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bandwidth. Specifically, when the extended antenna is at R1,
the median localization error of SR-PLoc can reach 0.902m,
1.087m, 1.303m, 1.675m, and 2.214m, with the signal
bandwidth of 100MHz, 80MHz, 60MHz, 40MHz, and
20MHz, respectively. We believe this is because the increase
of signal bandwidth improves the signal ToF estimation res-
olution, driving the estimated signal ToF more accurate and
ultimately leading to an enhancement in localization accu-
racy. Comparing two subfigures in Figure 7, one can see that
the moving target localization accuracy is improved when
the extended antenna is moved to R2. This can be also inter-

preted by that the layout is more suitable for localization
when the distance between the extended antenna and the
antenna array is increased.

At last, we analyze the impact of the number of antennas
on the moving target localization accuracy. As Figure 8
shows, it can be seen that the median localization error of
SR-PLoc can reach 1.708, 1.087m, 0.931m, and 0.710m,
with 2, 3, 4, and 5 antennas in the antenna array, respec-
tively, when the extended antenna is at R1. This phenome-
non means the localization accuracy is positively correlated
with the number of antennas. Since the increase in the
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Figure 7: The localization accuracy of moving target versus the signal bandwidth. (a) Shows the localization accuracy under different
bandwidths when the extended antenna is at the test location R1. (b) Demonstrates the localization accuracy under different bandwidths
when the extended antenna is at the test location R2.
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Figure 8: The localization accuracy of moving target versus the number of antennas. (a) Shows the localization accuracy when the extended
antenna is at the test location R1 and the antenna array is equipped with a different number of antennas. (b) Demonstrates the localization
accuracy when the extended antenna is at the test location R2 and the antenna array is equipped with a different number of antennas.
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number of antennas improves the AoA estimation accuracy
and finally results in the improvement of localization accu-
racy. Comparing two subgraphs in Figure 7, one can see that
the median localization error of SR-PLoc is reduced by about
0.104m, 0.101m, 0.104, and 0.113m, with 2, 3, 4, and 5
antennas in the antenna array, respectively, when the
extended antenna is moved to the location R2. Similar to
the previous result, this enhancement is also introduced by
the improvement in transmitter localization accuracy.

4. Conclusions

In this paper, we propose SR-PLoc, a single receiver-based
passive moving target localization system. Taking the non-
synchronization between the transmitter and the receiver-
induced phase errors recorded in CSI into full consideration,
the proposed algorithm constructs an antenna array and an
extended antenna, by using multiple antennas from a single
receiver, to capture the wireless signal at different spatial
locations. On this basis, SR-PLoc estimates the signal AoA
and ToF and combines the estimated parameters with loca-
tions of the antenna array and extended antenna to realize
the passive localization of the moving target. Different from
the existing solutions, which rely on the assumption that the
transmitter’s location is preacquired and unchanged, SR-
PLoc holds no requirement for that, making it more promis-
ing for real-world applications. Comprehensive experiments
are conducted based on the two test platforms, which are
built upon the SDR equipment and commercial AP. The
experimental results verify the effectiveness and practicality
of the proposed algorithm, which lays a solid foundation
for ubiquitous passive localization for the moving target.
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