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This paper presents an approach for calibrating omnidirectional single-viewpoint sensors using the central catadioptric projection
properties of parallel lines. Single-viewpoint sensors are widely used in robot navigation and driverless cars; thus, a high degree of
calibration accuracy is needed. In the unit viewing sphere model of central catadioptric cameras, a line in a three-dimensional space
is projected to a great circle, resulting in the projections of a group of parallel lines intersecting only at the endpoints of the diameter
of the great circle. Based on this property, when there are multiple groups of parallel lines, a group of orthogonal directions can be
determined by a rectangle constructed by two groups of parallel lines in different directions. When there is a single group of parallel
lines in space, the diameter and tangents at their endpoints determine a group of orthogonal directions for the plane containing the
great circle. The intrinsic parameters of the camera can be obtained from the orthogonal vanishing points in the central catadioptric
image plane. An optimization algorithm for line image fitting based on the properties of antipodal points is proposed. The
performance of the algorithm is verified using simulated setups. Our calibration method was validated though simulations and
real experiments with a catadioptric camera.

1. Introduction

With the rapid development of computer vision technology,
requirements for visual performance have become increas-
ingly stringent. Increasing the field of view of a camera usu-
ally improves its visual performance [1–3]. A traditional
camera has a limited field of view; using mirrors, as originally
proposed by Hecht [4], offers an effective method to enhance
the field of view. This camera–mirror system is referred to as
a catadioptric camera system and can be divided into two
types, central and noncentral, depending on the presence of
a unique effective viewpoint [5]. There are four principal
types of mirror shapes for central catadioptric cameras:
paraboloidal, hyperboloidal, ellipsoidal, and planar. The
image captured by the central catadioptric camera can be
easily converted into three-dimensional (3D) coordinates of
basic feature points using a projection inverse algorithm.
This technique is widely used in the field of computer vision.

This paper addresses calibration issues in central catadi-
optric cameras with a generalized projection model proposed

by Geyer and Daniilidis [6]. The results demonstrate that the
imaging process is equivalent to two-step mapping with a
unit viewing sphere. Previous calibration methods for central
catadioptric cameras can be divided into five types: self-
calibration [7, 8], calibration based on two-dimensional
(2D) points [9–11], calibration based on 3D points [12],
calibration based on lines [13–18], and calibration based on
spheres [19–21]. Li and Zhao [22] calibrated a catadioptric
camera by obtaining orthogonal directions and circular
points only through the image of a single sphere. This dem-
onstrates that the analysis of orthogonal directions under
the catadioptric projection model is important and useful.

First, we present a brief review of the methods proposed
by others for central catadioptric camera calibration. Deng
et al. [11] proposed a simple calibration method based on a
2D calibration pattern for central catadioptric camera. They
proposed a nonlinear constraint on camera intrinsic param-
eters from the projections of any three collinear points on the
viewing sphere. Geyer and Daniilidis [13] proposed a calibra-
tion method for a paracatadioptric camera using the images
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of three lines and demonstrated rectification of an image
using at least two groups of parallel lines. Ying and Hu [14]
used the projections of lines or balls to calibrate cameras.
They showed that the line and the ball had three and two lim-
itations, respectively, when it came to their use in calibrating
cameras; moreover, the method involved was nonlinear.
When the noise level is very large, the robustness degree of
the methods decreases as singularity approaches.

This paper studies the geometry of the central catadiop-
tric projections of multiple groups of parallel lines. A set of
projective properties are described and proved. These prop-
erties support the geometric constructions proposed for cali-
bration. In addition, this study considers the applications of
the projection properties of parallel lines in the unit viewing
sphere model to calibrate central catadioptric cameras;
hence, these methods could apply to any of the mirror-type
cameras. The main contribution of this study can be summa-
rized as follows:

(I) Two groups of parallel lines in different directions
are projected to great circles and intersect at four
points. According to the properties of antipodal
points, the orthogonal vanishing points can be
determined on the image plane to obtain the intrin-
sic parameters of the camera

(II) A group of parallel lines is projected to a group of
great circles on the unit viewing sphere. The diame-
ter of the circles and tangents at their endpoints
determine a group of orthogonal directions for the
support plane containing each great circle to obtain
the intrinsic parameters of the camera

(III) An optimization algorithm for line image fitting is
proposed based on the relationship between the
antipodal points

The remainder of this paper is organized as follows. Sec-
tion 2 presents a review of the unit sphere model for central
catadioptric cameras. Section 3 describes two calibration
algorithms for central catadioptric cameras that employ the
projection properties of parallel lines as well as an optimiza-
tion algorithm for line image fitting. Simulation and real data
were used to verify the effectiveness of the algorithms, and
this is discussed in Section 4. Finally, conclusions regarding
the two calibration algorithms are presented in Section 5.

2. Preliminaries

In this section, we briefly review the projection process of
points and lines under central catadioptric cameras. More-
over, we define antipodal image points and discuss their
properties.

2.1. Central Catadioptric Projection Model. Geyer and Danii-
lidis [6] proved that the central catadioptric imaging process
is equivalent to the following two-step mapping with a unit
viewing sphere (Figure 1). First, a pointM in 3D space is pro-
jected to two points M± on the surface of the unit viewing
sphere centered at the focal point O of a reflective mirror.

The unit viewing sphere is called the unit sphere, and O is
the center of the projection. Second, with the 3D point Oc
at the center, M± is projected to two points m± on image
plane Π, where Oc is called the virtual optical center, Π is
perpendicular to the line OOc, and their intersection is the
principal point p.

As shown in Figure 1, the world coordinate system
is adjusted to the unit viewing sphere coordinate system
O − xwywzw. Let M = ½x y z 1�T denote the homogeneous
coordinate of a point in O − xwywzw; the projections M± of
M on the unit viewing sphere can then be represented as
M± = ±x/kM∧k ±y/kM∧k ±z/kM∧k 1½ �T, where kM̂k
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p
and M̂ denotes the nonhomogeneous coor-

dinate of M. The unit viewing sphere coordinate system O
− xwywzw traverses ξ units along the ‐zw direction to estab-
lish the virtual camera coordinate system Oc − xcyczc. Thus,
the rotation matrix R and the translation vector t between
them can be represented as R = I and t = ½0 0 ξ�T, respectively,
where I is a three-identity matrix and ξ = kO −Ock is the
mirror parameter. The type of mirror selected depends on
the value of ξ: the mirror is a plane if ξ = 0, an ellipsoid or
hyperboloid if 0 < ξ < 1, and a paraboloid if ξ = 1.

Let the intrinsic parameter matrix of the virtual camera
be

K =

f u s u0

0 f v v0

0 0 1

2
664

3
775, ð1Þ

where f u and f v represent the focal length along the u and
v directions, respectively, on the 2D image plane.
u0 v0 1½ �T are the homogeneous coordinates of the
principal point p, and s is the skew factor. Then, with the unit
viewing sphere, the imaging process from point M± to m±
can be described as

M

m+

M+

Oc

O

L2

zw

xw

xc

yw

yczc

L1

m–

M–

p

Π

Figure 1: Projections of a three-dimensional point M and parallel
lines L1 and L2 under the unit viewing sphere model of a central
catadioptric camera.

2 Journal of Sensors



λ1,2m± =K ~M± + 0 0 ξ½ �T
� �

, ð2Þ

where λ1 and λ2 are two nonzero scale factors and ~M± =
±x/kM∧k ±y/kM∧k ±z/kM∧k½ �Tdenote the nonhomo-
geneous coordinates of points M±.

2.2. Antipodal Image Points. For a central catadioptric cam-
era, Wu et al. [16] defined the antipodal image points and
their properties as follows:

Definition 1. In Figure 1, fM+,M−g is called a pair of antip-
odal points if they are two endpoints of the diameter of the
viewing sphere.

Definition 2. In Figure 1, fm+,m−g is called a pair of antipo-
dal image points if they are images of two endpoints of the
diameter of the viewing sphere.

Proposition 3. In Figure 1, if fm+,m−g is a pair of antipodal
image points obtained using a central catadioptric camera,
then

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + τmT

+ωm+
p
mT

+ωm+
m+ +

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + τmT

−ωm−
p
mT

−ωm−
m− = 2p, ð3Þ

where τ = ð1 − ξ2Þ/ξ and ω =K−TK−1. In the case of a parab-
oloid mirror, Equation (3) can be simplified to

1
mT

+ �ωm+
m+ +

1
mT

− �ωm−
m− = p: ð4Þ

3. Calibrating Catadioptric Cameras Using
Projections of Multiple Groups of
Parallel Lines

In the unit sphere model, a line in 3D space is projected to a
great circle, where the center of the great circle is the center of
the viewing sphere; thus, two great circles intersect at two
points.

Theorem 4. In Figure 1, the great circles, from which a group
of parallel lines on one plane are projected on the unit viewing
sphere, only intersect at two points: a pair of antipodal
pointsfM+,M−g.

Proof. In Figure 1, a group of parallel lines in one plane inter-
sect at a point at infinity. With a central catadioptric projec-
tion model, the point at infinity projected onto the unit
sphere forms two points. Hence, according to Definition 1,
the points of intersection of the great circles of the projec-
tions of the group of parallel lines are a pair of antipodal
points fM+,M−g. ☐

Corollary 5. In Figure 1, for the catadioptric camera, the
images show a group of parallel lines in one plane intersecting
at two points, called a pair of antipodal image points.

Proof. Based on Theorem 4 and geometric invariance under a
central projective transformation, the images of the group of
parallel lines have only two points of intersection, the images
of the points of intersection of the great circles. ☐

In this study, the 3D lines are not parallel to the zw-axis of
the catadioptric camera coordinate system. If the 3D lines are
parallel to the zw-axis, the line images coincide into a straight
line.

3.1. Camera Calibration Using Two Groups of Parallel Lines.
Let l1i and l2i ði = 1, 2, 3, 4Þ be two groups of great circles on
the unit viewing sphere corresponding to projections of two
groups of parallel lines in two directions, where i = 1, 2, 3, 4,
as shown in Figure 2(a). The center of the unit viewing sphere
is O. PointsM1+ andM1− are the points of intersection of l1i,
points M2+ and M2− are the points of intersection of l2i.
Points M1± and M2± are two pairs of antipodal points.
According to Definition 1, the quadrilateral with points
fM1+,M2+,M1−,M2−g as vertices is a rectangle; thus, lines
M1+M2+ and M1+M2−are orthogonal, and lines M1+M2+
and M1−M2− are parallel and intersect at point D1∞ at
infinity. Similarly, lines M1+M2− and M1−M2+ are parallel
and intersect at point D2∞ at infinity.

Proposition 6. In a central catadioptric system, if the images
of two groups of parallel lines in different directions are given,
a group of orthogonal vanishing points can be obtained.

Proof. As shown in Figure 2(b), based on geometric invari-
ance under central projective transformation, the images
C1i and C2i of the great circles l1i and l2i also intersect at
two points m1± and m2±, respectively, which are images of
the points M1± and M2±. The line passing through points
m1+ and m2+ intersects the line passing through m1− and
m2− at the vanishing point d1, which is the image of the point
D1∞ at infinity. Similarly, two lines m1+m2− and m1−m2+
intersect at the vanishing point d2, which is the image of
the point D2∞at infinity. Thus,

d1 = m1+ ×m2+ð Þ × m1− ×m2−ð Þ,
d2 = m1+ ×m2−ð Þ × m1− ×m2+ð Þ:

ð5Þ

According to the properties of the projection, points d1
and d2 are a group of orthogonal vanishing points, hence,
proving Proposition 6. ☐

3.2. Camera Calibration Using a Group of Parallel Lines

Proposition 7. In a central catadioptric system, if the images
of a group of i parallel lines (i = 4, in Figure 3) are given, i
groups of the orthogonal vanishing points can be obtained.

Proof. As shown in Figure 2(a), a group of circles l1i is the
projection of a group of parallel lines on the unit viewing
sphere. Points M1+ and M1− are the points of intersection
of circles l1i, which are the two endpoints of the diameters
of circles l1i. According to the properties of the tangent of a
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circle, the tangents of pointsM1+ andM1− with respect to cir-
cles l1iði ≥ 2Þ are parallel and orthogonal to the diameter
M1−M1+.

As shown in Figure 3, images C1i of circles l1i intersect at
two pointsm1±, which are the images of pointsM1±.Without
losing generality, to simplify the representation, we can take
images C1i of circles l1i with i = 1 as examples, and let C1iði
≥ 2Þ be Ciði ≥ 2Þ. The tangents of points m1+ and m1− with
respect to conics Ciði ≥ 2Þ intersect at point d1, the vanishing
point in the direction of the tangents calculated by

d1 =C1m1− ×C1m1+: ð6Þ

d2 denotes the fourth harmonic element of points m1−,
m1+, and p, where p is the image of the midpoint of the diam-
eter of circles l1i. Using crossratio invariance [23],

m1+,m1− ; p, d2ð Þ = −1, ð7Þ

and d2 is the vanishing point in the direction of diameterm1−
andm1+. The principal point p can be obtained by the equa-
tion of the projection contour of the mirror [14]. Points d1
and d2 are a pair of orthogonal vanishing points for the image
of the plane including circle l1i with i = 1. ☐

3.3. Line Image Fitting in Central Catadioptric Cameras. The
projection of a 3D line is a conic in a central catadioptric
system. However, only a section of the conic is visible in the
central catadioptric image plane. Therefore, conic fitting is
inaccurate when only a section of it is known.

Proposition 8. In a central catadioptric system, knowing the
NðN ≥ 5Þ image points and their antipodal image points,
conic fitting can be accomplished.

Proof. Let conic C be the image of a 3D line with a central
catadioptric camera; consider NðN ≥ 5Þ points mi+ on the
visible section of the conic, where i = 1, 2, 3,⋯,N . The pro-
jective contour of the mirror can be completely extracted
and the equation of the projective contour of the mirror
can be formulated by least-squares fitting to initialize the
camera’s intrinsic parameters ~K [14]. Hence, according to
Proposition 3, the antipodal image point mi− of point mi+
can be determined. Let conic C be

C = ax2 + bxy + cy2 + dx + ey + f = 0: ð8Þ

We need to minimize the algebraic distance Cðxj, yjÞ
from the corresponding points to conic C [24]; then,

Γ = 〠
2N

j=1
C2 xj, yj

� �
, ð9Þ

where ðxj, yjÞ are the coordinates of image points mi+ or its
antipodal image points mi−. We then minimize the objective
function Γ (9), to which there always exists the trivial solu-
tion a = b = c = d = e = d = 0. To avoid the existence of zero
solution, we normalize C ðx, yÞ with a = 1, b = 1, c = 1, d = 1,
e = 1, and f = 1. Whena = 1, letX1 = ½b c d e f �T; thus,
the equation Cðxj, yjÞ = 0 becomes aTj X1 − bj = 0, where aj
= ½xjyj y2j xj yj 1�T and bj = −x2j . Given 2N points,
we obtain the following equation:

O
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Figure 2: (a) Projections of two groups of parallel lines l1i and l2i (i = 1, 2, 3, 4) in different directions on the unit viewing sphere; (b) images of
two groups of parallel lines in different directions in a central catadioptric system.
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Figure 3: Vanishing points in the direction of the tangents and the
direction of the diameter at the points of intersection of line images
with respect to conic C11.
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Figure 4: Variations in the absolute errors of (a) f u, (b) f v , (c) u0, (d) v0, and (e) s with different fitting line image methods under varying
levels of Gaussian noise.
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Figure 5: Variations in the absolute errors of (a) f u, (b) f v , (c) u0, (d) v0, and (e) s with different calibration methods under varying levels of
Gaussian noise.
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AX1 = b, ð10Þ

where A = ½a1 a2 ⋯ a2N �T and b = ½b1 b2 ⋯ b2N �T.
By minimizing objective function (9), we obtain

Γ X1ð Þ = AX1 − bð ÞT AX1 − bð Þ: ð11Þ

We then minimize the objective function—specifically,
we obtain the partial derivative of (11) with respect to X1,
making the partial derivative equal to zero:

2AT AX1 − bð Þ = 0: ð12Þ

The solution of (12) is

X1 = ATA
� �−1ATb, ð13Þ

and the coefficients of the conic are X1
1 = 1 XT

1
� �T.

Similarly, by normalizing with b = 1, c = 1, d = 1, e = 1,
and f = 1, the coefficients of the conic X1

2,X1
3,X1

4,X1
5,X1

6
can be obtained. Thus, the equation of the line image can
be obtained by

X =
1
6
〠
6

i=1
X1

i : ð14Þ

☐

3.4. Calibration Algorithms Using Orthogonal Vanishing
Points. According to Sections 3.1 and 3.2, multiple groups
of orthogonal vanishing points can be obtained from images
of two groups of parallel lines. A pair of orthogonal vanishing
points d1 and d2 can be represented with the homogeneous
coordinates d1 = x1 y1 1½ �T and d2 = x2 y2 1½ �T,
respectively. From the relationship between the orthogonal
vanishing points and the image of the absolute conic (IAC)
[23], it follows that

dT1ω d2 = 0, ð15Þ

where ω =K−TK−1 represents the IAC and K denotes the
intrinsic parameter matrix of the camera. ω with five degrees
of freedom can be solved linearly with at least five groups of
orthogonal vanishing points.K can then be determined using
the Cholesky factorization of ω.

The intrinsic parameters of the camera can thus be
obtained from two groups of parallel lines in different direc-
tions (Method 1) or a group of parallel lines (Method 2). The
two algorithms can be summarized as follows:

Step 1. Input kðk ≥ 5Þ views, each containing projections of at
least two groups of parallel lines in different directions.

Step 2. Fit the equation of the projective contour of the mirror
by least-squares fitting; obtain the initial value of the intrinsic
parameters of the camera.

Step 3. Take NðN ≥ 5Þ points for each projection of the line,
and calculate their antipodal image points; estimate the equa-
tion of the line image using Proposition 8.

Step 4. Calculate the two common points of intersection of
the images in each group of parallel lines using the “solve”
function in MATLAB.

Step 5. Solve the tangents at the points of intersection corre-
sponding to each conic l =Cm.

Step 6. Obtain the orthogonal vanishing points using Propo-
sition 6 or 7.

Step 7. When the orthogonal vanishing points are known,
solve ω using (15). Determine K using the Cholesky factori-
zation of ω.

4. Experiments

To test the validity and feasibility of the proposed calibration
methods, we performed a number of experiments using sim-
ulation data in addition to real images. We compared the
results with the calibration methods of Deng et al. [11], Geyer
and Daniilidis [18], and Li and Zhao [22].

4.1. Experiment for Conic Fitting. The simulated catadioptric
camera had the following parameters: f u = 600, f v = 550, s
= 0:8, u0 = 400, and v0 = 350. The parameter of the hyperbo-
loidal mirror ξ = 0:966. The image resolution was 800 × 700.
The 3D lines were not parallel with the zw-axis of the catadi-
optric camera coordinate system.

In the simulation experiment, the conic of the line image
was fitted by the method stated in Proposition 8 and the
least-squares method, respectively, and the intrinsic parame-
ters of the camera were calibrated. One hundred points were
chosen on each line image. Gaussian noise with a zero mean
and standard deviation σ was added to each pixel point.
The noise level σ varied from 0 to 3.5 pixels. For each noise
level, we performed 200 independent trials to solve the
absolute error of the intrinsic parameters f u, f v , u0, v0, and
s of the camera and compared the results for the two conic
fitting methods. The changes in the absolute errors of f u,
f v , u0, v0, and s with different noise levels are shown in
Figures 4(a)–4(e). The line image of the least-squares
method obtained through fitting is denoted by Method 1-1
and Method 2-1. The proposed methods in this study are
denoted by Method 1 and Method 2; Li and Zhao’s [22]
methods are denoted by Li-1 (Proposition 6), Li-2 (Proposi-
tion 7), and Li-3 (Proposition 8), respectively.

Typically, the accuracy of the obtained calibration results
highly depends on the accuracy of the extracted conics.
Figures 4(a)–4(e) demonstrate that the accuracy of all

Table 1: Average runtime of the methods (unit: second).

Method
1

Method
2

Geyer
[18]

Deng
[11]

Li-1
[22]

Li-2
[22]

Li-3
[22]

Runtime 0.157 0.126 0.372 0.436 0.208 0.278 0.241
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Figure 6: Variations in the absolute errors of (a) f u, (b) f v , (c) u0, (d) v0, and (e) s with different calibration methods under different angles
between one of the parallel lines and zw-axis.
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methods suffers from degradation in the presence of increas-
ing noise. However, Method 1 and Method 2 perform better
than the other methods. The comparison of the experimental
results indicated that in the center catadioptric camera, the
accuracy of fitting the line image using the antipodal con-
straint was greater than that observed with the least-squares
method.

4.2. Experiment Using Simulation Data. The line image was
fitted using the method proposed in Section 3.3. In addition,
with the assumption of Gaussian noise, the absolute errors in
the intrinsic parameters of the camera, f u, f v, u0, v0, and s
with different noise levels were calculated and compared with
the reference methods [18, 11, 22], as shown in Figures 5(a)–
5(e), respectively. Furthermore, the run time of the seven
methods were compared using the MATLAB R2014b plat-
form; the results obtained after 200 simulations are listed in
Table 1.

It is well recognized that the linear method is less affected
by noise. Figures 5(a)–5(e) demonstrate that as the noise level
σ increased, the absolute errors of Deng et al.’s [11], Geyer
and Daniilidis’ [18], and Li and Zhao’s [22] methods, includ-
ing three different ways denoted by Li-1 (Proposition 6), Li-2
(Proposition 7), and Li-3 (Proposition 8), respectively,
increased linearly. The errors from our methods showed a
slower rate of increase, indicating the effectiveness and feasi-
bility of the proposed method. Furthermore, Table 1 reveals
that the average runtimes of our methods and Li and Zhao’s
[22] were similar, whereas the runtime of Deng et al.’s [11]
and Geyer and Daniilidis’ [18] methods was higher than
our methods. This result is likely as Deng et al.’s [11] and
Geyer and Daniilidis’ [18] methods were nonlinear.

Only a section of the projection of a straight line for the
central catadioptric system is visible. The angle between the
directions of the 3D lines influences their projections and
affects the calibration accuracy. In the simulation experi-
ment, the angle of the direction of the first group of parallel
lines was set to be perpendicular to the zw-axis, and the direc-
tion of the second group of parallel lines was set to be parallel
to the zw-axis as the initial value. The direction of the second
group of parallel lines rotates the angle θ from 0° to
90°around the xw-axis. The line image was fitted using the
method proposed in Section 3.3. For each angle, 200 inde-
pendent experiments are carried out. The absolute errors in
the intrinsic parameters of the camera, f u, f v, u0, v0, and s
with different angles were calculated and compared with
the reference methods [18], as shown in Figures 6(a)–6(e).
Li and Zhao [22] calibrated the camera using the projection
image of a sphere, and Deng et al.’s [11] method was based
on a 2D calibration pattern of points. The angle of lines
had a small effect on their methods and, thus, were not con-
sidered in this experiment.

When one of the groups of parallel lines rotates around
the xw-axis, the angle between the directions of the two par-
allel lines is changed accordingly. Figure 7 shows that calibra-
tion accuracy is high and stable when their angle is between
20° and 70°. When the direction of one of the groups of par-
allel lines is nearly parallel to the zw-axis, the image of this
group of parallel lines tends to be a straight line with a large

error in calibration results. When the angle between the
directions of two groups of parallel lines becomes smaller,
the interference between the two groups of parallel lines
becomes larger under noisy conditions, resulting in a larger
absolute error. When two groups of parallel lines approach
coincidence, Method 1 in this study and Geyer and Daniili-
dis’ [18] method will degenerate and have large errors.
Therefore, the angle between the directions of two parallel
lines used for calibration is selected as 20° ≤ θ ≤ 70° in the real
situation.

4.3. Experiment Using Images. The angle between the direc-
tions of the two parallel lines is selected according to the
influence of the angle on the calibration results in the simu-
lation experiment, and the angle is 20° ≤ θ ≤ 70° in the real
experiment. In general, the noise in a real environment is
unknown; random Gaussian noise is the main source. Gauss-
ian noise was used to simulate the real noise in the simulation
experiment. Figure 5 shows that the proposed method has
robustness in the presence of noise. Next, we used real images
to verify the accuracy and applicability of the methods in this
study. In the real experiment, a checkerboard was used as a
calibration model to replace the line. We used a central cata-
dioptric camera with a hyperboloidal mirror having parame-
ter ξ = 0:966, designed by the Center for Machine Perception
at Czech Technical University. Five pictures of the checker-
board were taken using the catadioptric camera with its

Figure 7: Image of a checkerboard used in the experiments.

Table 2: Calibration results with real data (unit: pixels).

Calibration
methods

Camera’s intrinsic parameters
f u f v u0 v0 s

Method 1 1076.4429 1072.8537 1.0815 650.7238 585.5324

Method 2 1084.7501 1081.5082 1.0763 648.9626 587.7246

Geyer [18] 1093.0719 1089.8025 1.1583 653.6927 586.8968

Deng [11] 1086.2577 1082.7928 1.2128 651.4500 587.7956

Li-1 [22] 1076.4429 1472.8537 1.0584 650.7238 585.5324

Li-2 [22] 1094.7501 1489.6082 0.9763 644.9626 589.7246

Li-3 [22] 1062.8743 1441.3450 1.5256 648.0849 580.4329

9Journal of Sensors



position changed. One of the five images is shown in Figure 7.
The resolutions of these images were 1320 × 1170 pixels. The
equations of the line images were obtained using the method
described in Section 3.3.

The intrinsic parameters of the camera were obtained
with the two calibration methods proposed in this study in
addition to Deng et al. [11], Geyer and Daniilidis [18], and
Li and Zhao’s [22] calibration methods. Table 2 lists the cal-
ibration results on real data.

To check the calibration results in Table 2, the test image
in Figure 7 was rectified to its projective image, as shown in
Figures 8(a)–8(g).

The results of all methods in Table 2 were similar to each
other, indicating that the proposed methods are feasible. The
straight line in the space is changed into a curve due to lens
distortion in the original image shown in Figure 7. After
using the data in Table 2 to rectify the image, the straight line
in the space is still straight in the images shown in

(a) (b) (c)

(d) (e) (f)

(g)

Figure 8: Rectified images based on the intrinsic parameters in Table 2. Rectified image using (a) Method 1, (b) Method 2, (c) Geyer and
Daniilidis [18], (d) Deng et al. [11], (e) Li-1 (Proposition 6), (f) Li-2 (Proposition 7), and (g) Li-3 (Proposition 8) from Li and Zhao [22].

10 Journal of Sensors



75
60
45

Z-
ax

is 
(m

m
)

30
15
0
0 2010 30 40 50 60

Y-axis (mm)
X-axis (mm)70 80 90 100 200 160

120
80 40

0

(a)

75

60

45

Z-
ax

is 
(m

m
)

30

15
0
0 2010 30 40 50 60

Y-axis (mm)

X-axis (mm)70 80 90 100 200 160 120 80 40 0

(b)

75
60
45

Z-
ax

is 
(m

m
)

30
15

0
0 2010 30 40 50 60

Y-axis (mm)

X-axis (mm)70 80 90 100 200
160

120
80

40
0

(c)

75

60

45

Z-
ax

is 
(m

m
)

30

15
0
0 2010 30 40 50 60

Y-axis (mm)
X-axis (mm)70 80 90 100 200

160 120 80 40 0

(d)

75
60
45

Z-
ax

is 
(m

m
)

30
15

0
2010 30 40 50 60

Y-axis (mm)

X-axis (mm)
70 80 90

200
160

120
80

40
0

(e)

75
60
45

Z-
ax

is 
(m

m
)

30
15

0
2010 30 40 50 60

Y-axis (mm)

X-axis (mm)
70 80 90 200

160
120

80
40

0

(f)

75

60

45

Z-
ax

is 
(m

m
)

30

15

0
0 2010 30 40 50 60

Y-axis (mm)
X-axis (mm)70 80 90 100 20016012080 40 0

(g)

Figure 9: Reconstruction information of the checkerboard based on the intrinsic parameters in Table 2. Reconstructed using (a) Method 1,
(b) Method 2, (c) Geyer and Daniilidis [18], (d) Deng et al. [11], (e) Li-1 (Proposition 6), (f) Li-2 (Proposition 7), and (g) Li-3 (Proposition 8)
from Li and Zhao [22].

Table 3: Verifying the parallelity and orthogonality of 3D reconstruction result with real data after rectification (unit: degree).

Method 1 Method 2 Geyer [18] Deng [11] Li-1 [22] Li-2 [22] Li-3 [22]

Parallel 0.6233 0.6023 0.7266 0.6251 0.6263 0.7132 0.6840

Orthogonal 89.3772 89.3082 89.1265 89.2547 89.1935 89.1700 89.1506
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Figures 8(a)–8(g). The experiments showed that the pro-
posed calibration methods in this study are effective.

To further verify the accuracy of the method, the data in
Table 2 was used to rectify the image shown in Figure 7, and
the checkerboard reconstruction results were extracted. The
reconstruction information in parallel and orthogonal direc-
tions of the checkerboard is shown in Figures 9(a)–9(g). First,
we extracted the points on each row and each column to fit
the equation of the line. Next, we calculated the angles
between two lines in all parallel directions and obtained their
average value. Similarly, the average value of angles between
all orthogonal lines could also be obtained. Table 3 lists the
angle results with real data as shown in Figures 9(a)–9(g).

The ground truth data were 0° for the parallel lines and
90° in the orthogonal direction on the checkerboard, as
already known. Using our methods in the reconstruction
results, the angle between the parallel and orthogonal direc-
tions is closer to the ground truth, which proves the accuracy
of the method in this study.

5. Conclusions

The main contribution of this study to the field of omnidirec-
tional camera calibration is the use of the projection proper-
ties of parallel lines in a unit viewing sphere model to
calibrate a central catadioptric camera. A line in 3D space is
projected to a great circle on the unit viewing sphere, where
its center is consistent with that of the unit viewing sphere.
A group of parallel lines is projected to a group of big circles
with only two points of intersection: the antipodal points. In
Method 1, two groups of parallel lines in different directions
are projected onto two groups of big circles with four points
of intersection on the unit viewing sphere. According to the
definition of antipodal points, the quadrilateral with these
points as vertices is a rectangle, and the orthogonal directions
can be obtained by the four points of intersection. In Method
2, the tangent at a point on a circle is orthogonal to the diam-
eter passing through that point on the circle, using which the
orthogonal vanishing points for the support plane containing
each great circle can be determined on the image plane.
Finally, the intrinsic parameters of the camera can be linearly
determined by five groups of orthogonal vanishing points.
This indicates that five images are required and all five intrin-
sic parameters are recovered without any assumptions, such
as zero skew s = 0 or a unitary aspect ratio f u = f v .

The two methods proposed in this study provide new
insights into the calibration of central catadioptric cameras,
especially from the aspect of constraints provided by the pro-
jection properties of parallel lines. Two linear calibration
approaches using parallel lines are derived from its projec-
tion properties. Experimental results on both simulated data
and real image data validated the effectiveness of our
methods and demonstrated that the two linear calibration
methods maintain comparable accuracy. As only a section
of the conic projected by a line in the central catadioptric
projection is visible, according to the relationship between
the antipodal points, an optimization algorithm for line
image fitting to improve the accuracy of calibration was pro-
posed in this study. The simulated results show that the pro-

posed optimization algorithm can improve the precision of a
fitting line image in center catadioptric cameras. Although
the algorithm proposed in this study improves the calibration
accuracy to some extent, a more thorough investigation may
be required. The shortcoming of the method used in this
study is that the projection contour of the mirror for the cen-
ter catadioptric camera is required to obtain images of antip-
odal points. In our future research, the method of directly
obtaining the images of antipodal points from the projective
properties of geometric elements will be considered.
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