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This paper combines the distributed sensor fusion system with the signal detection under chaotic noise to realize the distributed
sensor fusion detection from chaotic background. First, based on the short-term predictability of the chaotic signal and its
sensitivity to small interference, the phase space reconstruction of the observation signal of each sensor is carried out. Second,
the distributed sensor local linear autoregressive (DS-LLAR) model is constructed to obtain the one-step prediction error of
each sensor. Then, we construct a Bayesian risk model and also obtain the corresponding conditional probability density
function under each sensor’s hypothesis test which firstly needs to fit the distribution of prediction errors according to the
parameter estimation. Finally, the fusion optimization algorithm is designed based on the Bayesian fusion criterion, and the
optimal decision rule of each sensor and the optimal fusion rule of the fusion center are jointly solved to effectively detect the
weak pulse signal in the observation signal. Simulation experiments show that the proposed method which used a distributed
sensor combined with a local linear model can effectively detect weak pulse signals from chaotic background.

1. Introduction

In recent years, with the development of computers, modern
signal processing, and sensor technology, multisensor fusion
technology has become a research focus in the field of infor-
mation processing, and it is widely used in military and civil
fields [1–3]. Compared with the general signal processing
technology, multisensor information fusion technology is a
higher-level comprehensive decision-making process based
on multisensor measurement results. A multisensor fusion
detection system can be arranged in either a centralized or dis-
tributed fashion [4]. The fusion center of the centralized sys-
tem directly performs optimal detection on the observation
signals received and transmitted by each sensor, but this sys-
tem has greater limitations. In the distributed system, the
fusion center makes the final judgment on the local judgments
made by each sensor on the observation signal; thus, the reli-
ability and survivability of the system are improved while
reducing the requirements for communication bandwidth.

At present, distributed information fusion has been paid
close attention to by scholars domestically and internation-
ally. An optimal sensor decision rule based on a two-sensor

distributed detection problem under fixed fusion rules was
proposed by Tenney and Sandell in 1981 [5]. Chair and
Varshney proposed an optimization method for fusion rules
when the sensor decision rules were fixed [6]. In order to
jointly solve the decision rules and fusion rules, a design
method of the global optimization detection fusion system
was proposed by Reibman and Nolte in 1987 [7]. In order
to further improve the detection performance of the fusion
system, a series of new optimal fusion algorithms based on
covariance, large deviation analysis, least square fusion rules,
and Rao test [8–12] of the distributed detection fusion system
are proposed. In recent years, many scholars have introduced
a neural network [13], Kalman filter [14–16], and (general-
ized) likelihood ratio (GLRT) [17–20] into sensor systems
to realize signal detection in various fields. All the above
researches assume that the noise obeys a certain distribution
and lack the research on chaotic noise background combined
with phase space reconstruction.

The main problem of signal processing under chaotic
phenomena is signal detection and recovery, which is widely
used in the fields of communication, fault diagnosis, biomed-
icine, and earthquake monitoring [21–25]. Signal detection
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and recovery in the chaotic background is a method based on
a nonlinear system. Scholars domestically and internationally
have put forward a series of studies. Xing et al. introduced the
support vector machine prediction method of empirical
mode decomposition theory with the help of a particle swarm
algorithm [26]. Gao et al. used the sensitivity of chaotic sys-
tems to parameter perturbation and immunity to noise to
construct Duffing [27, 28] chaotic oscillator detection; the
detection of weak signals is realized by the device [29]. Li
et al. proposed a method for measuring the frequency of
weak signals under the background of strong noise in the
chaotic synchronization system [30]. Some researchers estab-
lished a series of models to detect and restore signal from
chaotic background, such as local linear autoregressive
model, dual local linear model, and variable coefficient
regression model [31–33]. But the above studies only con-
sider the signal detection of a single sensor and lack research
based on the detection of distributed fusion systems.

In order to improve the accuracy and reliability of sig-
nal detection, this paper used a coupled local linear model
with distributed sensors to perform fusion detection of
pulse signals from the background of chaotic noise. Phase
space reconstruction (PSR) is firstly used to extract more
effective information from the observation sequence. For
subsequent distributed fusion, the distributed sensor local
linear autoregressive (DS-LLAR) model based on the
reconstructed sequence is established to obtain one-step
prediction error. Here, we estimate the distribution of
one-step prediction error according to least squares. Then,
we establish an error risk model based on the Bayes crite-
rion and determine the optimal fusion detection algorithm
of the distributed sensor system according to the mini-
mum Bayes risk criterion; that is, the optimal fusion rule
and the decision rule are jointly obtained to determine
whether the detection signal exists.

The structure of this paper is organized as follows. The
second part introduces the distributed fusion system and its
hypothesis testing in chaotic background. In the third part,
we not only introduce the distributed detection model under
chaotic noise and use phase space reconstruction to peel off
the chaotic noise but also establish the distributed detection
fusion model under the Bayesian criterion. A series of simu-
lation results are reported in the fourth part. The conclusion
of this paper is given in the fifth part.

Here is the explanation of the main notation in this
article. yiðtÞði = 1, 2,⋯, KÞ is the observation signal of the
ith sensor, ~xiðtÞ is the chaotic noise signal of the ith sensor,
sðtÞ is the weak pulse signal and is independent of the cha-
otic noise signal ~xiðtÞ, niðtÞ denotes the white noise with a
mean value of 0, and xiðtÞ denotes the sum of the chaotic
signal ~xiðtÞ and white noise niðtÞ. uiðtÞ represents the result
of the decision made on the corresponding observation at
time t. yiðt : τ,mÞ represents the weight of each sensor
through the phase space construction of the observation
value after adding the time delay order τ and the embed-
ding dimension m, and eiðtÞ represents the prediction error
of each sensor after the DS-LLAR model fitting. The prob-
ability of detection is PD,i, and the probability of false alarm

is PF,i. Pf
D and Pf

F , respectively, represent the detection

probability and false alarm probability of the fusion system.
RB is the Bayes risk.

2. Description of Concepts

2.1. Distributed Fusion System. The detection fusion system
of parallel distributed structure is composed of a fusion
center and K detecting sensors (DS), as shown in
Figure 1, where yiðtÞði = 1, 2,⋯, KÞ represents the observa-
tion of each sensor on the same target at time t, uiðtÞði
= 1, 2,⋯, KÞ represents the result of the decision made
on the corresponding observation at time t, and u0ðtÞ rep-
resents the final decision result made by the fusion center
after fusing the decision of each sensor at time t. uiðtÞ = 1
means that the judgment result of the ith sensor at time t
is that the signal exists, uiðtÞ = 0 means that the judgment
result of the ith sensor at time t is that the signal does not
exist, u0ðtÞ = 0 means that the decision result of the fusion
center at time t is that the signal does not exist, and u0ð
tÞ = 1 means that the decision result of the fusion center
at time t is that the signal exists. This article assumes that
the sensors are independent of each other.

2.2. Distributed Inspection Problem of Chaotic Background.
The problem of using multisensor fusion to detect weak pulse
signals from chaotic background can be abstracted into the
following hypothesis testing problem:

H0 : yi tð Þ = ~xi tð Þ + ni tð Þ = xi tð Þ
H1 : yi tð Þ = ~xi tð Þ + s tð Þ + ni tð Þ = xi tð Þ + s tð Þ

i = 1, 2,⋯,Kð Þ,

ð1Þ

where yiðtÞ is the observation signal of the ith sensor, ~xiðtÞ is
the chaotic noise signal of the ith sensor, sðtÞ is the weak
pulse signal and is independent of the chaotic noise signal
~xiðtÞ, niðtÞ denotes the white noise with a mean value of 0,
and xiðtÞ denotes the sum of the chaotic signal ~xiðtÞ and
white noise niðtÞ.

Since the weak impulse signal sðtÞ is submerged in the
chaotic noise signal ~xðtÞ, if the hypothesis test is performed
directly using equation (1), it is impossible to detect whether
the observation signal yðtÞ contains sðtÞ. Therefore, it is first
necessary to remove the interference of the chaotic noise sig-
nal ~xðtÞ and convert the hypothesis test problem of formula
(1) into the following:

H∗
0 : yi tð Þ − ~xi tð Þ = ni tð Þ

H∗
1 : yi tð Þ − ~xi tð Þ = s tð Þ + ni tð Þ

i = 1, 2,⋯,Kð Þ : ð2Þ

In the fusion detection problem of distributed parallel
architecture, the decision results made by each sensor
and the fusion center are a binary value. When H∗

0 is true,
the judgment results of the sensor and the fusion center
are both 0, which means that there is no signal.
WhenH∗

1 is true, the judgment results of the sensor and
the fusion center are both 1, which means that there is a
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signal. Equation (2) is transformed into the following
hypothesis testing problem:

~H0 : ui = 0
~H1 : ui = 1

i = 1, 2,⋯,Kð Þ : ð3Þ

3. Distributed Sensor Detection Model

3.1. Stripping Chaotic Noise. Each sensor needs to reconstruct
the phase space of the observation signal and then establish a
single step prediction DS-LLAR model for the observation
signal to obtain the prediction error.

3.1.1. Phase Space Reconstruction Theory. According to
Takens’ theorem [34], for k sensors, each observation
sequence fyiðtÞgðt = 1, 2,⋯, n ; i = 1, 2,⋯, kÞ. A phase space
with m dimension can be constructed by introducing the
time delay order τ and embedding dimension m. For the ith
sensor, the reconstructed phase space state vector is YiðtÞ =
ðyiðtÞ, yiðt − τÞ,⋯, yiðt − ðm − 1ÞτÞÞ′, where t = n1, n1 + 1,
⋯, n ; n1 = 1 + ðm − 1Þτ. For any phase point in the recon-
structed phase space, we can find a smooth mapping g such
that yiðt + 1Þ = gðYiðtÞÞðt = n1, n1 + 1,⋯, n − 1Þ. According
to Cao’s method [35], the corresponding τ and m can be
obtained.

3.1.2. DS-LLAR Model.

yi t + 1ð Þ ≈ g Yi tð Þð Þ, ð4Þ

g Yi tð Þð Þ = 〠
m

j=1
bi,j tð Þyi t − j − 1ð Þτð Þ = θi′ tð ÞYi tð Þ, ð5Þ

where θi′ðtÞ = ðbi,1ðtÞ, bi,2ðtÞ,⋯, bi,mðtÞÞ′. For the ith sensor,
there is a similar evolution law between any phase point in
the reconstructed phase space and other phase points around
it. The closer the distance is, the greater the degree of evolu-
tion similarity is. Therefore, the Euclidean distance is used to

determine the q adjacent points, and the Gaussian kernel
function is introduced to control the influence of the farther
points on the model. The least square estimation is used to

estimate bθ iðtÞ.

min 〠
q

m=1
yi tm + 1ð Þ − g Yi tmð Þð Þ½ �2Ki,h ui,mð Þ

=min 〠
q

m=1
yi tm + 1ð Þ − θi′ tð ÞYi tmð Þ
h i2

Ki,h ui,mð Þ,
ð6Þ

where Ki,hðui,mÞ = ð1/hÞKiðui,m/hÞ, ui,m = dðYi,MðtmÞ, Yi,MðtÞ
Þ, Kiðui,mÞ = ð1/ ffiffiffiffiffiffi

2π
p Þ exp f−ððui,mÞ2/2Þg, m = 1, 2,⋯, q,

and Wi = diag ðKi,hðui,1, ui,2,⋯, ui,mÞÞq×q. The weight

between adjacent points is updated by changing the window
width h.

Set

Y1 =

yi t1ð Þ yi t1 − τð Þ ⋯ yi t1 − m − 1ð Þτð Þ
yi t2ð Þ yi t2 − τð Þ ⋯ yi t2 − m − 1ð Þτð Þ
⋮ ⋮ ⋮ ⋮

yi tq
� �

yi tq − τ
� �

⋯ yi tq − m − 1ð Þτ� �

26666664

37777775
q×m

=

Xi,M t1ð Þ
Xi,M t2ð Þ

⋮

Xi,M tq
� �

26666664

37777775,

~Y1 tð Þ = yi t1 + 1ð Þ, yi t1 + 2ð Þ,⋯,yi ti + 1ð Þð Þ′, ð7Þ

then, generalized degrees of freedom can be expressed as

D̂i = tr Yi Xi ′WiXi

� �−1�
Xi ′Wi

� �
,

bσ2
GDFi =

~Yi − ~Y∧i

� �′ ~Yi −
b~Y i

� �
q − D̂i

, ð8Þ

through minimizing bσ2
GDFi to obtain the window width h

[36].
The local weighted least square method is used to obtain

the parameters of formula (6):

bθ i tð Þ = Xi ′WiXi

� �−1
Xi ′Wi

�
~Yi tð Þ: ð9Þ

By substituting bθi ðtÞ into equation (5), the single-step
prediction gðYiðtÞÞ is obtained, and then, the prediction
error eiðt + 1Þ is also obtained:

ei t + 1ð Þ = yi t + 1ð Þ − g Yi tð Þð Þ: ð10Þ

Phenomenon

• ••••

y1 (t) y2 (t) y
K
 (t)

u1 (t) u2 (t)

u0 (t)

u
K
 (t)

DS 1 DS 2 DS K

Fusion center

Figure 1: General sequence detection fusion system with
distributed structure.

3Journal of Sensors



It is easy to verify that the existence of the prediction
error is mainly due to the existence of the weak pulse signal.
The hypothesis test problem for the ith sensor is

H0 : yi tð Þ = ~xi tð Þ + ni tð Þ = xi tð Þ,

H1 : yi tð Þ = ~xi tð Þ + s tð Þ + ni tð Þ = xi tð Þ + s tð Þ, ð11Þ

where xiðtÞ = ~xiðtÞ + niðtÞ. When H0 is established, perform
the phase space reconstruction on the ith sensor observation
value YiðtÞ; then, there is

Yi tð Þ = yi tð Þ, yi t − τð Þ,⋯, yi t − m − 1ð Þτð Þð Þ′ = Xi tð Þ + S tð Þ,

Xi tð Þ = xi tð Þ, xi t − τð Þ,⋯, xi t − m − 1ð Þτð Þð Þ′,

S tð Þ = s tð Þ, s t − τð Þ,⋯, s t − m − 1ð Þτð Þð Þ′: ð12Þ

Since local linear autoregression yiðt + 1Þ = gðYiðtÞÞ =
∑m

j=1bi,jðtÞyiðt − ðj − 1ÞτÞ = θi′ðtÞYiðtÞ, the prediction error
can be verified:

ei t + 1ð Þ = yi t + 1ð Þ − g Yi tð Þð Þ
= xi t + 1ð Þ + s t + 1ð Þ + ni t + 1ð Þ − g Xi tð Þð Þ

− g S tð Þð Þ − g Ni tð Þð Þ
= s t + 1ð Þ − g S tð Þð Þ + εi t + 1ð Þ,

ð13Þ

where εiðt + 1Þ = ~xiðt + 1Þ − gð~XiðtÞÞ and sðt + 1Þ − gðSðtÞÞ
are independent of each other. Here, we assume that εiðtÞ
does not affect the detection because its independence and
large fitting error are produced by sðt + 1Þ − gðSðtÞÞ.
3.2. Detection Fusion Model under the Bayesian Criterion.
The problem of distributed multisensor detection fusion
is to find a set of optimal rules to achieve the best perfor-
mance of the fusion system. The optimization goal of the
optimal distributed detection fusion system is to find a
system decision rule that minimizes the Bayes risk of the
fusion system.

3.2.1. Chaotic Noise Distributed Fusion System. The distrib-
uted fusion system under chaotic noise is shown in
Figure 2, where yiðtÞði = 1, 2,⋯,KÞ represents the original
observation value of each sensor, yiðt : τ,mÞði = 1, 2,⋯,KÞ
represents the weight of each sensor through the phase space
construction of the observation value after adding the time
delay order τ and the embedding dimension m, and eiðtÞði
= 1, 2,⋯,KÞ represents the prediction error of each sensor
after the DS-LLAR model fitting.

Record the conditional probability density function of
the ith sensor observation eiðtÞ as f iðeiðtÞ ∣HjÞði = 1,⋯, k ; j
= 0, 1Þ. The probability of detection is PD,i, and the probabil-

ity of false alarm is PF,i. P
f
D and P

f
F , respectively, represent the

detection probability and false alarm probability of the fusion
system. Among them, f iðeiðtÞ ∣HjÞ obeys the normal distri-
bution, and the proof is as follows:

ei t + 1ð Þ = yi t + 1ð Þ − g Yi tð Þð Þ = yi t + 1ð Þ − θi′ tð ÞYi tð Þ

= yi t + 1ð Þ − 〠
m

j=1
bi,j tð Þyi t − j − 1ð Þτð Þ, ð14Þ

where yiðt + 1Þ ~Nð~xiðt + 1Þ, σ2Þ and yiðt − ðj − 1ÞτÞ ~Nð~xi
ðt − ðj − 1ÞτÞ, σ2Þ, and they are independent of each other.
Therefore,

ei t + 1ð Þ ~N ~xi t + 1ð Þ − 〠
m

j=1
bi,j tð Þ~xi t − j − 1ð Þτð Þ

 !
, 1 +mð Þσ2

 !
:

ð15Þ

Given the prior probability P0 = PðH0Þ, P1 = PðH1Þ,
useCnj to denote the cost when Hj is true but the judgment
isHn. The Bayes risk of the fusion system can be expressed as

RB = 〠
1

n=0
〠
1

j=0
CnjPjP u0 = n ∣Hj

� �
: ð16Þ

As a result of Pðu0 = n ∣H1Þ = ðPf
DÞ

nð1 − Pf
DÞ

1−n
, Pðu0 =

n ∣H0Þ = ðPf
FÞ

nð1 − Pf
FÞ

1−n
, we simply organize formula (16)

to get

RB = 〠
1

n=0
〠
1

j=0
CnjPjP u0 = n ∣Hj

� �
= CFP

f
F − CDP

f
D + C, ð17Þ

Phenomenon

PSR PSR PSR

DS-LLAR DS-LLAR DS-LLAR

DS 1 DS 2 DS K

Phenomenon

y1 (t) y2 (t) y
K
 (t)

y1 (t:𝜏,m) y2 (t:𝜏,m) y
K
 (t:𝜏,m)

e1 (t) e2 (t) e
K
 (t)

u1 (t) u2 (t)

u0 (t)

u
K
 (t)

Figure 2: Distributed fusion system in chaotic background.
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where

CF = C10 − C00ð ÞP0,

CD = C01 − C11ð ÞP1,

C = C00P0 + C01P1:

8>><>>: ð18Þ

Due to Pf
D = Pðu0 = 1 ∣H1Þ, Pf

F = Pðu0 = 1 ∣H0Þ, we have

Pf
D =〠

u

P u0 = 1 ∣ uð ÞP u ∣H1ð Þ,

Pf
F =〠

u

P u0 = 1 ∣ uð ÞP u ∣H0ð Þ:
ð19Þ

Among them, u is a vector composed of the decision
results made by each sensor, which only contains two ele-
ments of 0 and 1. So we can get

RB = C +〠
u

P u0 = 1 ∣ uð Þ CFP u ∣H0ð Þ − CDP u ∣H1ð Þ½ �:

ð20Þ

It can be seen from equation (17) that the Bayes risk is
determined by the decision rules of each sensor and the
fusion rules of the fusion center. That is, to minimize the
Bayes risk of the fusion center, the optimal fusion rule of
the fusion center and the optimal decision rule of each sensor
are required.

3.2.2. Distributed Detection Fusion Algorithm under the
Bayes Criterion

(1) Optimal Fusion Rules. Assuming that the decision rules of
each sensor are known, to minimize the Bayes risk RB, then
the conditional probability should satisfy

P u0 = 1 ∣ uð Þ =
1, if CFP u ∣H0ð Þ < P u ∣H1ð Þ,
0, if CFP u ∣H0ð Þ ≥ P u ∣H1ð Þ:

(
ð21Þ

That is,

u0 =
1, if CFP u ∣H0ð Þ < P u ∣H1ð Þ,
0, if CFP u ∣H0ð Þ ≥ P u ∣H1ð Þ:

(
ð22Þ

Hence, we can obtain the optimal fusion rule for the
fusion center:

P u ∣H1ð Þ
P u ∣H0ð Þ

H1

>
<

H0

C10 − C00ð ÞP0
C01 − C11ð ÞP1

: ð23Þ

(1) Optimal Decision Rule. Assume that the fusion rule of
the fusion center has been determined; that is, Pðu0 = 1 ∣
uÞ is known. If you want to minimize the Bayes risk func-
tion value of the fusion system, you want to know the

decision rules of each sensor. Obtain the optimal decision
rule of the ith sensor, denote ~ui = ðu1, u1,⋯,ui−1, ui+1,⋯,
uKÞ, which is determined by the false alarm probability

of the fusion system Pf
F , and the detection probability Pf

D
can be obtained.

Pf
F =〠

~ui
P u0 = 1 ∣ ~ui, ui = 0ð ÞP ~ui ∣H0ð Þ

+〠
~ui
A ~uið ÞP ~ui, ui = 1 ∣H0ð Þ,

Pf
D =〠

~ui
P u0 = 1 ∣ ~ui, ui = 0ð ÞP ~ui ∣H1ð Þ

+〠
~ui
A ~uið ÞP ~ui, ui = 1 ∣H1ð Þ:

ð24Þ

By substituting into equation (17), we can get

RB = CF〠
~ui
A ~uið ÞP ~ui, ui = 1 ∣H0ð Þ

− CD〠
~ui
A ~uið ÞP ~ui, ui = 1 ∣H1ð Þ + Ck:

ð25Þ

Among them,

A ~uið Þ = P u0 = 1 ∣ ~ui, ui = 1ð Þ − P u0 = 1 ∣ ~ui, ui = 0ð Þ½ �,

Ck = CF〠
~ui
P u0 = 1 ∣ ~ui, ui = 0ð ÞP ~ui ∣H0ð Þ

− CD〠
~ui
P u0 = 1 ∣ ~ui, ui = 0ð ÞP ~ui ∣H1ð Þ + C:

ð26Þ

Since each sensor makes independent judgments, then

P ~ui, ui = n ∣Hj

� �
=
ð
ei

P ~ui ∣ ei,Hj

� �
P ui = n ∣ eið Þf Ei

� ei ∣Hj

� �
dei , n, j = 0, 1,

P ~ui ∣ ei,Hj

� �
= P ~ui ∣Hj

� �
: ð27Þ

Therefore, the Bayes risk function of the fusion system
can be expressed as

RB =
ð
ei

P ui = 1 ∣ eið Þ CF〠
~ui
A ~uið ÞP ~ui ∣H0ð Þf Ei

ei ∣H0ð Þ
(

− CD〠
~ui
A ~uið ÞP ~ui ∣H1ð Þf Ei

ei ∣H1ð Þ
)
dei + Ck:

ð28Þ
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To minimize the Bayes risk of the fusion system, the
conditional probability in (25) needs to satisfy

This condition is equivalent to

Then, get the optimal decision rule of the ith sensor:

f Ei
ei ∣H1ð Þ

f Ei
ei ∣H0ð Þ

H1

>
<

H0

CF∑~uiA ~uið ÞP ~ui ∣H0ð Þ
CD∑~uiA ~uið ÞP ~ui ∣H1ð Þ : ð31Þ

3.3. Detection FusionModel under the Bayesian Criterion.We
now outline the algorithm.

(Step 1) Reconstruct the phase space of each sensor
observation sequence fyiðtÞgðt = 1, 2,⋯, n ; i =
1, 2,⋯, kÞ, and embed the dimension m and
the time delay order τ.

(Step 2) Calculate the Euclidean distance, and select q
neighboring points of yiðtÞ in the reconstruction
space.

(Step 3) Establish a DS-LLAR model, estimate bθ iðtÞ
using the local weighted least square method,
and obtain the forward prediction error eiðtÞ of
each sensor.

(Step 4) Use the least square method to estimate the
mean and variance of eiðtÞ, and obtain the con-
ditional probability density function f iðei ∣HjÞð
i = 1,⋯, k ; j = 0, 1Þ of the ith sensor.

(Step 5) Establish a Bayes risk model RB, and obtain the
optimal judgment rule and fusion rule based
on the Byes risk minimum criterion. The steps
to solve the optimal rule are as follows:

(Step 1) The initialization condition is to set the
Bayes decision threshold of each sensor
as T0

i and P0ðu ∣H0Þ, P0ðu ∣H1Þ.

(Step 2) Set the loop variable n and the termina-
tion control amount e > 0, and estimate
the Bayes fusion criterion P1ðu0 = 1 ∣ uÞ
and the corresponding R1

B.

(Step 3) Calculate the new threshold value Tl
i, Að

~uiÞ, Pð~ui ∣H0Þ, Pð~ui ∣H1Þ, and Plðu0 =
1 ∣ uÞ.

(Step 4) Calculate the Bayes riskRl+1
B for the ðl + 1Þ

th iteration.

4. The Experimental Simulation and
Result Analysis

In order to verify the effectiveness of multisensor detec-
tion fusion, four simulation experiments are carried out
in this paper. In the experiments in this article, it is
assumed that the three sensors are independent of each
other and have the same performance. For the three sen-
sors, the Lorenz system is used to generate the chaotic
noise background signal. The white noise obeys the nor-
mal distribution with the mean value of 0, and the vari-
ance is 0.5, 0.6, and 0.4, respectively. Use the signal-to-
noise ratio (SNR, SNR = 10 log ðσ2

s /ðσ2x + σ2nÞÞ) to measure
the detection threshold.

The iterative equation of the Lorenz system is as follows:

_η = σ y − ηð Þ,
_y = −ηz + rη − y,

_z = ηy − bz:

8>><>>: ð32Þ

Among them, η, y, and z are time functions. Set the
parameters σ = 10, b = 8/3, and r = 28. Supposing the

P ui = 1 ∣ eið Þ =
1, if CF〠

~ui
A ~uið ÞP ~ui ∣H0ð Þf Ei

ei ∣H0ð Þ < CD〠
~ui
A ~uið ÞP ~ui ∣H1ð Þf Ei

ei ∣H1ð Þ,

0, others:

8<: ð29Þ

ui =
1, if CF〠

~ui
A ~uið ÞP ~ui ∣H0ð Þf Ei

ei ∣H0ð Þ < CD〠
~ui
A ~uið ÞP ~ui ∣H1ð Þf Ei

ei ∣H1ð Þ,

0, others:

8<: ð30Þ
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initial conditions η = 1, y = 1, z = 1, and sampling time t
= 0:01, using the fourth-order Runge-Kutta method gener-
ates 10000 data points, and the first component is taken as
chaotic background and recorded as xðtÞ. For the three
sensors, the first 3300, 2800, and 3000 points are dis-
carded, respectively, and 4000 continuous time points in
the middle are selected as the chaotic background. Use
the complex autocorrelation method and Cao’s method
to determine the delay time τ = 7 and the embedding
dimension m = 6 of yiðtÞði = 1, 2, 3Þ. We sort out the
parameter settings in Table 1.

4.1. Experiment 1: Bayes Risk Comparison under Different
Signal-to-Noise Ratios. In this experiment, four different
signal-to-noise ratios (-70.0998dB, -61.8538dB, -58.4526dB,
and -43.0624dB) are selected to compare the Bayes risk of dis-
tributed sensor detection and fusion.

(1) Assume that the pulse signal is a single pulse signal,
that is, sðtÞ = a1s1ðtÞ, a1 = 5:

s1 tð Þ =
1, t = 410,820,1230,⋯,

0, others:

(
: ð33Þ

Generate a time series with a length of 4000, written as
fsðtÞ, t = 1, 2,⋯,4000g; at this time, SNR = −70:0998 dB.
The DS-LLAR model is used to fit the signal to obtain the
one-step prediction error. Then, the parameter estimation
method is used to obtain the conditional probability density
function of the prediction error. Finally, a distributed sensor
fusion simulation is performed.

(2) Assume that the pulse signal is a superimposed signal
of two periodic pulse signals, that is, sðtÞ = a1s1ðtÞ,
where a1 = 5:5:

s1 tð Þ =
1, t = 230,460,690,⋯,

0, others:

(
: ð34Þ

Generate a time sequence with a length of 4000, marked
as fsðtÞ, t = 1, 2,⋯,4000g; at this time, SNR = −61:8538 dB.
The steps are the same with assumption (1).

(3) Assume that the pulse signal is a superimposed
signal of two periodic pulse signals, that
is, sðtÞ = a1s1ðtÞ + a2s2ðtÞ, where a1 = 5, a2 = 6:

s1 tð Þ =
1, t = 250,500,750,⋯,

0, others,

(

s2 tð Þ =
1, t = 410,820,1230,⋯,

0, others:

(
:

ð35Þ

Generate a time sequence with a length of 4000, recorded
as fsðtÞ, t = 1, 2,⋯,4000g; at this time, SNR = −58:4526 dB.
The steps are the same with assumption (1).

(4) Assume that the pulse signal is a single pulse signal,
that is, sðtÞ = a1s1ðtÞ, a1 = 6:5:

s1 tð Þ =
1, t = 49,98,147,⋯,

0, others:

(
ð36Þ

Generate a time sequence with a length of 4000, recorded
as fsðtÞ, t = 1, 2,⋯,4000g; at this time, SNR = −58:4526 dB.
The steps are the same with assumption (1). The results are
shown in Figure 3.

It can be seen from Figure 3 that the Bayes risk of the
optimal fusion system and the sensor changes with the
change of the prior probability p0 (probability of no signal).
In Figure 3(a), when p0 = 0:2, the Bayes risk value of each
sensor reaches the maximum, while the Bayes risk of the
fusion center is very small. Figures 3(b)–3(d) are similar to
Figure 3(a). The Bayes risk value of each sensor is higher than
the Bayes risk value of the fusion center, which indicates that
the multisensor detection fusion can significantly reduce the
system Bayes risk.

4.2. Experiment 2: Distributed Sensor Fusion ROC Curve
under Different Models. In the same SNR, the ROC curve is
used to describe and evaluate the accuracy of the signal detec-
tion algorithm, which is suitable for the case of two categories
(with signal or without signal). The ROC curve is a compre-
hensive indicator of response sensitivity (true positive rate
(TPR)) and specificity (true negative rate (TNR)). The recog-
nition ability of the algorithm in the ROC curve is deter-
mined by its position and shape. The area under the curve

Table 1: Simulation parameters.

Sensor

Parameter
White noise

Lorenz system
Phase space reconstruction

Bayesian risk modelMean
value

Variance
Delay
time τ

Embedding
dimension m

1 0 0.5
σ = 10, b = 8/3, r = 28, η = 1, y = 1, z = 1, sampling

time t = 0:01 7 6
c00 = c11 = 0, c01 =

c10 = 12 0 0.6

3 0 0.4
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(AUC) is used to judge the authenticity of the detection
method and reflect the accuracy of the threshold.

Figure 4 shows the three models ((1) DS-LLAR, (2) dis-
tributed sensor linear model (DS-LM), and (3) chaos uncon-
sidered) when the signal-to-noise ratio is -58.4526 dB. The

following is ROC curve comparison chart of distributed sen-
sor fusion center.

From the results shown in Table 2, it can be seen that the
specificity of the DS-LLAR model is 1 and the sensitivity is
0.967, indicating that the discrimination accuracy is high
and there is no repetitive region between samples. At this
time, an AUC of 0.989 further indicates that the threshold
accuracy is higher. Although the sensitivity of the DS-LM
model is 0.996, the specificity is low, and the AUC value is
lower than 0.7 at this time, indicating that the accuracy of
the DS-LM model is not high; the specificity when chaos is
not considered is 0.800, but its sensitivity and AUC value
are both low, indicating that the accuracy is low without con-
sidering chaos. In other words, the DS-LLAR model has the
highest diagnostic accuracy.

4.3. Experiment 3: Comparison of Multisensor Detection
Fusion Performance under Different Models and Different
SNR. In order to compare the performance of multisensor
detection fusion when the SNR and the model are different,
this experiment uses four evaluation indicators: accuracy,
precision, recall, and F1 score to measure. The accuracy rate
can measure the overall accuracy of signal detection. The pre-
cision rate and recall rate can evaluate the performance of the
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Figure 3: Bayes risk map of three sensors and fusion centers under different SNR: (a) SNR = −70:0998 dB; (b) SNR = −61:8538 dB; (c)
SNR = −58:4526 dB; (d) SNR = −43:06236 dB.
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Figure 4: Comparison of ROC curves of different models.
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model. The precision rate indicates the proportion of targets
that are predicted to belong to the category in a certain cate-
gory, and the recall rate indicates the proportion of all cor-
rectly identified targets to all the targets that should be
identified. The F1 score is a comprehensive indicator of pre-
cision and recall, which can punish extreme situations.

Accuracy =
TP + TN

TP + FP + TN + FN
,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 score =
Precision ∗ Recall ∗ 2
Precision + Recall

: ð37Þ

In the formula, TP is the number of samples with signal
detected, FP is the number of samples with signal but not
detected with signal, FN is the number of samples with no
signal detected by mistake, and TN is the number of samples
with no signal and detected no signal.

The results of Tables 3–6 show that under the four SNR,
the accuracy of the multisensor detection fusion after fitting
by the local linear model and the linear model is higher than
98%. When the SNR is -70.0998 dB and -61.8538 dB, the
detection accuracy, recall rate, and F1 score of DS-LLAR fit-
ting are higher than those of DS-LM fitting, and at this time,
the linear model did not detect the correct signal. When the
SNR is -58.4526 dB, the accuracy of the detection after DS-
LLAR fitting is lower than that of DS-LM, and the recall rate
(0.04) and F1 score (0.0769) of DS-LM are far lower than the
recall rate (0.6) and F1 score (0.6122) of DS-LLAR. When the
SNR is -43.06236 dB, the detection accuracy of DS-LLAR is
about 8% lower than that of DS-LM, but the recall rate and
F1 value are still higher than those of DS-LM. Among them,
the recall rate when the SNR is -43.0624 dB is relatively lower
than the F1 value. However, when signal detection is per-
formed directly without considering chaos, the recall rate is
high, but the accuracy, precision, and F1 score evaluation
indicators are low; hence, the detection effect is extremely
poor. In conclusion, the performance of multisensor detec-
tion fusion after DS-LLAR fitting is the best.

4.4. Experiment 4: The Computational Complexity of the Two
Methods Is Compared. The sample size is set as an arithmetic
sequence from 10000 to 910000, with a tolerance of 100000.
The median time of 100 simulations for each sample size is
tested as the running time standard of the model under the

sample size. The computational complexity of the two
methods is oðnÞ. According to Table 7 and Figure 5, compar-
ing the computational time of the two methods, the compu-
tational time increases linearly with the increase in sample
size, and the order of magnitude and growth speed of the lin-
ear model is faster than that of the local linear model. There-
fore, the local linear model is better.

5. Conclusions

Combined with the short-term predictability of chaotic time
series and the sensitivity to small disturbances, based on the
DS-LLAR algorithm, this paper proposes a distributed sensor
fusion method to detect impulse signals under the back-
ground of chaotic noise. From the experimental results, we
can draw the following conclusions: (1) The DS-LLAR model

Table 2: Comparison of TPR, TNR, and AUC of different models.

Model
Index

TPR TNR AUC

DS-LLAR 1.000 0.967 0.989

DS-LM 0.280 0.996 0.638

Chaos unconsidered 0.800 0.275 0.543

Table 3: SNR = −70:0998 dB detection effect under different
models.

Model
Index

Accuracy Precision Recall F1 score

DS-LLAR 0.9982 0.5833 0.7778 0.6667

DS-LM 0.9977 Nan 0 Nan

Chaos unconsidered 0.1062 0.0020 0.7778 0.0039

Note: Nan is generated when the denominator is 0, because the system does
not detect the correct signal.

Table 4: SNR = −61:8538 dB detection effect under different
models.

Model
Index

Accuracy Precision Recall F1 score

DS-LLAR 0.9965 0.5883 0.5883 0.5883

DS-LM 0.9957 Nan 0.0000 Nan

Chaos unconsidered 0.1118 0.0048 1.0000 0.0096

Table 5: SNR = −58:4526 dB detection effect under different
models.

Model
Index

Accuracy Precision Recall F1 score

DS-LLAR 0.9952 0.6250 0.6000 0.6123

DS-LM 0.9939 1.0000 0.0400 0.0769

Chaos unconsidered 0.1118 0.0062 0.8800 0.0123

Table 6: SNR = −43:0624 dB detection effect under different
models.

Model
Index

Accuracy Precision Recall F1 score

DS-LLAR 0.9836 0.8077 0.2593 0.3925

DS-LM 0.9813 0.8889 0.0988 0.1778

Chaos unconsidered 0.1294 0.0210 0.9136 0.0411
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can strip chaotic noise well, and when combined with the dis-
tributed sensor fusion system, the Bayes risk of the system
can be minimized. (2) According to the results of the ROC
curve, the accuracy of the fusion center detection algorithm
under the DS-LLAR model is the highest. (3) Compared with
other models under different SNR, it is more intuitive to
show that the prediction error of the DS-LLAR model after
fitting can make the detection performance of the distributed
sensor system reach the best. (4) The computational com-
plexity of DS-LLAR is better. In the future, we will continue
to explore the influence of the prediction error of the DS-
LLAR model on the subsequent construction of the detection
model, so as to achieve a lower SNR threshold. We will con-
tinue to explore the application of the DS-LLARmodel in sig-
nal detection under different chaotic backgrounds and
compare it with the machine learning method, so as to extend
this model to other signal detection.
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