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This paper proposes a new indoor people detection and tracking system using a millimeter-wave (mmWave) radar sensor. Firstly, a
systematic approach for people detection and tracking is presented—a static clutter removal algorithm used for removing mmWave
radar data’s static points. Two efficient clustering algorithms are used to cluster and identify people in a scene. The recursive
Kalman filter tracking algorithm with data association is used to track multiple people simultaneously. Secondly, a fast indoor
people detection and tracking system is designed based on our proposed algorithms. The method is lightweight enough for
scalability and portability, and we can execute it in real time on a Raspberry Pi 4. Finally, the proposed method is validated by
comparing it with the Texas Instruments (TI) system. The proposed system’s experimental accuracy ranged from 98%
(calculated by misclassification errors) for one person to 65% for five people. The average position errors at positions 1, 2, and 3
are 0.2992 meters, 0.3271 meters, and 0.3171 meters, respectively. In comparison, the Texas Instruments system had an
experimental accuracy ranging from 96% for one person to 45% for five people. The average position errors at positions 1, 2,
and 3 are 0.3283 meters, 0.3116 meters, and 0.3343 meters, respectively. The proposed method’s advantage is demonstrated in
terms of tracking accuracy, computation time, and scalability.

1. Introduction

Indoor detection and tracking of people are useful solutions to
energy assignment, health, and safety [1]. Studies show that an
indoor detection and tracking system can reduce energy usage
for lighting and Heating, Ventilation, and Air Conditioning
(HVAC) systems by more than 30% [2]. Additionally, these
systems can also improve security applications by giving emer-
gency systems the ability to make more well-informed deci-
sions. So that can enhance the response of emergency
systems by providing them with real-time location informa-
tion of people, where they are going, and the densities of peo-
ple at different sites to decide whether they are safe or not.
Moreover, indoor detection and tracking systems could also
help health care businesses monitoring the elderly when they
fall. For example, based on location information, nursing staff
could make a decision ensuring their safety.

Researchers have studied various types of sensing tech-
nologies for indoor object detection measurements, such as
passive infrared (PIR) [3], optical cameras [4, 5], LIDAR

[6], Wi-Fi [7], and 10GHz-to-24GHz microwave [8]. How-
ever, all these technologies have challenges with inaccuracy,
privacy, environmental robustness, and system complexity
[9]. For instance, the HD camera system and other technolo-
gies such as Wi-Fi, Bluetooth, and UWB are used for posi-
tioning [10–12]. In these studies, Machine Learning (ML)
methods are employed to detect people. These methods
include decision trees, hidden Markov models, and convolu-
tional neural networks. Machine learning is a computation-
ally intensive process and cannot readily be implemented
onto an embedded system.

Moreover, typically camera-based tracking systems
require a clear view and the right lighting conditions dis-
played in [13], where the system uses background subtrac-
tion and the Lucas and Kanade tracking algorithm to
determine indoor human counting. The system had an
experimental accuracy of 97% under lab conditions, but the
accuracy during field-testing dropped significantly. Addi-
tionally, another critical problem with camera systems is
their intrusive nature, leading to privacy concerns. However,
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research is being done to discover whether it is possible to use
lower resolution cameras to circumvent privacy issues [14].

Motivated by this, this research chose the onboard
millimeter-wave (mmWave) radar sensor (IWR1642-
BOOST) [15] as the sensing technology [16]. mmWave is a
remote wireless sensing technology that has raised lots of
attention from academia and industry due to its exceptional
advantages. Compared to the existing wireless sensing tech-
nologies, this particular radar technology can overcome envi-
ronmental occlusion problems. We aim to explore fast and
robust people detection and tracking models, algorithms,
and application guidance using mmWave sensors for indoor
applications.

Ongoing research in object detection and tracking data
process technologies are mainly focused on vision-based
methods [4]. There are currently only limited studies using
mmWave radar data for indoor detection and tracking of
people. In [17], Wei and Zhang set up a new high-precision
passive tracking method (mTrack) and used highly direc-
tional 60GHz millimeter-wave radios to run a discrete beam
scanning mechanism to pinpoint the object’s initial location
and track its trajectory. However, it is based on a signal-
phase model. Hence, it is not suitable for applying detection
and tracking indoors. In [18], Palacios et al. developed two
indoor localization algorithms tailored to mm-wave
propagation characteristics based on commercial 60GHz
mm-wave hardware. However, its experiment results only
considered location error, and the system computation load
is not mentioned. The most related work is people counting
and tracking using a mmWave radar sensor by Texas Instru-
ments (TI) [19]. The system employs density-based cluster-
ing (DBSCAN) with an extended Kalman filter (EKF), and
it reported an accuracy of 51% to 99% between 1 and 5
people. However, its accuracy is questionable since only
DBSCAN [20] is used to clustering the varying density data.

Moreover, its portability and scalability are limited due to the
use of EKF to convert the polar measurement to Cartesian
coordinates. The conversion is taken for ease of use, yet it
brings additional computation load and process noise.

This paper includes two main contributions. Firstly, we
present a systematic approach to detecting and tracking peo-
ple indoors using a mmWave radar sensor. Two efficient
clustering algorithms are proposed here to provide high
accuracy and shallow processing time; the recursive Kalman
filter (RKF) tracking algorithm performs much better than
the EKF in algorithmic complexity and computation time.
Moreover, a fast indoor people detection and tracking system
was designed based on our proposed algorithms. Further-
more, the system can operate on an embedded platform,
the Raspberry Pi 4, creating computing constraints to intro-
duce a portability and scalability aspect. Comparing the
results to the commercially available system from TI shows
that the method is faster, more accurate, and less heavy than
the TI system.

2. Methodology

2.1. Hardware Framework. The hardware system consists of
the millimeter-wave radar sensor (IWR1642BOOST), a
Raspberry Pi 4 (1.5GHz, 4GB RAM), and a monitor. The
flow of hardware information is shown in Figure 1. The sen-
sor emits a radar signal, taking a snapshot of the indoor loca-
tion at a given point in time. The returned radar signal
undergoes preliminary processing on the sensor, the output
of which is a point cloud. This point cloud is a collection of
points that represents detected people. The point cloud is
then processed on the Raspberry Pi 4. The output of the pro-
cessing is information on identified targets, which is then
displayed on a monitor.

–6

0

1

2

3

4

5

6

–5 –4 –3 –2 –1 0

X position (m)

Y
 p

os
iti

on
 (m

)

Target InformationPoint cloud
Returned

radar signal

Visualization

IWR1642BOOST Raspberry
Pi 4

1 2 3 4 5 6

Number of people: 5

Figure 1: Flow of hardware information.

Static clutter
removal

Point cloud
Clustering Referencing Tracking Visualization

Figure 2: Framework of the data process.

2 Journal of Sensors



–0.2513.5

12 meters, 31 points

13.0
12.5

Range (m)
Angle (deg)

12.0
11.5

–0.15

–0.10

–0.05

0.00

0.05

Noise
Point cloud
Point cloud

–0.20
–0.15

–0.10
–0.05

0.00

D
op

pl
er

 (m
/s

)

(a)

–0.2
4.0

3.5
3.0

2.5
2.0

1.5
1.0

3 meters, 87 points

Range (m)
Angle (deg)

2.0

1.5

1.0

0.5

0.0

0.8
0.6

0.4
0.2

0.0

D
op

pl
er

 (m
/s

)

Noise
Point cloud

(b)

Figure 3: Comparison of the numbers of clustered points at different distances: (a) data points at 12 meters from mmWave sensor; (b) data
points at 3 meters from mmWave sensor.
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2.2. System Data Process Framework. The flow chart in
Figure 2 depicts the systematic approach used in this paper
to process and analyze mmWave sensor raw data (point
cloud), then the sensor transmits the point cloud data to
the Raspberry Pi. This paper mainly focuses on the cluster-
ing and referencing algorithms, tracking algorithm, and
timing analysis of the merged approach for real time and
portability, then compares it to the TI method. Firstly,
the point cloud information from the mmWave sensor is
parsed and then processed for static clutter removal. The
points are then grouped in the clustering+referencing
module, and then finally, the people’s points are tracked
in the tracking module, from which the people number
is derived.

2.3. Static Clutter Removal. The static clutter removal model
is aimed fat excluding as many as static points as possible
from the background. It requires range information since it
filters out nonrange changing (static) objects from the scene.
The steps of the static clutter removal algorithm are listed as
follows.

Step 1. Range processing performs Fast Fourier Transform
(FFT) on Analog to Digital Converter (ADC) samples per
antenna per chirp. FFT output is a set of range bins.

Parameters:
maxDistance- the largest searching distance
minClusterSize- the minimum number of points to classify as a cluster

Steps:
(1) Set the maxDistance and minClusterSize parameters for the clustering algorithm.
(2) Randomly select a point c that has not been marked a cluster or been designated as an outlier (noise).
(3) Compute its neighborhood to determine if it is a core point. If yes, start a cluster around this point.

If no, mark the point as an outlier.
(4) If p is a core point, a cluster is formed, expand the cluster by adding all directly reachable points to the cluster.
(5) If an outlier is added, change that point’s status from outlier to border point.
(6) Repeat steps 2-5 until all points are either assigned to a cluster or designated as an outlier.
(7) Calculate the mean of each cluster.

Algorithm 1: Clustering: DBmeans.

Parameters:
maxDistance- the largest searching distance
minClusterSize- the minimum number of points to classify as a cluster

Steps:
(1) Set the maxDistance and minClusterSize parameters for the clustering algorithm.
(2) Randomly select a point p that has not been marked a cluster or been designated as an outlier (noise).
(3) Compute its neighborhood to determine if it is a core point. If yes, start a cluster around this point.

If no, mark the point as an outlier.
(4) If p is a core point, a cluster is formed, expand the cluster by adding all directly reachable points to the cluster.
(5) If an outlier is added, change that point’s status from outlier to border point.
(6) Repeat steps 2-5 until all points are either assigned to a cluster or designated as an outlier.
(7) Randomly select a point c in each cluster as a medoid.
(8) Assign each of the remaining points (nonmediod) in every cluster represented by the nearest medoid.
(9) Randomly select a nonmedoid point Orandom in every cluster.
(10) Consider each of the current medoids Oj in every cluster: compute the total cost S of swapping Oj with Orandom, includes the cost
contributions of reassigning nonmedoid points caused by the swap.

If S < 0, then swap Oj with Orandom to form the new medoid.
(11) Repeat steps 8-10, until no change.

Algorithm 2: Clustering: DBmedoids.
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Step 2. Perform static clutter removal by subtracting the esti-
mated Direct Current (DC) component from each range bin.

Step 3. Range processing results in local scratch buffers are
Enhanced Direct Memory Access (EDMA) to the radar data
cube with transpose.

2.4. Clustering and Referencing. The clustering stage is aimed
at identifying the number of people in a scene, and since a
single centroid is needed to track each person, a referencing
process is required.

2.4.1. Clustering. Due to the mmWave sensor field of view,
the data’s density varies from time and distance against the
sensor. For example, the closer the people are to the sensor,
the more dense points can be collected. On the other hand,
as distance increases, only a few points can be obtained,
especially for smaller objects. To demonstrate, Figure 3
shows the different total number of collected points (cluster
density) of people located at different distances from the
sensor. There are only 31 points (blue and green) of two
people around 12m away from the sensor, while another
person is only 3m away from the sensor, which collected
87 points (blue and green). It showed that a denser cluster
represents a person closer to the sensor. In contrast, a person
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who is further away is represented by a less dense and more
variable cluster.

The black cross stands for the density-based noise points
after the clustering stage. These clusters are identified to be
the noise of points that are too small to represent people.
The density-based noise identifies works by treating each
point as a node and then calculating the distance matrix
between itself and all the other nodes. The distance between
each node is the difference in displacement in the x-direc-
tion and the displacement in the y-direction. If a node is
within a distance threshold of 0.2m to the other nodes, those
nodes are extracted.

2.4.2. Referencing. After clustering, all detected people are
represented by clusters. A reference point on the X and Y
plane needs to be found to locate each cluster’s position. This
reference point will later be used for tracking clusters and
extracting trajectory information. The reference point can
be the mean center of a cluster and also can be the real center
point (both can be called centroid) of a cluster. For people
clusters, both can be used as the reference point.

The two density-based clustering and referencing algo-
rithms that we implemented are DBmeans and DBmedoids,
respectively. The algorithms can get the centroid location
or the centroid point of a cluster with a shallow misclassifica-
tion rate. The two algorithms are presented as Algorithm 1
and Algorithm 2.

2.5. Tracking

2.5.1. Recursive Kalman Filter. The tracking stage is necessary
to locate people as they move through the indoor space and
maintain accurate and reliable measurements. In this paper,
a recursive estimation method with Kalman filter (RKF) plus
a motion model is applied for motion state prediction and
estimation of people. Since there are inconsistencies in the
rate at which data was lost from the sensor, we decided to
recursively calculate the error covariance matrix and Kalman
gain in each update stage. We could get a more accurate
update compared to a static Kalman gain.

We opted for the RKF, as it has not been researched in
mmWave indoor people tracking, and we theorized that we
could make it lightweight for real-time application. The

(a) (b)

(c)

Multi-Tx &
Rx antenna

(d)

Figure 7: Various data collection sites and experimental setup: (a) corridor; (b) meeting room; (c) seminar room; (d) experimental setup.

Steps:
(1) Calculate the distances between each old centroid (objects) and new centroid (observations) in popular coordinate system (e.g., d1,
d2, d3, and d4). d2 = r21 + r22 − 2r1r2 cos ðθ1 − θ2Þ.
(2) Find the one with the global smallest distance from the total distances (e.g., d1).
(3) Associate the object with the new centroid linked by this distance (e.g., associate Track 2 and new centroid 1).
(4) Repeat steps 2-3 until all unassociated new centroids and objects are associated (e.g., associate Track 1 and new centroid 2).

Algorithm 3: Data association: simplified GNN.
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RKF is well-suited for indoor people tracking when using a
constant velocity (CV) model, and we also considered an
acceleration model by random noise. Moreover, it can
improve accuracy by avoiding the EKF’s process errors
caused by linearization by keeping computation in the polar
coordinates, illustrated in Figure 4. Figure 4 illustrates the
single reflection point at time k. Multiple reflection points
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Figure 8: Example frame of the DBmeans and DBmedoids algorithms: (a) DBmeans; (b) DBmedoids.

Table 1: Comparison between the DBmeans and DBmedoids
algorithms.

Algorithms Total frames Misclustering Time (ms) Accuracy

DBmeans 341 52 29.11 84.75%

DBmedoids 341 59 121.67 82.70%
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Figure 9: RKF vs. EKF: (a) RKF; (b) EKF.
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represent real-life radar objects. Each point is represented by
range r (Rmin < r < Rmax), angle (−θmin < θ < θmax), and radial
velocity _r (range rate). To employ RKF, we keep the raw data
processing from detection to tracking under the polar system
and keep the visualization under the Cartesian coordinates
for the best view.

The system state in the polar system at step k can repre-
sent as

xk = r _r θ _θ
h iT

: ð1Þ

The motion state model and observation model of people
can be built as follows:

xk =

1 Δt 0 0
0 1 0 0
0 0 1 Δt

0 0 0 1

2
666664

3
777775
xk−1 +Q,

yk =
1 0 0 0
0 0 1 0

" #
xk + R,

ð2Þ

where Δt is the mmWave sensor sampling time interval and
was set to 50ms. Q and R are the system noise covariance
matrix and measurement noise covariance matrix,
respectively.

F is a transition matrix,

F =

1 Δt 0 0
0 1 0 0
0 0 1 Δt

0 0 0 1

2
666664

3
777775
, ð3Þ

where H is a measurement matrix,

H =
1 0 0 0
0 0 1 0

" #
: ð4Þ

An implementation flowchart of the proposed RKF algo-
rithm is summarized in Figure 5. As shown, the update step
involves recursively calculating the Kalman gain K , then cal-
culating the current data frame’s state x+k and the error
covariance matrix P+

k . Recalculating the Kalman gain and
error covariance can give the estimate system more robust
and practical flexibility. Moreover, if no measured data are
available, the estimated values are used as the updated values.
The algorithm is described as follows.

In the initialization step, the mean values x+0 and covari-
ance matrix P+

0 of the states are set up at k = 0, where the
superscript “+” indicates that the estimate is a posteriori,
and P is the error state covariance matrix.

In the prediction step, the state and its covariance matrix
at k − 1ðx+

k−1′ , P
+
k−1Þ are projected one step forward to obtain

the a priori estimates at kðx−k , P−
k Þ.

In the update step, the actual measurement is compared
with predicted measurement based on the a priori estimate.
The difference is used to obtain an improved a posteriori esti-
mate as in Figure 6. Symbols zk and Sk are the measurement
vector and innovation covariance, respectively.

2.5.2. Data Association. Since there could be multiple people
at any time, and the Kalman filter can only track a single per-
son at a time; therefore, we implement a lightweight data
association approach with a recursive Kalman filter to work
on multiple objects. The global nearest neighbor (GNN) data
association algorithm used in our system is a simplified ver-
sion and based on the centroid data after the clustering and
referencing step. The simplified GNN diagram is shown in
Figure 5, and the algorithm description is shown in
Algorithm 3.

After GNN is processed, the associated centroids can be
passed through the update step of the RKF to be a multiobject
tracker. Each track goes through a life cycle of events. At the
maintenance step, we decide to change the state or delete the
track that is not used anymore.

3. Experiment and Evaluation

3.1. Experiment Setup. To evaluate our algorithms’ perfor-
mance, we set up experiments at three different data collec-
tion sites around the University of Auckland Newmarket
campus to model various real indoor scenarios. The
mmWave sensor data was captured using the TI IWR1642-
BOOST. The IWR1642BOOST radar sensor includes an
FMCW transceiver, operating at 76GHz to 81GHz (4GHz
available bandwidth) with four receive channels and two
transmit channels. It outputs a data frame containing the
point cloud, with information for each detected point,
including range, azimuth angle, and Doppler velocity. Vari-
ous settings and modes, such as different ranges, can be
selected for using the chirp configuration parameters. There
are settings for short-range (10m), midrange (30m), and
long-range (80m), albeit at the expense of a narrower field
of view. For indoor detection and tracking, we opted for a
range of 6m to maximize the resolution and view field.

For each of the data collection sites, the mmWave sensor
was mounted on a tripod and elevated to a height of 1.8 to
2m. The sensor is placed in the environment so that the field
of view covers the range r of 1 to 6 meters and an azimuth θ
of -60° to 60°, oriented towards the direction in which people
would enter the scene. Additionally, an HD camera was also
mounted on top of the millimeter-wave sensor to gather

Table 2: Comparison between the RKF and the EKF.

Algorithms
Total
frames

Number of
people

RMSE
Total time

(ms)

RKF 245 3 0.0471 62.5

EKF 245 3 0.0488 281.3
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Figure 10: cTracker GUI and camera screenshots at the experimental sites: (a) 2 people sitting; (b) 4 people walking; (c) large group; (d) 2
people sitting; (e) 4 people walking; (f) large group.
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ground truth information and recording. Figure 7 shows the
sensor setup at the different data collection sites. We use data
from the three sites to evaluate the methods and algorithms
described in the previous sections.

3.2. Evaluation of the Clustering and Referencing. To evaluate
the two clustering and referencing algorithms, we tested and
compared DBmeans against DBmedoids using a wealth of
data obtained from the one experiment site. Experiments
were conducted simulating various indoor activities. Data
were recorded simultaneously using the TI sensor as well as
a video camera, which was used to gather ground truth data.
The room was selected to maximize the full range of the sen-
sor. A 6m by 6m grid was drawn on the floor to contain the
experiment within the sensor range, which allowed us to con-
trol when people entered and left the site. The walking
activities were selected to test the clustering capabilities of
the sensor and to model real indoor scenarios.

Figure 8 shows an example frame of using the DBmeans
and DBmedoids algorithms separately. As can be seen, for
DBmeans, the centroids are reference locations of each clus-
ter, and for the DBmedoids, the centroids are the real refer-
ence points of each cluster. Table 1 also shows the
comparison between the DBmeans and the DBmedoids in
terms of average misclustering rate and processing time
(per frame) using the same total number of data sample
frames. In comparison, DBmeans achieves a better average
accuracy with 84.75% than DBmedoids with 82.70%. Addi-
tionally, DBmeans has a much lower processing time than
DBmedoids. Hence, we choose DBmeans as the clustering
algorithm of our system.

The density-based clustering algorithm we designed for
this task can manage variable cluster densities. Moreover,
this algorithm can also handle noise as well as DBSCAN.

3.3. Evaluation of the Tracking. To evaluate the RKF, we
compared the tracking accuracy and the processing time of
our method to EKF, which TI used.

For the RKF weighting matrix initialization and optimi-
zation, we ran through various options and got the best per-
forming combinations. The weighting matrices of the RKF
can be initialized as follows:

P0 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BBBBB@

1
CCCCCA
,Q =

0:2 0 0 0
0 0:2 0 0
0 0 0:2 0
0 0 0 0:2

0
BBBBB@

1
CCCCCA
, R = I:

ð5Þ

By contrast, the EKF is employed to track the same
objects. Figure 9 shows the filter results between RKF and
EKF using the experiment data set, and Table 2 shows the
comparison of the Root Mean Squared Error (RMSE) and
process timing (total frames) between the RKF and EKF.

As can be seen, both EKF and RKF can estimate unmea-
surable system states and smooth out the process/measure-
ment noise very well. However, in terms of algorithmic

complexity and time consumption, the RKF is much more
lightweight than the EKF of TI since the RKF does not need
to perform coordinate system conversion and calculate the
Jacobian matrix which contribute a lot of additional compu-
tational load to the system.

3.4. Evaluation of the Merged Process. To evaluate the merged
process for scalability and portability, we merged all the algo-
rithms into a tracking system called centroids-Tracker
(cTracker) to pars and present the raw point cloud data in real
time. Proof of concept for real-time application on a portable
embedded platform was demonstrated using a Raspberry Pi 4.
This feature’s challenge is to design the algorithm to be light-
weight enough, such that the processing time is less than each
frame’s duration. It was done by minimizing the algorithms’
timing complexity and writing the program in python with
efficient libraries, however, with the limitation of fewer librar-
ies being available on the Raspberry Pi. Efficient code strate-
gies include using lightweight libraries such as NumPy. It
provided us with a very quick run time.

Figure 10 presents part of the objects and the camera
ground truth. The black points represent the raw point data
returned by the mmWave sensor device at experimental sites,
and the colored circles represent the clustered and tracked
people. As can be seen, all movements, including the
walking/standing movements of people, were tracked and
represented.

Apart from the code successfully executing on the Rasp-
berry Pi 4, the embedded application’s performance in real
time also depends on the time complexity of algorithms.
Table 3 shows the average processing time (per frame) from
a different number of people with data samples between 1
and 5 people. As expected, an increase in the number of peo-
ple increases the number of points to be processed. More
importantly, run time with five people (a high processing
load) is below the 50ms (the frame rate of the mmWave sen-
sor) constraint ensuring consecutive frames are not missed.
Besides, our cTracker can track each person correctly, even
with some radar measurement data lost (see Figures 10(b)
and 10(e)).

The obvious benefit of the algorithm is the Kalman filter’s
implementation, as no measurement data input would result
in the Kalman filter predicting the missing people until they
reappear. Besides, if people’s data disappears for long
periods, the Kalman filter slowly moves people under their
predicted velocity, as predicted using the constant velocity
model. The prediction eventually estimates the person as
having left the room.

3.5. Comparison with TI System. Compared with the misclus-
tering TI system, Figure 11 shows the average misclustering

Table 3: Comparison between the number of people and time per
frame.

Data set Total frames Number of people Time per frame (ms)

RKF 245 3 62.5

EKF 245 3 281.3
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rate for different numbers of people (total 12917 frames). As
can be seen, our system’s misclustering rate is much lower
than TI’s between 1 and 5 people data sets. However, it also
displays that both general trends are increasing as the num-
ber of people increases. Since the number of people increases,
a higher proportion of objects begin occluding each other,
leading to a rise in errors. Additionally, missing data from
the sensor is another significant reason for increasing the
misclustering rate between both systems.

For tracking accuracy comparison, three data sets were
collected from a person walking at the position-known loca-
tion. We then ran those data sets through both our system
and the TI system and calculated the RMSE in the X and Y
directions. The location coordinate from the sensor is shown
in Table 4. Table 5 shows that our system’s average position
error was 0.2992 meters in location 1, 0.3271 meters in loca-
tion 2, and 0.3171 meters in location 3. In comparison, the TI
system’s average position error was 0.3283 meters, 0.3116
meters, and 0.3343 meters, respectively. The TI system was
relatively more accurate only at location 2.

4. Conclusion

In this paper, the indoor people detection and tracking sys-
tem is designed based on the proposed data process algo-
rithms. Our methodology processed in the order of static
clutter removal, clustering into clusters, and referencing to
identify the centroids, then tracking the centroids by using
a recursive Kalman filter (RKF). The experiments are set up
at three different data collection sites modelling various
indoor scenarios. Comparing with the TI system, our system
can detect and track each object more accurately. The pro-
cessing pipeline cycle is under 50ms (per frame), which can
work in real time on an embedded platform such as a
Raspberry Pi. Our future work consists of data fusion from
multiple mmWave radar sensors to increase the useful field
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Figure 11: Misclustering_TI_vs_cTracker.

Table 4: Marked ground truth for tracking accuracy comparison.

Location X (m) Y (m)

1 -2 3.8

2 1.2 4.2

3 1.5 2.8

Table 5: RMSE comparison between two systems.

Data set Total frames Systems RMSE X RMSE Y RMSE

Location 1 357 TI 0.3030 0.3518 0.3283

Location 1 357 cTracker 0.2630 0.3316 0.2992

Location 2 163 TI 0.2482 0.3641 0.3116

Location 2 163 cTracker 0.2496 0.3894 0.3271

Location 3 126 TI 0.4331 0.1895 0.3343

Location 3 126 cTracker 0.4218 0.1523 0.3171
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of view of the system and accuracy. Moreover, we will also
use deep learning approaches for tracking and classifying
various species objects.

Data Availability

The data used to support the findings of this study can be
freely accessed at https://github.com/has-c/Occupancy
Detection/tree/master/Data. The mmWave radar sensor
product is obtained from https://www.ti.com/tool/
IWR1642BOOST#technicaldocuments.
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