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In recent years, with the development of wearable sensor devices, research on sports monitoring using inertial measurement units
has received increasing attention; however, a specific system for identifying various basketball shooting postures does not exist thus
far. In this study, we designed a sensor fusion basketball shooting posture recognition system based on convolutional neural
networks. The system, using the sensor fusion framework, collected the basketball shooting posture data of the players’ main
force hand and main force foot for sensor fusion and used a deep learning model based on convolutional neural networks for
recognition. We collected 12,177 sensor fusion basketball shooting posture data entries of 13 Chinese adult male subjects aged
18–40 years and with at least 2 years of basketball experience without professional training. We then trained and tested the
shooting posture data using the classic visual geometry group network 16 deep learning model. The intratest achieved a 98.6%
average recall rate, 98.6% average precision rate, and 98.6% accuracy rate. The intertest achieved an average recall rate of 89.8%,
an average precision rate of 91.1%, and an accuracy rate of 89.9%.

1. Introduction

Basketball is one of the most popular sports with a large fan
base worldwide. As a competitive sport, basketball requires
two teams of players to use various technical actions to com-
pete with each other. A basketball game includes various
technical statistics, such as score, rebound, assist, block, and
steal, among which score is the central aspect that decides
which team is the winner and loser [1–3]. The score in a bas-
ketball match is accomplished through players shooting the
ball into the basket, and, thus, shooting plays an important
tactical role in this game.

In recent years, with the rapid development of wearable
sensor technology and the increased demand for basketball
worldwide, many researchers have used wearable devices
integrated with an internal measurement unit (IMU) to study
basketball shooting [4–6]. Bai et al. [7] used Microsoft Band
and weSport systems to collect data from two basketball
players on both attack and defense, and they used a support
vector machine (SVM) to effectively distinguish shooting

and defense in basketball games. Aacikmese et al. [8], using
an IMU placed on the arm, classified the six technical
movements (forward-backward dribbling, left-right drib-
bling, regular dribbling, two-handed dribbling, shooting,
and lay-up) in basketball by SVM. Zhao et al. [9] used four
IMUs placed on the left and right upper arms and forearms
to collect basketball technical movement data, using SVM
to identify dribbling, passing, catching, and shooting. These
studies, which use sensors on the arms, address basic
shooting postures but ignore composite shooting postures.
Composite shooting postures are shooting postures that
consist of a series of hand and foot movements [10]. It is
not sufficient to study composite shooting postures using
only arm sensor data.

Shooting is a technical movement that requires physical
coordination. In the shooting process, the movement of the
feet is as important as the movement of the arms [1, 10].
Shi et al. [11] used smart insoles integrated with IMUs to dis-
tinguish between dribbling, jumping, and turning around
during basketball. Peng et al. [12] also used smart insoles to
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study the sideslip, back, cross, jab, and jump steps in basket-
ball. These studies, which concern footstep movement in
basketball using smart insoles integrated with IMUs, provide
a basis for us to carry out research on composite shooting
postures.

After more than 100 years of development, basketball
has developed many complex and delicate technical move-
ments, such as shooting. Recognizing these technical move-
ments requires powerful recognition tools. SVM is a simple
and robust algorithm and is widely used in basketball tech-
nical movement recognition [7–9]. However, SVM requires
feature extraction and cannot be applied to large-scale train-
ing samples. Convolutional neural networks (CNNs) have
solved these problems. A convolutional neural network is
one of the representative algorithms of deep learning.
Research on CNNs started in the 1980s and 1990s. In the
twenty-first century, with the introduction of deep learning
and the development of computer hardware capable of sup-
porting deep learning, there has been a rapid development
of CNNs, and these CNNs have worked well in the fields
of computer vision and natural language processing [13–
15]. With the development of CNNs, many researchers have
studied sports using multiple IMUs combined with a CNN
model of deep learning. Lee et al. [16] used the CNN long
short-term memory model of deep learning to classify six
squat positions (one correct and five incorrect); Kautz
et al. [17] used a deep CNN to classify 10 types of beach
volleyball technical movements. The effectiveness of these
studies illustrates the great potential of deep learning
models based on CNNs in the field of sports technical
movement recognition.

Although there are many sports monitoring systems
based on IMUs [6, 18, 19], there is still no system based on
deep learning models to recognize a variety of basketball
shooting postures. This study proposes a sensor fusion
basketball shooting posture recognition system based on a
CNN to recognize multiple types of basketball shooting
postures. The main features of this study are as follows:

(1) A sensor fusion framework dedicated to basketball
shooting postures is designed to collect shooting
posture data and perform sensor data fusion

(2) 10 types of sensor fusion basketball shooting posture
datasets are established, which can be used in related
studies

(3) The 10 types of sensor fusion basketball shooting
posture datasets were trained and tested using the
classic visual geometry group network 16 (VGG16)
deep learning model based on CNN, and the results
verified the effectiveness of the deep learning model
in shooting posture recognition

The remainder of this paper is organized as follows.
Section 2 briefly summarizes the system framework and
methods of data collection, fusion, and classification. Section
3 presents the experiments and results. Section 4 discusses
the results of this study. Finally, conclusions are presented
in Section 5.

2. Materials and Methods

2.1. System Hardware and Software Design. The sensor fusion
basketball shooting posture recognition system consists of
two independent wireless sensor modules, a USB dongle,
and a laptop computer, as shown in Figure 1. The wireless
sensor module is composed of an IMU (mpu-9250, including
accelerometer and gyroscope) and a microcontroller unit
(MCU, Nordic nrf52832, including Bluetooth functionality).
The module is powered by an external 500mA 3.3V lithium
battery. The IMU is responsible for collecting the players’ raw
shooting posture data, including accelerometer data and
gyroscope data. The sampling rate was 100Hz, and the col-
lected data were transmitted to the MCU through I2C. The
MCU is the core component of the wireless sensor module
and is responsible for transmitting the raw shooting posture
data from the IMU to the USB dongle via Bluetooth. The
USB dongle includes Bluetooth and USB human interface
device (HID) functions; it is responsible for transmitting
the raw shooting posture data received from the wireless sen-
sor modules to a laptop through a USB HID. The laptop con-
tains a data-processing software developed by MATLAB,
which is responsible for receiving, displaying, and fusing
the raw shooting posture data to form the sensor fusion
basketball shooting posture datasets.

2.2. Sensor Fusion Framework. Consider right-handed
players as an example. When a basketball player shoots, his
right hand is the main force hand, and at the same time, his
left foot is the main force foot. The main force hand andmain
force foot perform the main tasks in basketball shooting.
They make the shooting postures stable and can best reflect
the characteristics of the shooting postures [10]. Therefore,
the posture data of the right hand and left foot of right-
handed players are key data. Correspondingly, the key data
of the left-handed players were generated from the left hand
and right foot. Modern basketball has several types of shoot-
ing posture. For basic shooting postures, the main force hand
sensor data reflects the characteristics of the shooting pos-
tures. For composite shooting postures, such as stop jump
shots and gather step shots, the main force hand sensor data
cannot fully reflect the characteristics of the postures. How-
ever, the main force hand sensor data fused with the main
force foot sensor data can fully reflect the characteristics of
composite shooting postures. Therefore, this study proposes
a sensor fusion framework for basketball shooting postures.
This framework collects accelerometer and gyroscope data
using wireless sensor modules placed on the main force hand
and the main force foot of the player. Then, the data are fused
to form the input of the deep learning model for shooting
posture classification. The sensor fusion framework pro-
posed in this study can classify a variety of complex shooting
postures without increasing the number of sensors.

As shown in Figure 2, the sensor fusion framework pro-
posed in this study consists of three steps: (1) shooting pos-
ture data collection, (2) data alignment and mergence, and
(3) data segmentation and exclusion. First, we synchronized
the two independent wireless sensor modules and placed
them on the player’s main force hand and main force foot.
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Then, we collected the shooting posture data, which contain
timestamps and transmit them to the laptop computer,
stored in two separate files. Because our sampling rate is
100Hz, the timestamp is in units of 10ms. Second, the data
in the two data files are aligned according to the timestamps
and merged into a sensor fusion data file, as shown in Algo-
rithm 1. File _H, file_F, and file_M represent the main force
hand sensor data file, main force foot sensor data file, and
sensor fusion data file, respectively. Owing to data loss in
the wireless sensor module and other reasons, the shooting
posture data of the main force hand and main force foot
did not match, and hence, the sensor fusion data frequency
suffered a loss of 1.17%. However, the frequency reduction
did not affect the recognition of shooting postures. Finally,
we divided the sensor fusion data file into independent

shooting posture data entries, removed the erroneous pos-
ture data, and stored them in the sensor fusion basketball
shooting posture dataset, as shown in Algorithm 2, where
matrix(i) represents the ith shooting posture data matrix.
We marked the data generated due to sensor misplacement
or incorrect shooting posture in the experimental stage and
deleted it in this stage. Thereafter, the sensor fusion basket-
ball shooting posture dataset was finally formed.

2.3. Classification Model. The VGG16 [20–22] deep learning
model based on CNN [23–25] is a model for image recogni-
tion proposed by the Visual Geometry Group of the
University of Oxford in 2014. This model participated in
the 2014 ImageNet Image Classification and Positioning
Challenge and achieved excellent results. Because the
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Figure 1: Sensor fusion basketball shooting posture recognition system.
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Figure 2: Sensor fusion framework.
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VGG16 deep learning model showed excellent performance
in image classification, and the VGG16 model with one-
dimensional convolution kernels had been used to classify
the one-dimensional data obtained by using the accelerome-
ter and gyroscope [26], in this study, we used the one-
dimensional convolution kernels VGG16 deep learning
model to classify sensor fusion basketball shooting postures.

The structure of the VGG16 deep learning model mainly
includes convolutional layer, max pooling layer, and fully
connected layer, as shown in Figure 3. The function of the
convolutional layer, which consists of several convolutional
units, is to extract different features of the input data. Adding
a greater number of convolutional layers means a greater
number of complex features can be extracted. The working
mode of the convolutional layer can be expressed by
Equations (1), (2), and (3):

D = f S ∗ Cð Þ, ð1Þ

S = S1, S2,⋯, Sm½ �T =
s11⋯s1n

⋮⋱⋮

sm1 ⋯ smn

2
664

3
775
m×n

, ð2Þ

C = CT
1 , CT

2 ,⋯, CT
k

� �
l×k l < nð Þ, ð3Þ

where S represents the vector of sample data, C represents the
vector of the convolution kernel, m is the number of sample
data, n is the number of input features, l is the length of the
convolution kernel, and k is the number of convolution
kernels. The result of the convolution operation of the ith
convolution kernel is shown in Equation (4).

Di =
S1 ∗ CT

i

 ⋮

Sm ∗ CT
i

2
664

3
775
m×n

, ð4Þ

where i = 1, 2, 3,⋯, k. Because we use padding, the width of
the vector after the convolution operation is n.

The max pooling layer is mainly used for reducing feature
dimensionality, compressing the number of data and param-
eters, reducing overfitting, and improving the fault tolerance
of the model. The working mode of the max pooling layer can
be expressed by Equations (5) and (6), where a is the stride.

Q =max pool Dð Þ = Q1,Q2,⋯,Qk½ �, ð5Þ

Qj =
Q11 ⋯ Q1 n−a+1ð Þ

⋮ ⋱ ⋮

Qm1 ⋯ Qm n−a+1ð Þ m× n−a+1ð Þ

: ð6Þ

The fully connected layer mainly plays the role of classifi-
cation, which is used to integrate and map the distributed fea-
ture representation extracted by the convolutional layer and
the max pooling layer to the sample label space. The output
of the fully connected layer is the final classification result.

The weight initialization of the convolutional layer and
fully connected layer uses the Kaiming method [27],
which can accelerate the convergence speed of the model.

1. Open file_H, file_F, and file_M
2. Send file_H first record to record_H, send file_F first record to record_F
3. while (file_H NOT end) AND (file_F NOT end) do
4. if record_H.timestamp == record_F.timestamp do
5. Merge record_H and record_F to file_M
6. Send file_H next record to record_H, send file_F next record to record_F
7. else if record_H.timestamp > record_F.timestamp do
8. Delete record_F, send file_F next record to record_F
9. else if record_H.timestamp < record_F.timestamp do
10. Delete record_H, send file_H next record to record_H
11. end if
12. end while
13. Close file_H, file_F, and file_M

Algorithm 1: Data alignment and mergence.

1. Open file_M
2. Send file_M first record to record_M
3. while file_M NOT end do
4. if record_M is shooting interval do
5. Delete record_M
6. else if record_M is shooting posture do
7. Send record_M to the shooting matrix(i)
8. if shooting posture is end do
9. if matrix(i) is not error do
10. Store matrix(i) to posture dataset
11. endif
12. Clear matrix(i)
13. end if
14. end if
15. Send file_M next record to record_M
16. end while
17. Close file_M

Algorithm 2: Data segmentation and exclusion.
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The Z-Score method [28], which can convert datasets of
different measurements into a unified measurement of Z
-Score for comparison, is adopted for data standardization.
The model uses the Adam optimizer [29], which has the

advantages of simple implementation, high calculation effi-
ciency, and lower memory requirements, and it is suitable
for large-scale data and parameter scenarios. It is often used
as the optimization algorithm for stochastic gradient descent
(SGD). The minibatch gradient descent algorithm adopted
for the model has the high speed of the SGD algorithm as well
as the stability of the batch algorithm, which is suitable for
deep learning models that need to process large amounts of
data [25]; in the proposed model, the batch size is set to 200.
The specific parameter settings are listed in Table 1.

3. Experimental Method and Results

3.1. Experimental Method. The study was conducted in
accordance with the Declaration of Helsinki, and the
protocol was approved by the IEC for Clinical Research of
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Figure 3: Structure of the visual geometry group network 16 (VGG16) deep learning model.

Table 1: Parameter settings of the visual geometry group network
16 (VGG16) deep learning model.

Parameters Value

CNN layer weight initialization Kaiming

Full connection layer weight
initialization

Kaiming

Data standardization Z-Score

Optimizer Adam

Initial learning rate 1E-3

Loss function Cross entropy

Network layer activation function
Rectified linear unit

(ReLU)

Pooling method Maximum pooling

Training rounds 20

Dropout rate 0.5

Batch size 200

Padding [1]

Table 2: Characteristics of the subjects.

Parameters Values

Age (years) 28:5 ± 9:5
Height (cm) 179 ± 14
Weight (kg) 80:5 ± 21:5
Experience (years) 12 ± 9
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Zhongda Hospital, affiliated with Southeast University
(Project identification code: 2020ZDSYLL151-P01).

A total of 13 Chinese male adults (age 28:5 ± 9:5 years,
height 179 ± 14 cm, weight 80:5 ± 21:5 kg) were selected as
subjects. Although they had basketball experience (12 ± 9
years), they were not professional players and had no profes-
sional training, as reported in Table 2. All subjects were right-
handed players. There were two centers (C), two power for-
wards (PF), three small forwards (SF), three shooting guards
(SG), and three point guards (PG). Among them, five sub-
jects had been trained as part of a college team. All subjects
gave their informed consent for inclusion before they partic-
ipated in the study. The subjects were verbally informed of
the experiment process and precautions to be taken before
the start of the experiment.

We chose 10 types of basketball shooting postures [30–
33] for the experiment, as summarized in Table 3. These
postures included five basic shooting postures: hook shot,
free throw, inside shot, lay-up, and jump shot. In addition,
we chose five types of composite shooting postures: gather
step shots, stop jump shots, pump fakes, jettison throws,
and spin jumpers. The stop jump shot, pump fake, and spin
jumper are frequently used in basketball. The gather step
shots and jettison throws are new introductions to the sports
that have become increasingly popular in recent years.

The experiment was conducted in the basketball court of
the Nanjing University of Information Science and Technol-
ogy. The subjects repeated each of the 10 types of basketball
shooting postures, as shown in Tables 3, 50–150 times. Each
shooting posture was divided into 1–4 groups according to
the physical strength of the subjects, with 25–150 shooting
posture cycles in each group. At the beginning of each shoot-
ing posture cycle, the subjects held the ball without moving
for 3 s and then performed the corresponding shooting pos-
ture. When the shooting posture was finished, they did not
move until after 3 s had passed. Immediately after the shoot-
ing posture was completed, the staff picked up the ball and
passed it to the subject after the subject moved. If the testing
of the group was not complete, the next shooting posture
cycle was started after the subject received the ball. If the test-
ing of the group was complete, the data-processing software
stored the raw shooting posture data, which contained 25–
150 shooting posture cycles for sensor data fusion. The
shooting posture test process is presented in Figure 4.

Finally, 10 types of sensor fusion basketball shooting pos-
ture datasets of 13 subjects, a total of 12,210 shooting posture
data entries, including 12,177 valid data entries, were formed.
The datasets included 1,210 gather step shots, 1,228 hook
shots, 1,209 free throws, 1,223 stop jump shots, 1,221 pump
fakes, 1,225 inside shots, 1,218 jettison throws, 1,216 lay-

Table 3: Basketball shooting postures.

Shooting postures Explanation

Gather step shot Outside the painted area, dribble one or two times, and then step back and shoot with both hands.

Hook shot Inside the painted area, from the side of the basket, do not take off, hook shoot with one hand.

Free throw After the free throw line, do not take off, shoot with both hands.

Stop jump shot Outside the painted area, dribble, stop abruptly and jump, and then shoot with both hands.

Pump fake Inside the painted area, make a fake shot with both hands, and then shoot with both hands.

Inside shot Inside the painted area, under the basket, facing the basket, do not take off, shoot with both hands.

Jettison throw From the three-point line, dribble forward, jump, and throw the ball into the basket with one hand.

Lay-up From the three-point line, dribble forward, and perform a one-hand lay-up.

Jump shot Outside the painted area, without dribbling, jump and shoot with both hands.

Spin jumper Inside three-point line, dribble one or two times, and then turn around and shoot with both hands.

Staff

Pick up the ball Pass the ball

Stay without moving
for 3 seconds

Perform shooting
posture

Stay without moving
for 3 seconds

Catch the ball and
move position �e end of this group

Store raw shooting
posture data

Yes

No

Test end

Test start

Subject

Figure 4: Shooting posture test flowchart.
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Figure 5: Continued.
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Figure 5: Continued.
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ups, 1,207 jump shots, and 1,220 spin jumpers. The acceler-
ometer data waveforms of the 10 types of sensor fusion
basketball shooting postures are shown in Figure 5.

3.2. Classification. In this study, intra- and intertraining and
testing methods were used for the sensor fusion basketball
shooting posture datasets. Both methods were carried out
on a computer configured with a Core i5-9400 CPU, 32GB
memory, and a GeForce GT730 graphics card. The operating
system was Windows 10 Home, and the model was imple-
mented using the MATLAB 2019b Deep Learning Toolbox.

3.2.1. Intratraining and Testing. All 12,177 sensor fusion bas-
ketball shooting posture data entries were randomly
arranged, and the training and test datasets were designed
with an 8 : 2 ratio, including 9,741 data entries in the training
dataset and 2,436 data entries in the test dataset. The training
dataset was used to train the model, and the test dataset was
used to test the model. Figure 6 presents a comparison
between the loss rate and accuracy rate of the intratraining
process. As the loss rate decreases, the accuracy rate continu-
ously increases, demonstrating the continuous improvement
of the training model. Figure 7 presents the confusion matrix
of 10 types of sensor fusion basketball shooting posture test
dataset classified by the intratest. The row variables of the
matrix represent the recall rate and false negative rate, and
the column variables represent the precision rate and false
discovery rate.

3.2.2. Intertraining and Testing. The sensor fusion basketball
shooting posture data of 13 subjects were randomly arranged;

the data of 11 subjects were used to form the training dataset,
and the data of two subjects were used to form the test data-
set. The total number of training data entries was 10,126, and
the total number of test data entries was 2,051. The training
dataset was used to train the model, and the test dataset
was used to test the model. Figure 8 shows a comparison
between the loss rate and the accuracy rate of the intertrain-
ing process. Figure 9 presents the confusion matrix of the 10
types of sensor fusion basketball shooting postures test data-
set classified by the intertest.

3.3. Results and Analysis. Figure 10 depicts the t-SNE dia-
gram of the intratest dataset. The t-SNE diagram shows the
distribution characteristics of the data intuitively by reducing
high-dimensional data to two-dimensional data. From the t-
SNE diagram of the intratest dataset, it can be observed that
the lay-up, jettison throw, and stop jump shot are easily con-
fused, as well as hook shot, inside shot, and free throw.

Table 4 summarizes the recall rate, precision rate, average
recall rate, and average precision rate of the intratest classifi-
cation results. The classification results of the intratest reveal
that the average recall rate was 98.6%, and the maximum
recall rate was 100% for the jump shot and spin jumper.
The minimum recall rate was 96% for the gather step shot.
The average precision rate was 98.6%; the maximum preci-
sion rate was 100% for the hook shot, and the minimum pre-
cision rate was 97.2% for the jump shot. The above data
indicate that although the t-SNE diagram shows that there
are easily confused shooting postures in the intratest dataset,
the sensor fusion basketball shooting posture recognition
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Figure 5: Accelerometer data waveforms of the 10 types of sensor fusion basketball shooting postures: (a) gather step shot, (b) hook shot, (c)
free throw, (d) stop jump shot, (e) pump fake, (f) inside shot, (g) jettison throw, (h) lay-up, (i) jump shot, and (j) spin jumper.
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system still performed well in the intratest, as a result of the
selection method of the intratraining and intratest datasets.

Figure 11 presents the t-SNE diagram of the intertest
dataset. The t-SNE diagram of intertest dataset demonstrated
that inside shot, free throw, hook shot, and jump shot are eas-
ily confused, as well as stop jump shot and jettison throw.

Table 5 reports the recall rate, precision rate, average
recall rate, and average precision rate of the intertest classifi-
cation results. The classification results of the intertest show

that the average recall rate was 89.8%, and the maximum
recall rate was 100% for the gather step shot, pump fake,
inside shot, and spin jumper. The minimum recall rate was
71% for the jettison throw. The average precision rate was
91.1%; the maximum precision rate was 100% for the hook
shot and spin jumper, and the minimum precision rate was
65.9% for the inside shot. As per Figure 10, 20 free throws
and 74 hook shots were identified as inside shots. This is
because free throws and inside shots are similar in action, dif-
fering only slightly in the release angle and speed. In addition,
as we did not have wireless sensor modules on both left and
right wrists, the ability to discriminate between single-
handed and double-handed shooting postures is slight. Thus,
some of the one-hand shots, such as hook shots, were identi-
fied as double-hand shots, such as inside shots. The 35 jetti-
son throws were identified as stop jump shots for the same
reason. There are 36 jump shots identified as free throws
owing to the similar shooting distance and shooting angle
between free throws and jump shots. Furthermore, there
are no barometer data collected in this study; thus, there is
no clear distinction between jump shooting posture and non-
jump shooting posture. In addition, as the subjects in this
experiment included five different play positions (i.e., C, PF,
SF, SG, and PG), the heights and weights of the subjects were
different, the subjects had very different actions in the same
shooting posture, and considering that the subjects were
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Figure 10: t-SNE intratest diagram.

Table 4: Classification results of intratest.

Number Shooting postures Recall Precision

1 Gather step shot 96% 99.2%

2 Hook shot 99.2% 100%

3 Free throw 98.1% 98.1%

4 Stop jump shot 98.4% 97.7%

5 Pump fake 98.2% 99.1%

6 Inside shot 99.3% 99.3%

7 Jettison throw 98.8% 98.4%

8 Lay-up 98% 99.2%

9 Jump shot 100% 97.2%

10 Spin jumper 100% 97.9%

Average 98.6% 98.6%
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not professional players, the shooting postures varied consid-
erably. In addition, stability is poor when physical strength is
insufficient [34]. These two points also explain the aforemen-
tioned low recognition rate of the shooting postures. Finally,
the small number of subjects contributes to the low recogni-
tion rate.

From the classification results, the VGG16 deep learning
model achieved good classification in 10 types of sensor
fusion basketball shooting posture recognition experiments.

In contrast, [35] developed a deep learning model around a
one-dimensional convolutional network (1D-CNN) archi-
tecture and verified it on the public dataset UTD-MHAD,
which contained 27 types of activities. In [36], the CNN
model was used to identify six types of pedestrian mode. In
[37], a hybrid deep learning model based on the fusion of
multiple spatiotemporal networks (FMS-Net) was proposed,
which was used to detect the four phases of walking. As all
the above research results were achieved only for the intrat-
est, the comparison of the above research results with the
intratest results of the VGG16model used in this study found
that the classification results of VGG16 were better than
those of the other three classification models. The compari-
son results are shown in Table 6.

To verify the accuracy and effectiveness of the proposed
system, it was compared with references [18, 19, 38]. Refer-
ence [18] established a real-time wearable assist system for
upper extremity throwing action based on accelerometers,
which used the longest common subsequence (LCS) algo-
rithm to recognize the six phases of baseball throwing
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Figure 11: t-SNE intertest diagram.

Table 5: Classification results of intertest.

Number Shooting postures Recall Precision

1 Gather step shot 100% 97.1%

2 Hook shot 72.8% 100%

3 Free throw 89.4% 85%

4 Stop jump shot 94% 86.2%

5 Pump fake 100% 95.8%

6 Inside shot 100% 65.9%

7 Jettison throw 71% 94.2%

8 Lay-up 99.2% 87.4%

9 Jump shot 71.8% 98.9%

10 Spin jumper 100% 100%

Average 89.8% 91.1%

Table 6: Accuracy comparison of classification models.

Literature [35] [36] [37] This paper

Model 1D-CNN CNN FMS-Net VGG16

Accuracy 90.8% 91.92% 96.7% 98.6%
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posture. In [19], an activity assessment chain for evaluating
human activity was established using machine learning
(ML) to classify six types of indoor rowing stroke postures
(one correct and five incorrect). Reference [38] used a wear-
able and wireless system based on SVM to recognize
overhead passes, chest passes, and shooting in basketball.
As shown in Table 7, similar to the three systems above, the
system proposed in this paper uses a small number of sensors
to recognize a number of postures. This system has certain
advantages in terms of average accuracy compared with the
systems proposed in references [18, 19]. Although the aver-
age accuracy is slightly lower than the system proposed in
reference [38], the system proposed in this paper recognizes
more postures and achieves good recognition, even for easily
confused postures. In addition, compared with the ML and
SVM models used in references [19, 38], the deep learning
model used in this study has greater development potential.
Based on the above analysis, the system proposed in this
study exhibits certain advantages compared with the other
three systems.

4. Discussion

Shooting is an important aspect in basketball matches and
training. Correctly distinguishing the shooting posture used
by basketball players in a match and during training can
help in making a correct evaluation of the technical charac-
teristics of the players, which in turn could prove helpful in
carrying out targeted guidance and practice sessions for
players. This study proposes a sensor fusion framework for
basketball shooting posture. It fuses the sensor data of the
main force hand and main force foot to identify and classify
the basic shooting postures and composite shooting postures
in basketball. The framework proposed here shows a novel
development direction for wearable devices in basketball,
which is beyond the conventional framework of IMUs
placed only on the arms. Although this sensor fusion frame-
work can recognize more composite shooting postures
without integrating more sensors, it still has limitations,
which are as follows:

(1) The amount of limb data is still limited, which can
pose challenges for accurately reflecting the subjects’
posture information

(2) While using the proposed method, it is necessary to
consider the problem of sensor synchronization and
how to align the data of the two sensors if one sensor
loses data

(3) The use of two sensors makes our proposed method
more costly compared with the method that uses a
single sensor

Many shooting postures in basketball have certain simi-
larities, and nonprofessional basketball fans’ shooting pos-
tures are generally not standard and less stable; hence, their
shooting postures are generally confusing. The basketball
shooting posture recognition system proposed in this paper
selects nonprofessional basketball fans as subjects, uses a
deep learning model based on CNN, classifies 10 types of eas-
ily confused shooting postures, and obtains a good classifica-
tion effect, proving the feasibility of the deep learning model
for basketball shooting posture recognition and demonstrat-
ing the robustness of the proposed system. Moreover, com-
pared with ML models such as SVM, the deep learning
model used in this paper has strong development potential
in the future, and it is possible to integrate it into a low-cost
integrated circuit in the future to reduce the cost of corre-
sponding smart devices. Therefore, the results of this study
can be used in the future for the development of low-cost
wearable intelligent basketball motion recognition devices
for nonprofessional basketball players.

Basketball shooting, especially composite shooting pos-
tures, can be divided into a series of decomposition actions.
The time-series and attention of each decomposition action
are different [10]. Although the VGG16 deep learning model
used in this study has achieved good results in classifying 10
types of sensor fusion basketball shooting postures, there
remain shooting postures with lower classification accuracy,
such as stop jump shots and inside shots. If time-series and
attention judgments are added to the deep learning model,
the recognition effect could be further improved. Because
researchers have used deep learning models that combine
time-series and attention judgments for classification [39],
we can also add time-series and attention judgments to deep
learning models to improve classification accuracy in our
future work. Furthermore, lightweight deep learning models
such as MobileNet [40] and SqueezeNet [41] will be adopted
to ensure the corresponding time and space efficiency after
adding time-series and attention judgments.

Reference [42] studied walking and trotting in equestrian
sports by calibrating the sensor data accuracy of four coordi-
nate systems. Similarly, the accuracy of sensor data is also
important for recognizing basketball shooting postures.
Compared with the reference [42], this study still needs to
be strengthened in sensor data accuracy calibration. In gen-
eral, the sensor will suffer from sensor drift after a period of
time, which affects the accuracy of the collected data. In addi-
tion, sensor misplacement, as the sensor is not firmly fixed on

Table 7: Systems comparison.

Literature Sensor number Sport Posture number Algorithm model Average accuracy

[18] 2 Baseball 6 LCS 93.9%

[19] 3 Indoor rowing 6 ML 92.4%

[38] 2 Basketball 3 SVM 99.5%

This paper 2 Basketball 10 VGG16 94.3%

14 Journal of Sensors



the limb, can also lead to other accidents. In [43], the authors
proposed a method combining zero velocity update (ZUPT)
to reduce the sensor drift error. A rotation matrix method
was also proposed in [44] that obtained good performance
in dealing with sensor misplacement. In future works, to
improve the data precision of sensor fusion for long-term
data collection, we will attempt to fix sensor misplacement
and sensor drift through software calibration, as was per-
formed in references [42–44]. Furthermore, we will enhance
the binding of wireless sensor modules and add a software
filter to decrease the effect of sensor misplacement and sensor
drift and improve the accuracy of the sensor fusion data.

5. Conclusion

In this study, a sensor fusion basketball shooting posture rec-
ognition system based on a CNN was designed. The system
used a sensor fusion framework to collect the shooting pos-
ture data of the players’main force hand and main force foot
and performed sensor data fusion. Subsequently, a CNN-
based deep learning model was used for classification. A total
of 12,177 sensor fusion basketball shooting posture data
entries of the right hand and left foot were collected using this
system for 13 Chinese adult male subjects aged 18–40 years
with at least 2 years of basketball experience but without
any professional basketball training. The shooting posture
data entries were trained and tested using the classic
VGG16 deep learning model based on CNN through intra-
and intertraining/testing methods, achieving satisfactory
classification results. These classification results are substan-
tially better than those of similar systems, demonstrating the
effectiveness and future development potential of the system.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflict of interest.

Acknowledgments

This work was financially supported by the National Natural
Science Foundation of China (Nos. 41971340 and 41271410)
and the National Key Research and Development Program of
China (Grant no. 2019YFC1510203).

References

[1] M. Sun,Advanced Course of Modern Basketball, Peoples Sports
Publishing House, Peking, China, 2018.

[2] J. Wang, “Ball games,” in Basketball, pp. 88–120, Higher Edu-
cation Press, Peking, China, 2009.

[3] H. Yang, “Essence, characteristics and laws of basketball,”
Journal of Chengdu Sport University, vol. 4, pp. 60–62, 2001.

[4] J. C. Maglott, J. Xu, and P. B. Shull, “Differences in armmotion
timing characteristics for basketball free throw and jump
shooting via a body-worn sensorized sleeve,” in Proceedings

of the 2017 IEEE 14th International Conference on Wearable
and Implantable Body Sensor Networks (BSN), pp. 31–34,
Eindhoven, Netherlands, 2017.

[5] A. Taniguchi, K. Watanabe, and Y. Kurihara, “Measurement
and analyze of jump shoot motion in basketball using a 3-D
acceleration and gyroscopic sensor,” in Proceedings of the SICE
Annual Conference (SICE), pp. 361–365, Akita, Japan, 2012.

[6] M. C. S. Gutiérrez and P. M. V. Castellanos, “Design and vali-
dation of a system for improving the effectiveness of basketball
players: a biomechanical analysis of the free throw,” in Pro-
ceedings of the 2018 IX International Seminar of Biomedical
Engineering (SIB), pp. 1–8, Bogota, 2018.

[7] L. Bai, C. Efstratiou, and C. S. Ang, “weSport: utilising wrist-
band sensing to detect player activities in basketball games,”
in Proceedings of the 2016 IEEE International Conference on
Pervasive Computing and Communication Workshops (Per-
Com Workshops), pp. 1–6, Sydney, Australia, 2016.

[8] Y. Acikmese, B. C. Ustundag, and E. Golubovic, “Towards an
artificial training expert system for basketball,” in 2017 10th
International Conference on Electrical and Electronics Engi-
neering (ELECO), pp. 1300–1304, Bursa, Turkey, 2017.

[9] L. Zhao and W. Chen, “Detection and recognition of human
body posture in motion based on sensor technology,” IEEJ
Transactions on Electrical and Electronic Engineering, vol. 15,
no. 5, pp. 766–770, 2020.

[10] D. Hopla, Basketball Shooting, The People's Posts and Tele-
communications Press, Peking, China, 2020, pp. 17-134.

[11] S. Shi, Q. F. Zhou, M. Peng, and X. Cheng, “Utilize smart insole
to recognize basketball motions,” in 2018 IEEE 4th Interna-
tional Conference on Computer and Communications (ICCC),
pp. 1430–1434, Chengdu, China, 2018.

[12] M. Peng, Z. Zhang, and Q. Zhou, “Basketball footwork recog-
nition using smart insoles integrated with multiple sensors,” in
2020 IEEE/CIC International Conference on Communications
in China (ICCC), pp. 1202–1207, Xiamen, China, 2020.

[13] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional
networks and applications in vision,” in Proceedings of 2010
IEEE International Symposium on Circuits and Systems,
pp. 253–256, Paris, France, 2010.

[14] Y. Kim, “Convolutional neural networks for sentence classifi-
cation,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pp. 1746–1751, Doha, Qatar, 2014.

[15] J. Gu, Z. Wang, J. Kuen et al., “Recent advances in convolu-
tional neural networks,” Pattern Recognition, vol. 77,
pp. 354–377, 2018.

[16] J. Lee, H. Joo, J. Lee, and Y. Chee, “Automatic classification of
squat posture using inertial sensors: deep learning approach,”
Sensors, vol. 20, no. 2, p. 361, 2020.

[17] T. Kautz, B. H. Groh, J. Hannink, U. Jensen, H. Strubberg, and
B. M. Eskofier, “Activity recognition in beach volleyball using a
deep convolutional neural network,” Data Mining and Knowl-
edge Discovery, vol. 31, no. 6, pp. 1678–1705, 2017.

[18] K. Y. Lian, W. H. Hsu, D. Balram, and C. Y. Lee, “A real-time
wearable assist system for upper extremity throwing action
based on accelerometers,” Sensors, vol. 20, no. 5, p. 1344,
2020.

[19] M. Seiffert, F. Holstein, R. Schlosser, and J. Schiller, “Next gen-
eration cooperative wearables: generalized activity assessment
computed fully distributed within a wireless body area net-
work,” IEEE Access, vol. 5, pp. 16793–16807, 2017.

15Journal of Sensors



[20] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2014, https://arxiv
.org/abs/1409.1556v5.

[21] H. Qassim, A. Verma, and D. Feinzimer, “Compressed
residual-VGG16 CNN model for big data places image recog-
nition,” in Proceedings of the 2018 IEEE 8th Annual Computing
and Communication Workshop and Conference (CCWC),
pp. 169–175, Las Vegas, NV, USA, 2018.

[22] Y. Osako, H. Yamane, S.-Y. Lin, P.-A. Chen, and R. Tao, “Cul-
tivar discrimination of litchi fruit images using deep learning,”
Scientia Horticulturae, vol. 269, article 109360, 2020.

[23] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, “A convolutional
neural network cascade for face detection,” in Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5325–
5334, Boston, Massachusetts, 2015.

[24] M. B. Priatama, L. Novamizanti, S. Aulia, and E. B. Candrasari,
“Hand gesture recognition using discrete wavelet transform
and convolutional neural network,” Bulletin of Electrical Engi-
neering and Informatics, vol. 9, no. 3, pp. 996–1004, 2020.

[25] P. Kim, Design Example Based on MATLAB, Beihang Univer-
sity Press, Peking, China, 2018.

[26] H. Lee andM.Whang, “Heart rate estimated from body move-
ments at six degrees of freedom by convolutional neural net-
works,” Sensors, vol. 18, no. 5, p. 1392, 2018.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into recti-
fiers: surpassing human-level performance on ImageNet clas-
sification,” in Proceedings of the 2015 IEEE International
Conference on Computer Vision, pp. 1026–1034, Santiago,
Chile, 2015.

[28] L. Z. Zhu, D. M. Chen, J. S. Guo, and H. X. Zhang, “Research
on human action recognition based on synergistic LSTM neu-
ral network,” Computer Technology Development, vol. 28,
no. 12, pp. 79–82, 2018.

[29] X. Jiang, B. Hu, S. Chandra Satapathy, S. H. Wang, and Y. D.
Zhang, “Fingerspelling identification for Chinese sign lan-
guage via AlexNet-based transfer learning and Adam opti-
mizer,” Scientific Programming, vol. 2020, 13 pages, 2020.

[30] F. Erculj and E. Strumbelj, “Basketball shot types and shot suc-
cess in different levels of competitive basketball,” Plos One,
vol. 10, no. 6, article e0128885, 2015.

[31] H. Okubo and M. Hubbard, “Dynamics of the basketball shot
with application to the free throw,” Journal of Sports Sciences,
vol. 24, no. 12, pp. 1303–1314, 2006.

[32] L. Ning, M. Xiao-man, and Z. Ya-hui, “Research status and
comments on technical characteristics of single-handed shoul-
der shooting,” Journal of Guangzhou Sport University, vol. 39,
no. 3, pp. 94–100, 2019.

[33] J. Krause, D. Meyer, and J. Meyer, Basketball Skills and Drills,
Posts & Telecom Press, Peking, China, 2017.

[34] G. Marcolin, N. Camazzola, F. A. Panizzolo, D. Grigoletto, and
A. Paoli, “Different intensities of basketball drills affect jump
shot accuracy of expert and junior players,” PeerJ, vol. 6, article
e4250, 2018.

[35] N. Lemieux and R. Noumeir, “A hierarchical learning
approach for human action recognition,” Sensors, vol. 20,
no. 17, p. 4946, 2020.

[36] J. Ye, X. Li, X. Zhang, Q. Zhang, andW. Chen, “Deep learning-
based human activity real-time recognition for pedestrian nav-
igation,” Sensors, vol. 20, no. 9, p. 2574, 2020.

[37] T. Zhen, L. Yan, and J. L. Kong, “An acceleration based fusion
of multiple spatiotemporal networks for gait phase detection,”

International Journal of Environmental Research and Public
Health, vol. 17, no. 16, p. 5633, 2020.

[38] M. Mangiarotti, F. Ferrise, S. Graziosi, F. Tamburrino, and
M. Bordegoni, “A wearable device to detect in real-time
bimanual gestures of basketball players during training ses-
sions,” Journal of Computing and Information Science in Engi-
neering, vol. 19, no. 1, 2019.

[39] X. Li, X. Yi, Z. Liu et al., “Application of novel hybrid deep
leaning model for cleaner production in a paper industrial
wastewater treatment system,” Journal of Cleaner Production,
vol. 294, article 126343, 2021.

[40] A. Howard, “MobileNets: efficient convolutional neural net-
works for mobile vision applications,” 2017, https://arxiv.org/
abs/1704.04861.

[41] F. Iandola, S. Han, M. Moskewicz, K. Ashraf, W. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <0.5MB model size,” 2016, https://
arxiv.org/abs/1602.07360v4.

[42] Z. Wang, J. Li, J. Wang et al., “Inertial sensor-based analysis of
equestrian sports between beginner and professional riders
under different horse gaits,” IEEE Transactions on Instrumen-
tation and Measurement, vol. 67, no. 11, pp. 2692–2704, 2018.

[43] S. Qiu, Z. Wang, H. Zhao, and H. Hu, “Using distributed wear-
able sensors to measure and evaluate human lower limb
motions,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 65, no. 4, pp. 939–950, 2016.

[44] M. Jiang, H. Shang, Z. Wang, H. Li, and Y. Wang, “A method
to deal with installation errors of wearable accelerometers for
human activity recognition,” Physiological Measurement,
vol. 32, no. 3, pp. 347–358, 2011.

16 Journal of Sensors

https://arxiv.org/abs/1409.1556v5
https://arxiv.org/abs/1409.1556v5
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1602.07360v4
https://arxiv.org/abs/1602.07360v4

	Sensor Fusion Basketball Shooting Posture Recognition System Based on CNN
	1. Introduction
	2. Materials and Methods
	2.1. System Hardware and Software Design
	2.2. Sensor Fusion Framework
	2.3. Classification Model

	3. Experimental Method and Results
	3.1. Experimental Method
	3.2. Classification
	3.2.1. Intratraining and Testing
	3.2.2. Intertraining and Testing

	3.3. Results and Analysis

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

