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As an important direction of Industry 4.0, cyberphysical machine tool systems (CPMTS) can realize the deep integration and real-
time interaction of physical components and information to optimize manufacturing processes. Wireless sensor network (WSN),
an important part of CPMTS, is responsible for data collection and transmission. However, in the process of data transmission, due
to memory limitations and noise interference, unreasonable sensor distribution will affect the performance of CPMTS. At the same
time, data accuracy will be affected due to the resource constraints of CPMTS. To solve the problems above, this paper firstly
presented a single-station transfer model to ensure the layout of sensors in each sink, which can meet the detection capability of
fault/monitoring data. Then, by using fuzzy graphs, a multihop-station transfer model and data-collecting model are developed
to describe the data flow and memory allocation in the wireless network. Taking noise interference and data position into
consideration, a MILP problem is formulated and the optimization solution is obtained by using the “branch and bound”
method. Finally, case studies about optimal sensor distribution on the single station and path optimization on the multihop
station are presented to illustrate the proposed strategy. The case studies validated that the proposed sensor distribution in a
single station can achieve higher detectability with fewer resources, and the optimization path strategy can achieve the best
performance in two proposed experiments, compared to the shortest path and noninferior path strategies.

1. Introduction

CPMTS (cyberphysical machining tool systems) with an
open architecture are essential to individualized industries
(small batch and various types) in modern manufacturing,
as their hardware, software, and bus specifications have an
open architecture design [1, 2]. Thanks to their advantage
in flexibility, adaptability, versatility, and expansibility, end
users can realize their customized functions by developing
algorithm modules and capture the information flow as they
need [3]. For CPMTS, sensors act as one of the core compo-
nents to provide the vital link between control systems and
the physical world, which means sensors and sensing tech-
nologies constitute the fundamental basis in the perception
layer. In particular, wireless sensor networks (WSNs) have
become an active area in researches, as WSNs can overcome
some limitations of wired sensor networks such as the com-
plexities of installation, the high failure rate of connectors,
and the difficulties in troubleshooting an individual sensor.

The performance of CPMTS critically depends on the
accuracy and efficiency of sensor measurements on faulty
symptoms and monitoring quantity. Improper sensor
deployment leads to insufficient or inaccurate measurements
which may cause functional abnormalities and even person-
nel injuries. Although redundantly sensing every physical
parameter of a system can reduce information loss, the
redundant sensor network may be cursed with an overload
on data analysis as well as cost. This is especially critical in
CPMTS, since system overload reduces real-time perfor-
mance, which will result in an abundance of serious
consequences. Moreover, due to limited communication
bandwidths, redundantly deploying sensors is regarded as
invalid.

At present, in the deployment of WSNs, many studies
have mainly focused on the lifetime [4–6], quality of service
(QoS) [7, 8], and network cost [9–11], since they are the most
critical issues. Chanak and Banerjee [12] presented a fault
node distribution and management approach based on fuzzy
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rules in WSNs, which implement the efficient route towards
the base station to reuse faulty nodes. It provides better
QoS and network lifetime. Awad [13] presented an analytical
framework for the optimal deployment of relay nodes of a
wireless network using a two-dimensional Gaussian distribu-
tion. Céspedes-Mota et al. [14] applied a multiobjective
differential evolution algorithm to jointly optimize the distri-
bution of the wireless sensors. Khalesian and Delavar [15]
proposed a constrained Pareto-based multiobjective evolu-
tionary approach (CPMEA) which was aimed at finding
Pareto optimal layouts that maximize the coverage and
minimize the sensor energy consumption for the sake of
prolonging the network lifetime while maintaining full con-
nectivity between each sensor node and the high-energy
communication node (HECN). Rahman et al. [16] used
two-sensor node deployment strategies: non-corona- and
corona-based sensor node deployment strategies to signifi-
cantly utilize the energy of the nodes and prolong the
network lifetime. Research on wireless sensor distribution
for manufacturing is very limited. Ko et al. [17] analyzed
interference at multiple-sensing nodes in FSN by applying
statistical methods to collected data; then, they proposed an
interference model to obtain optimal deployment strategies
that minimize the influence of interference. Wang et al.
[18] proposed the Enhanced Power-Efficient Gathering in
Sensor Information System (EPEGASIS) algorithm to allevi-
ate the problem of hot spots from three aspects: determining
optimal communication distance to reduce energy consump-
tion, setting the threshold value to protect the dying nodes,
and using mobile sink technology to balance the energy
consumption among nodes. Collotta et al. [19] proposed an
energy efficient method for data fusion based on fuzzy logic
to achieve QoS in WSNs. However, this method only aggre-
gates true information, instead of gathering complete data
from the WSNs.

There are, however, other concerns beyond those which
are ignored. In particular, memory allocation is a critical
problem when additional wireless sensors that match cus-
tomized functions are deployed in CPMTS where out-of-
memory errors may exist. Memory allocation has been well
studied in deeply embedded applications. Sánchez-Oro
et al. [20] proposed a parallel variable neighborhood search
algorithm for the dynamic memory allocation problem to
solve dynamic memory allocation problems in embedded
systems. Goens et al. [21] modeled the application in a
data-centric way, by explicitly defining buffers and associ-
ating computational tasks that access the buffers within
well-specified time intervals, and then presented a layered
approach to describe and solve the buffer-allocation prob-
lem as well as related subproblems, using mixed-integer
linear programming. Soto et al. [22] proposed two mid-
term iterative approaches to solve a static version of the
allocation problem, which have the best solution quality
compared to long-term and short-term approaches. In
addition, considering noise sources, WSNs may evolve into
a multiple hop network in which data transmission is
more difficult. Therefore, a good sensor deployment strat-
egy, which can result in a configuration with the optimal
performance while satisfying prespecified resource con-

straint criteria, must be developed to overcome such
problems.

Our goal is to establish a WSN deployment strategy
meeting the requirement of CPMTS (as shown in Figure 1)
and memory restriction, as a reliable solution for a
resource-constrained environment where wireless sensors
continuously monitor manufacturing processes. The main
contributions of this paper are as follows:

(1) A single-station transfer model that ensures the
detection capability of fault and monitoring data in
each sink is presented

(2) By using fuzzy graphs, a multihop-station transfer
model and a data-collecting model are developed to
describe the data flow and memory allocation in the
wireless network

(3) Taking noise interference and data position into sen-
sor path optimization, a MILP problem is formulated
and the optimization solution is obtained by using
the “branch and bound” method

The rest of this paper is organized as follows: Section 2
provides details of model development about the transfer
model and the data-collecting model. Then, Section 3 pre-
sents the optimal deployment strategy under the MILP.
Section 4 illustrates detailed case studies. Section 5 highlights
the findings of this research and discusses future work.

2. Model Development

2.1. Single-Station Transfer Model. In manufacturing, the
quality of the sensor signal is strict, especially for WSNs
where it is necessary to ensure that the sensing data can be
obtained accurately and quickly by a numerical control sys-
tem. Thus, a multihop WSN where multiple sinks are used
to ensure data quality and to avoid noise sources is the key
to solving this problem. To better describe the flow of infor-
mation in multihop WSNs, based on the stream of variation
(SOV) theory [23], we present a single-station transfer model
preferentially, as shown in Figure 2.

Xi ∈Upx1ði = 1, 2⋯ nÞ represent the flow of failure and
measurement information between two adjacent depths
(depth i and depth i − 1). Ti ∈Uqx1 is the relay information
from the sinks at the same depth. The pickup information
of sensors in sink i is denoted by Yi ∈Uvx1. Sensor noise,
denoted by ξi and ηi, are vectors of uncorrelated random
variables with zero means. Then, the single-station transfer
model in sink i can be expressed as follows:

Xi =Ai+1Xi+1 + BiTi + ζi,

Yi =CiXi + ηi i = 1, 2,⋯n:
ð1Þ

Here, dynamic matrix Ai+1 means data attenuation or
enhancement during the signal transmission between two
adjacent depths. Likewise, dynamic matrix Bi+1 indicates
the data attenuation or enhancement at the same depth.
The system matrix Ci is determined by the layout structure
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of the sensor attached to sink i. As we know, sink i is the base
station that transmits the data obtained by its sensors to the
next station. So, using fuzzy graph GF = ðE ∪ R, B ∪ S ∪DÞ,
the relationship among sinks, sensors, and monitoring data/
fault can be described in Figure 3.

The fuzzy graph is composed of base station node B,
sensor node S, data node D, and detection characteristic edge
E as well as data transmission edge R. Data node D, consist-
ing of monitor volume priority (P), fault severity (F), occur-
rence rate (O), and detection rate (D), can be represented by
priority number (PN). The PN value can be calculated by
multiplying the ranked P, F, O, and D values from FEMA
and algorithm configuration information, as PN = P × F ×
O ×D, PN ∈ PN. Here, the higher the PN value is, the higher

priority for monitoring and corrective action should be
given. Similar to the data node, the sensor node includes
the information of signal-noise ratio (SNR), sensitivity
(sen), resolution (res), and accuracy (acc). The sensor index
(SI) is used to put the above factors together; then, the SI
value is SI = SNR × sen × res × ð1 − accÞ, SI ∈ SI. The base
node, with the information of the sensor data transmission
ratio (SDTR), reflects the information transmission ability
between the sensor and the base station. The SDTR value
can be calculated as dividing data gain (DG) by sample time
(ST) as SDTR = DG/ST. Besides, like the base node discussed
above, sensor data index (SDI) including sensing gain (SG)
and sample time (ST) is denoted to reflect the detectability
between sensors and data. The SDI value can be calculated
as SDI = SG/ST. The value discussed above needs to be
normalized into comparable values based on the fuzzy mem-
bership function [24]. Taking the PN value as an example, we
define a membership function f A as fuzzy subsetA on the PN
set. There exists a mapping from generic elements PN on PN
to fuzzy subset A. Then, we can map the PN value for differ-
ent types of data into comparable values between 0 and 1:

f A : PN⟶ 0, 1½ �: ð2Þ

The connection path (i.e., from node D to S, then to B)
can be divided into two parts. One is considering fuzzy nodes
D, S, and edge E; then, the path from Di to Sj is defined as
pij = ðDi, SjÞ, where PDS is the set of pij. The other is consid-
ering fuzzy nodes B, S, and edge R. The path from Sj to Bz can

Sink iXi+1 Xi

Ti

Yi

Depth i

𝜂i

𝜉i

Figure 2: Single-station transfer model in depth i.
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Figure 1: Cyberphysical machining tool system.
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be defined as qjz = ðSj, BzÞ, where PSB is the set of qjz . Then,
the connection path CP can be defined as follows:

CP = PDS ∪ PSB: ð3Þ

There may exist more than one path from data node D to
sensor node S, as shown in Figure 3, so equation (3) needs to
be modified as follows:

CP = PDS1, PDS2,⋯, PDSnð Þ ∪ PSB: ð4Þ

After confirming the connecting path and calculating
values on the B, S, and D nodes, the values of edge elements
R and E in the graph are critical to represent the cause-
effect relationship from the sensor detectability to data and
transmission ability from sensors to the base station. When
it comes to edge value determination, multiple attributes like
data, sensors, data-sensor relations, and base station and
sensor-based relation will affect sensor deployment on data
monitoring/fault diagnosis. This paper uses the analytic hier-
archy process (AHP) to integrate these properties into edge
element values in the fuzzy graph. The detailed calculation
process is in reference [24]. We summarize the results that
will be used in this paper. The edge value of E and R can be
described as follows:

E = PN, SDI, SI½ � × PVPN, PVSD, PVS½ �T ,

R = SI, SDTR, DG½ � × PVS, PVSDTR, PVD½ �T:
ð5Þ

Here, PV = ðpv1, pv2,⋯, pvnÞ can be obtained by gener-
ating the comparison matrix CMn to calculate the geometric
means of each row and relative priorities. In addition, we
define a set E that includes all the edge values of E, and detec-
tion coefficient φi ∈ SDI is represented to reflect the detection
capability of each sensor to the fault/monitoring data. Simi-
larly, a set R that includes all edge values of R is defined,
and π ∈ SDTR is used to reflect the transmission capability
from the sensor node to the base node. When π is equal to
zero, it means that the sensors at sink i cannot monitor data/-
fault j or the layout of the sensors is invalid. Otherwise, when
π is equal to 1, it means that the sensors at sink i can meet the
monitoring requirements with respect to data/fault j. Besides,
π ∈ ð0, 1Þ means that transmitting part of the data from
sensors to the sink has failed, which means a new layout plan
of sensors or sinks needs to be put forward.

2.2. Multihop-Station Transfer Model. To better describe the
data flow in WSN of CPMTS, we extend the single-station
transfer model. Taking noise interference [16] and heteroge-
neous sensors into consideration, this paper presents a
hierarchical architecture to ensure detectability and diagno-
sability, as shown in Figure 4. We assume that one single sink
can only be connected to a certain sink at the same time,
which means a plural connection is not allowed. The trans-
verse direction elements represent the flow of information
between different depths in the manufacturing process, and
longitudinal direction elements refer to the flow of informa-
tion at the same depth. The index of sinks at the same depth
is denoted by sinki

ðnÞ, i, n = 0, 1,⋯k.
Path connection with the proposed model is determined

as the data path from depth i to depth n represented byWT
i,n

and the data path at the same depth represented by VT
i,n. For

example, if there exists a data flow from depth i to depth i − 1,
then WT

i,i−1 = 1, otherwise is 0. Thus, the input-output
model of the system can be obtained as follows:
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Figure 3: A fuzzy triplicate graph for BSD.
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Here, θ = ½θ1, θ2,⋯, θn�, θn =Vn,n−1 · ξn + ηn. A detailed
diagnosability analysis of equation (6) was reported in [24].
We summarize the results that will be used in this paper.
The covariance of equation (6) with respect to Y is as follows:

〠
Y

=W〠
X

WT + V〠
T

VT + V〠
θ

VT : ð7Þ

In equation (7), ∑Y is known for the percentage of the
sensor information obtained by the corresponding sink,
and the eigenvalue is defined as λ. The transmission capabil-
ity of the sink i can be represented by μ, where uij is the trans-
mission capability from the sink i to sink j. The transmission
capability coefficient uij is as follows:

uij =
λi
λj

i ≠ j

1 i = j

8<
:  i ≥ 1, n ≥ j: ð8Þ

From equation (8), we can conclude that when uij is equal
to zero, sink i cannot transmit data to sink j, or sink i failed to
transmit data to the next depth. Otherwise, when uij is equal
to 1, it means that sink i can meet the transmission require-
ments with respect to sink j. In addition, when uij is between
0 and 1, it means that transmitting part of the data by sink i
has failed or transmission capacity is limited.

2.3. Data-Collecting Model. In CPMTS, the wireless sensor
network in a sensing layer undertakes the task of data acqui-
sition. Each sensor transmits a large amount of data to the
system per unit time. Although the sensor redundancy
arrangement can make the algorithm get better data support,
it will greatly increase the system burden, as well as data read-
ing and writing errors. Here, we use a data-centric approach
by explicitly defining a buffer and associating the task of
accessing the buffer at a specified time interval, and then a
data flow model is obtained to maximally balance the band-
width of channels and memory usage.

In this paper, we consider hardware architectures of the
data-collecting model consisting of processing elements,

storage elements, and simple interconnections, as shown in
Figure 5(a). As it is commonly done, we represent the actual
model as a fuzzy graph GDF = ðV ′, E′Þ, as shown in
Figure 5(b). To abstract the hardware, two sets,M and P, rep-
resent the storage elements (logic buffer and shared memory)
and process elements, respectively. And then, two nodes cstart
and cend are defined to represent the interconnection between
two elements. Hence, V ′ in graph GDF can be described as
V ′ =M ∪ P ∪ fc1,start, c1,end, c2,start,⋯g. We denote the edges
e′ ∈ E′ with the bandwidth denoted by bwðe′Þ of the inter-
connection in kilobytes per second (kbps). In addition, the
direction of the edge expresses the possibility of access. For
example, an edge e = ðvstart′ , vend′ Þ means that vstart′ with all its
accessory elements can access vend′ . Notice that access or com-
munication is valid only between two nodes, which allows the
simple modeling of access rights via edge directions in the
graph while retaining much descriptive power.

A data-collecting or data-transmitting application is
modeled as a collection of data buffers and tasks that access
these buffers at an arbitrary instance of time. We define a
five-tuple (p, lb, d, t1, t2) to represent a read or write access
with a bandwidth demand of d kbps from the processing unit
p to the logic buffer lb (i.e., lb ∈M, with a function of size (lb))
to represent the size in byte of each logic buffer. The write or
read access starts at t1 and ends at t2. Hence, a data flow at
any interval of time can be represented as f i = ðpi, lbi, di,
ðt1Þi, ðt2ÞiÞ, f ∈ F. For example, the flow of f3 = ðp3, lb3,
600,5,7Þ indicates that the processing unit p3 reads or
writes 600 kbps of data from buffer lb3 during time
intervals 5 to 7.

For now, our goal is to find a suitable solution to achieve
efficient allocation from buffer to shared memory under the
restriction of bandwidth and memory size, which means that
at every edge the bandwidth capacity is not exceeded by the
sum of demands going through it. To simplify the model,
we firstly consider it at a single time point. Consider set Π
of all paths in the fuzzy graph GDF. Since the paths in
Figure 5(b) are unidirectional, the data flow path from
processor pi to storage element mj can be represented as

f pðpi,mjÞ = ðpi, v0′Þ ∪ ðv0′ , v1′Þ ∪ , ⋯ , ∪ ðvk′ ,mjÞ. Note that

Sinki(n) Sinki–1(1)

Depth i Depth i–1

Xi Xi–1

Ti–1(2)

Ti–1(n)

Router
X1

Termination
Depth 0

Sinki–1(2)

Sinki–1(n)

𝜉2

𝜉n

Figure 4: Multihop-station transfer model.

5Journal of Sensors



the path from p2 to m3 is invalid because no path allows
p2 access to b3. Then, a binary variable Pf ,π for every pair
of flow f ∈ F and a path π ∈Π is presented, where Pf ,π = 1
indicates that flow f is routed via path π.

Based on the full-time spectrum theory [21], time opera-
tor Tk ⊆ T is introduced to represent time frame in blocks, so
all time dependencies can be handled at once instead of a

single time point. To ensure that data flow is efficient, for
all edges e′ ∈ E′, the amount of data cannot exceed the band-
width at any time point. Note that in the wireless sensor node
layout there exists relay nodes that avoid noise interference
and extend the coverage area. As a relay node, the total trans-
mitted data at all time dependencies should be within the
bandwidth limitation, which means

Every buffer should allocate in exactly one memory, so
we define two additional binary variables that represent
the allocation. Alb,mðlb,m ∈MÞ indicates that the data in
the logic buffer can be transmitted into shared memory,
where Albi,mi = 1 means that the data in logic buffer lbi is
allocated in the shared memory mi. What’s more, MI
Dlbi,lbj indicates that base station si transmits data to the
relay station sj. Likewise, MIDlbi,lbj means that the data

in the logic buffer lbi is allocated in the logic buffer lbj
of the relay station. Note that the flow of data includes
the allocation, which means

〠
f ∈F

πk∈ft pi ,lbið Þ

Pf ,πk
= Alb,m: ð10Þ
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Figure 5: Data-collecting architectures and corresponding fuzzy graph GDF.
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〠
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� �T
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� �
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Taking relay station and entire time dependencies into
consideration, the condition for explicit mapping between
logic buffer lb and shared memory m is

〠
m∈M

lb,lbi,lbj∈M,life lbð Þ∩Tk≠ϕ

Alb,m MIDlbi,lbj + 1
� �

≠ 0:

ð11Þ

Here, lifeðlbÞmeans the logic buffer lb is available at time
point Tk. A further condition is that the memory sizes are not
exceeded by the sum of the buffers allocated there.

〠
m,lbi,lbj∈M
life lbð Þ∩Tk≠0

Albj,msize lbj
� �

+MIDlbi,lbjsize lbið Þ ≤ size mð Þ:

ð12Þ

From equation (9) to equation (12)), it is ensured that at
no point in time will the total size of all buffers exceed the size
of the available memory. A new condition should be taken
into account so that when the buffer is allocated in memory,
no matter if there is enough space or not, the position of the
buffer will affect the allocation. We introduce the integer var-
iable Db to represent the first memory address of logical
buffer lb. And the first available address of memory can be
represented as Mb. To ensure that the allocation is valid,
which means the data is cached in shared memory and the
logical buffer blocks in shared memory are contiguous, the
following limitation needs to be considered. The condition
for valid memory allocation is that the first logical buffer
address in memory is forward to the first available address
of memory, and the total size of the logical buffer in shared
memory is less than the shared memory size. Taking the relay
station problem into consideration, we can formulate the
above problem:

〠
Dbi+size bið Þ∩Dbj+size bjð Þ=ϕ

Dbi + size bið Þ + size bj
� �

≤Mb + size mð Þ,

Dbi ≥Mb:

ð13Þ

Notice that overlap between two buffers lb1 and lb2 is not
allowed in allocation, which means Db1 + sizeðb1Þ ≤Db2.

3. Optimal Sensor Distribution Strategy

3.1. Sensor Path Optimization. At present, wireless sensor
optimal distribution strategy focuses on two aspects: one is
to minimize the number of sensors in order to control overall
cost. The other is to prolong the lifetime of the wireless sen-
sor network. However, relay stations, which play an impor-
tant role in data transmission, control the flow of data,
thereby, directly affecting the quality of data transmission.
A reliable data transmission path can reduce noise interfer-
ence and improve the accuracy of data transmission. Here,
based on data flow, we optimize the data path from one arbi-

trary base node to the router. To simplify the problem, we use
a 4 × 4 square grid space to represent the multihop-station
transfer model, where (i, j) is the index of each segment.
The 4 × 4 square grid space is shown in Figure 6, with the
depth from D0 to D3.

Assumptions in the sensor path optimization are as
follows:

(1) Data can only be transmitted in one direction at the
same time, horizontal or vertical, between depths or
within layers

(2) There is only one base station (i.e., sink) located at
the center of each grid segment, and the distance
between two arbitrary base stations is within commu-
nication range Rc

(3) Interference by a noise source affects every sensor
node individually. Thus, the level of noise is additive
and the total interference effect in each grid segment
is proportional to the number of sensors in the
segment

(4) Noise source is located at (1,2)

(5) Sensors in each grid segment satisfy requirements of
detection and diagnosis

The goal of our optimization is to make the sensor path
shortest and avoid the impact of noise, so that data can be
transferred accurately and quickly. To achieve this, three
cases need to be taken into consideration. The first case is
memory overload (see Figure 7(a)): during the transmission
of data from a base station to a relay station, there may be
situations in which the relay station cannot receive the
transmission data completely due to the overload of data.
The second case is insufficient bandwidth (See Figure 7(b)):
in this situation, due to bandwidth limitation, data cannot
be transmitted to the relay station completely. The last case
is electromagnetic interference (see Figure 7(c)): when the
path contains strong electromagnetic interference, it is
impossible to ensure the accuracy and completeness of data,
which is forbidden in CPMTS.

For manufacturing systems that are less affected by
electromagnetism, we can figure that the shortest path from
depth 3 to depth 0 is toward the lateral propagation. For
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Figure 6: A 4 × 4 square grid space.

7Journal of Sensors



example, the shortest path from segment (3,0) to segment
(0,0) is ð3, 0Þ ∪ ð2, 0Þ ∪ ð1, 0Þ ∪ ð0, 0Þ. However, the cost in
sensor distribution is one of the primary targets, and too
many routers in depth 0 can cause poor system robust-
ness. So the optimization can be expressed to find a valid
path to minimize resource consumption. To achieve this, a
4 × 4 directed graph matrix G is defined, where Gi,j means
the amount of data gathered by sensors. Note that Gi,j = 0
means strong electromagnetic interference in this segment
that forbids data from passing through. A path matrix
D4×4 is defined to represent the collection segments from
the beginning ðD1 −D3Þ to the end ðD0Þ, where Di,j means
the total amount of data transferred by the relay segment.
Taking the segment (3,3) with the amount of 400 kB of
data as an example, its corresponding Dð3, 3Þ is 400,
because segment (3,3) cannot be a relay station. If segment
(i, j) is a relay station, its value consists of sensor data in
the relay station and transmission data from other base
stations. Note that Di,j = 0 means that this segment is
not a part of the selected path.

A valid route should satisfy the following conditions:

(1) Since the data can only be propagated along the −X
direction and the +Y direction, in order to make
one arbitrary segment belong to the path, it should
satisfy the following conditions: the segment has the
transfer data and the path matrix of this segment is
not 0

Gi,j ≠ 0 ∧Di,j ≠ 0 ∃0 ≤ i, j < 4: ð14Þ

(2) λb is introduced to represent the portion of band-
width that the base station is allowed to use from
the actual bandwidth. Note that the stability of
CPMTS is the key to ensure processing; however,
the excessive bandwidth utilization and data overload
will not only reduce system robustness but will also
reduce machining quality. At the same time, the data

transmitted by the base station should be within the
bandwidth restriction

Gi,j ≤ λbbwi,j eð Þ, ð15Þ

where λb = 0:8 ensures that the robustness of the sys-
tem can be guaranteed on the basis of transmission
efficiency

(3) Whether a path can connect with the next segment
depends on its capacity, which means

〠
3

m=1
Gi,j +Gi−m,j ≤ lbi−m 〠

3

n=1
Gi,j +Gi,j−n ≤ lbi−m

����� :

ð16Þ

(4) If the path consists of many segments, more time will
be consumed. Note that, for the data acquisition task,
the total of consumed time should be under the
restriction of the sampling time. A 4 × 4 time matrix
T′ is introduced to represent the time that the cur-
rent segment transmits data to the next segment.
Let D′ represent the normalized matrix of D, where
Di,j′ = 1 means there exists a segment that is a part of
a valid path

D′T′ ≤ t, ð17Þ

where t is the sampling time. Note that the route may
not be unique, so considering the robustness of the
system and the lifetime of the base station in each
segment, the optimal solution with the minimum
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Figure 7: Three possible cases in data transmission.
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average memory occupancy rate and bandwidth
occupancy ratio can be expressed as

Minimise

1
n
⋅〠

i

〠
j

Di,j

lbi,j

1
n
⋅〠

i

〠
j

Di,j

bwi,j eð Þ

s:t:

Di,j

lbi,j
≤ 1

Di,j

bwi,j eð Þ ≤ 1:

ð18Þ

When electromagnetic interference occurs, due to the
strong radiation energy in the interference source center,
the segment with the electromagnetic interference source
cannot transmit data to the other segment. The redundancy
arrangement of sensors is usually used to reduce the influ-
ence of electromagnetic interference on the surrounding area
of the interference source [20]. Thus, to ensure the quality of
data transmission, the path of data flow should go through
the area with less interference. The level of interference is
proportional to the radiation energy of the noise source.
Since energy is inversely proportional to the square of the
distance, interference level at (i, j) is

NL i, jð Þ = n ⋅ gi,j
i − 2ð Þ2 + j − 2ð Þ2 α

n⋅gi, j : ð19Þ

Here, gi,j ∈ ð0, 1� is sensor density at segment ði, jÞ, n is
the number of sensors, and α ∈ ð0, 1� is noise reduction
parameters. Hence, the segment in an optimized path should
be under allowable noise interference NLmax.

NL i, jð Þ ≤NLmax i, j ∈ 1, 4½ �: ð20Þ

Due to the existence of electromagnetic interference and
redundant arrangement of sensors in segments, a valid route
that meets equations (14) to (20) may not exist. Normally,
changing segment location can address this issue; however,
it costs too much and the integrity of the system is vulnerable
to disruption. In this paper, an extended matrix Gði+kÞ,ðj+sÞ′ is
intended to create a new path for the disabled segment, where
k is expansion depth and j is the extension layer. To obtain a
valid route under the original basis, we map the element in
Gi,j into the extend matrix Gði+kÞ,ðj+sÞ′ ,where gi,j = gi+k,j′ . Then,

we modify the path D′ by determining the starting and
ending points of the path. To ensure the shortest path, dis-
criminant matrix Onei+k,j+s is introduced, where the rank of

Onei+k,j+s is 1. So, the minimum of D′ ·One corresponding

to D′ is the shortest route.
Note that isolated islands may occur during path optimi-

zation, which means that there is no valid path for the data in
this segment to be effectively transferred or the resource uti-

lization of some segment in path optimization is almost full.
For instance, as shown in Figure 6, when electromagnetic
interference occurs in segment (1,2) where the redundant
arrangement of sensors is applied in the segment nearby,
no valid path exists. At this time, in order not to change the
overall structure of the sensors, we extend the current seg-
ment to the next layer and take depth expansion, so that
the current segment can reach depth D0 with the shortest
effective route. If it is difficult to transmit data between
routers in depth D0, an additional router is used in the
extended segment in D0. Finally, if the current extension
layer does not meet the requirements, keep repeating the
above steps tom layer. Since there are no sensors in each seg-
ment of the extended layer and electromagnetic interference
is low, m is equal to 1.

3.2. MILP Formulation. From the equations discussed above,
we can see that sensor path optimization is a multiobjective
optimization problem. However, in multiobjective issues,
optimization of a target may lead to deterioration of other
objectives. When the objective function is in a conflict state,
there will be no optimal solution to make all the objective
functions reach the maximum or minimum value at the same
time, so we can only seek the noninferior solutions (or Pareto
solutions). As bandwidth utilization within a certain range
has less impact on the system in the process of data flow,
the “Constraint Model” is used to get optimization solutions
from Pareto solutions, where average bandwidth usage is
limited to 80%. Then, this objective can be entered into the
conditional constraint group as a constraint condition.
Now, the problem for sensor path optimization is related to
the well-known “multi-commodity flow problem” (MCFP)
in optimization. In contrast to the MCFP, however, we do
not want to allow multiple simultaneous paths through the
graph, since this would imply sending the data fragmented.
Instead, mixed-integer linear programming (MILP) is used
for the following reasons: on one hand, the MILP formula-
tion allows users to flexibly extend the formulation gradually
in order to solve the complete sensor path optimization prob-
lem. On the other hand, the formulation of constraints is very
canonical, and can thus serve as a basis for future work for
finding heuristics by clearly defining which constraints
should be met. Based on all the definitions and equations
given previously, we can formulate a MILP problem, as
shown in Figure 8, to optimize the sensor path.

There are several ways to solve the MILP problem. One is
linear programming (LP) relaxation, which uses linear pro-
gramming to solve the integer programming problem [11].
However, it attempts to use the approximate procedure of
simply applying the simplex method to the LP relaxation
and then rounding the noninteger, which will lead to an
uncertain optimal integer solution. For this, we use another
method called “branch and bound” to systematically enu-
merate all candidate solutions, then discard large subsets of
fruitless candidates, by using upper and lower estimated
bounds of the quantity being optimized. The key to the
remarkable efficiency of the branch and bound method lies
in removing some feasible solutions from a linear program-
ming problem which will make it easier to solve.
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3.3. Optimization Strategy. The basic ideas of optimization
strategy can be expressed as follows: first, on the basis of
ensuring that the sensors of each base station can accurately
obtain the monitoring quantity and signal quantity, the num-
ber and position of sensors in the base station are optimized.
Next, the flow paths of sensing data in each base station are
optimized so that the gathered data can be transmitted along
the shortest path with fewer system resources. Then, system
resource utilization is optimized to increase the robustness
and integrity of CPMTS. The details of the optimization
strategy are shown in Figure 9.

Step 1. Import the single-station transfer model to optimize
the number and location of sensors in each base station using
equation (1) to equation (5). (Complexity: OðnÞ.)

Step 2. Importing the multihop-station transfer model to
develop the multihop WSN. (Complexity: OðnÞ.)

Step 3. If πij = 1 and uij = 1 (i.e., sensors at sink i can meet the
monitoring requirements with respect to monitoring data/
fault j, and data can be transmitted between sinks), import
base station location information. (Complexity: Oð1Þ.)

Step 4.According to base station location information, gener-
ate data flow paths. The maximum number of tool paths is
Logm n, because the maximum number of data flow paths is
equal to the number of group levels minus one. Note that
group levels are Logm n + 1. (Complexity: Logm n.)

Step 5. Taking electromagnetic interference into consider-
ation, modify the generated path to ensure the accuracy of
data. (Complexity: Oð1Þ.)

Step 6. Using the “branch and bound” method to solve the
MILP problem shown in Figure 8, the optimization path is
obtained. (Complexity: Oðn2Þ.)

From the steps discussed above, the complexity of opti-
mization algorithm is Oðn2Þ. Similarly, the space complexity
can be obtained as Oð1Þ.

4. Case Study

4.1. Experimental Set-up. The proposed wireless sensor
deployment strategy is illustrated by a cyberphysical network
system, and the corresponding layout information is shown
in Table 1. Notice that strong electromagnetic interference
appears in layer 2 of depth 2 so that no sensor is deployed.

Figure 8: MILP problem.
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Affected by strong electromagnetic interference in sink 9,
sink 3 and sink 8 in layer 2 of depth 1 and depth 3, and sink
5 in layer 1 of depth 2, respectively, suffer from medium
interference. No sinks are in layer 3 which means layer 3
can be considered as an extended layer. The distance between
layers is within 10m and the distance between depths is
within 10m.

To simplify the experimental system, only one CNC with
an open structure, shown in Figure 10, is relevant to sink 1,
and other sinks (from sink 2 to sink 8) are not directly
embedded in the numerical control system, which means
sensor data from sink 2 to sink 8 only guarantee data volume
in data paths but cannot participate in linkage control. The
sensors consisting of hall sensors, temperature sensors, and
acceleration sensors that are arranged in this experiment
provide data support for the intelligent algorithm module
of the open CNC system to expand the thermal characteristic
detection of the machine tool spindle and the condition
detection of the cutting tool. The sink used in the experiment
is LINKQI PBOX1121 which meets the IEEE802.11 standard
with 128M memory and a baud rate of 9600.

4.2. Optimal Sensor Distribution on a Single Station. Taking
the VMC-C50 machine tool (shown in Figure 10) monitor-
ing thermal characteristic and tool conditions in the finishing
end mill process of HSS (high speed steel) as an example

Start

Import single station
transfer model

Optimize the number
and location of sensors

Import multihop
station transfer model

N

Y

Generate data flow path
D (i) ∈ D

Import base station
location information

D (i) satisfy
equation. (15)-(18) D (i+1) ≠ ∅N

Y

NN

Solving the MILP
probl em

Optimization path

Y

Y

Finish

N

Y

NL (i, j) ≤ NLmax Σ NL (i, j) = 0

πij = 1
&uij = 1?

Extract
optimization solution

Figure 9: Flow chart of optimization strategy.

Table 1: Layout information.

Depth
D0 D1 D2 D3

Layer

L0 Router Sink 1∗ Sink 4∗ Sink 6∗

L1 — Sink 2∗ Sink 5∗∗ Sink 7∗

L2 — Sink 3∗∗ Sink 9∗∗∗ Sink 8∗∗

L3 — — — —

—: without sink. ∗Interference level.
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verifies the effectiveness of a sensor-optimized distribution in
a single station (i.e., sink 1). Spindle speed is 3000 r/min, feed
is 0.03mm/z, cutting depth is 0.3mm, and sampling fre-
quency is 1000Hz. By using trapezoid membership functions
to normalize the sensor nodes, fault nodes, and base nodes,
the initial fuzzy bipartite graph is shown in Figure 11, and
characteristics of sensors and fault/monitoring volume are
listed in Table 2. In addition, the transfer coefficient and
the detection coefficient of each sensor node are listed in
Table 3.

With the fuzzy graph and transfer coefficient, the optimi-
zation results of sensor deployment in the single station are
listed in Table 4. In Table 4, there are four sensor selection
strategies when electromagnetic interference is low. We can
figure out that the maximum value of the detection coeffi-
cient is 0.4625, corresponding to unobservability which is
-10. Although increasing the number of sensor points can
further reduce unobservability, it cannot improve the detec-
tion coefficient, which may cause sensor redundancy. More-
over, we can find that sensor nodes S1, S2, and S5 are fixed.
According to transfer coefficient π in Table 3, spindle torque
overload (R1) and spindle overheat (R2) are mainly based on
a single sensor node (S1 and S2, respectively), and in order for
S1 to have certain monitoring capability for the remaining
failure/monitoring quantity, sensor nodes S1 and S2 are
required. What is more, sensor node S5 is also a required
node because it has the best detection capability for tool con-
ditions. Hence, we choose eight sensors (S1, S2 (2), S3 (2),
S4 (2), and S5) to gain the best result. When electromag-
netic interference occurs, there are two sensor selection
strategies for different levels of interference, which ensure
the average detection coefficient is 0.4 and unobservability
is -10.

4.3. Path Optimization Experiment on Multihop Station

4.3.1. Path Optimization with Valid Solutions. With the help
of optimization results on a single station, the sensor distri-
bution strategy of the rest of the base stations is similar.
The detection capability of each base station on fault/moni-

toring quantity is shown in Table 5. Note that sink 9 is
located in layer 2 of depth 2, where strong electromagnetic
interference occurs, so wireless sensing signals cannot be
transmitted.

Considering that data flow from sink 8 to the router is the
most representative, we optimize the data path in sink 8. The
MILP problem proposed in Section 3.2 was programmed in
LINGO, and we can get the optimal solution of the data path:
sink 8-sink-7-sink6-sink 4-sink1-router. In contrast, we
choose a Pareto solution (sink 8-sink 7-sink 5-sink 2-sink
1-router) and the shortest path solution (sink 8-sink 9-sink
3-router). In this paper, we evaluate the performance of
different paths from four aspects: average memory utiliza-
tion, average bandwidth occupancy, data accuracy, and aver-
age latency. The spindle speed of open CNC is 3000 r/min,
the total processing time is 120min, and the permissible
bandwidth is 20 kb·s-1. In addition, we assume that the
sensors in each sink are enabled, respectively, from D3 to
D1 and L2 to L0. The average memory utilization and aver-
age bandwidth occupancy for each solution are shown in
Figures 12 and 13.

From Figure 12, we can see that in the initial phase, only
sensors in sink 8 are enabled on all three paths, so the average
memory utilization is the same. With sensors in other depths
being enabled, due to a reduction of the influence of electro-
magnetic interference, the noninferior solution path adopts
redundant configuration, which increases the average mem-
ory usage rate obviously. Although the average memory uti-
lization of the optimal path still increases, the rising rate
compared to the noninferior solution path is much slower,
which ensures the accuracy of data transmission. Since the
shortest path contains fewer sensors, the average memory
usage is minimal. Note that although both the noninferior
solution path and the optimal solution path are under mem-
ory constraint, the memory usage of the noninferior solution
in sink 1 is approximately 90% compared to 80% of the opti-
mal solution. Memory usage of the noninferior solution path
in sink 1 will greatly increase the load of an open CNC sys-
tem, which reduces the real-time performance of the system.

Figure 13 shows that the average bandwidth occupancy
of each path can meet the requirement. The bandwidth curve
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Figure 11: Initial fuzzy bipartite graph.

Figure 10: VMC-C50 CNC with open structure.
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of the optimal solution is smoother than the noninferior
path, which means bandwidth usage mutation that increases
packet loss and affects data transmission will seldom occur.
In addition, the lower bandwidth allowance of the noninfer-
ior path prejudices the expansion of WSN networks. Note
that the shortest path still obtains the best result among the
three paths, regardless of the electromagnetic interference.

Due to the influence of electromagnetic interference,
packet loss and data errors may occur. In this paper, the
problem data and lost data are judged by the parity bit in
the data packet, and the comparison between total data and
data loss/error data is shown in Figure 14.

We can see that the optimized path avoids electromag-
netic interference, which reduces the average delay of data
transmission at all levels of base stations and improves the
accuracy of data transmission. Moreover, only 0.001% of
the data that accumulated to 1310400B in 120 minutes lost
packets, while no data errors occurred. For the noninferior
path, there are several base stations (sink 5, sink 8) with
medium interference in the path, so the packet loss rate
reaches 11% and contains 1.35% error data. It can be seen
that the optimization path with less electromagnetic interfer-
ence performs better in data accuracy and packet loss. Since
different paths contain different numbers of sensors, the total

Table 2: Characteristics of sensors and fault/monitoring volume.

Component Fault/monitoring volume Object Severity Occurrence rate Detection rate Sensor

Spindle
Spindle torque overload R1 8 0.6 9 S1

Spindle overheat R2 8 0.5 8 S2

Cutting tool

Tool worn R3 8 1.0 8 S3
Tool break R4 8 1.0 7 S4
Tool chatter R5 7 0.1 8 S5

Table 3: Transfer coefficient π and detection coefficient φ.

Fault
Hall sensor S1 Temperature sensor S2 Acceleration sensor S3 Acceleration sensor S4 Acceleration sensor S5
φ π φ π φ π φ π φ π

R1 0.645 1 — — — — — — — —

R2 0.645 10-5 0.717 1 — — — — — —

R3 0.517 10-5 — — 0.816 1 0.816 1 0.817 1

R4 0.472 1 0.706 10-5 0.813 1 0.813 1 0.818 1

R5 0.410 1 0.713 10-5 0.827 1 0.825 1 0.828 1

Table 4: Optimization results.

Average required detectability Sensor select Achieved unobservability Interference

0.1 S1, S2, S5 -2 Low

0.2 S1, S2, S3, S4, S5 -5 Low

0.3 S1, S2, S3 (2), S4 (2), S5 -8 Low

0.4 S1, S2 (2), S3 (2), S4 (2), S5 -10 Low

0.4 S1 (2), S2 (2), S3 (2), S4 (2), S5 (2) -10 Medium

0.4 S1 (2), S2 (3), S3 (4), S4 (4), S5 (2) -10 High

Table 5: Fault/monitoring volume detection capability on each sink.

Sink 1 Sink 2 Sink 3 Sink 4 Sink 5 Sink 6 Sink 7 Sink 8 Sink 9

R1 o o o o o o — — —

R2 o o o o o o — — —

R3 o — o — o — o o —

R4 o — o — o — o o —

R5 o — o — o — o o —
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data amount also varies. Although the shortest path performs
well in terms of average memory utilization and bandwidth
occupancy, it also has the highest packet loss rate and error
messages. For the shortest path, the relay station must be
arranged on sink 9, where strong electromagnetic interfer-
ence occurs. It gets the worst performance with 40.8% data
loss and 13.5% error data.

In Figure 15, the comparison of the latency of three paths
is presented. The average latency in the optimization path is
32ms, with the highest latency of 45ms and the lowest
latency of 25ms, and the latency curve is smooth which
ensures the stability of data transmission. Note that there
are a few latency oscillations in the curve, and the reason
why latency oscillation occurs is that white noise occurs
irregularly and medium interference exists between sink 8
and sink 7. For the noninferior path, as the amount of trans-
mitted data (1663200B) is greater than the optimization
path, the latency will be higher even in the absence of inter-
ference. In addition, the relay station with medium interfer-
ence is chosen in the noninferior path, which will affect the
data transmission among three sinks (sink 7, sink 5, and sink
2). Hence, the average latency in the noninferior path is
70ms, with the highest latency of 89ms and the lowest
latency of 58ms. Note that the vibration of the noninferior
path is greater than the optimization path, and there are sev-
eral areas with strong amplitude vibration that is the mean
reason for data loss and error data. With the number of base
stations subject to electromagnetic interference increasing,
the delay between each base station increases and more error
data occurs. This phenomenon is well reflected in the short-
est path. As the path is through strong electromagnetic inter-
ference, the average latency is the highest at 109ms, with the
highest latency of 145ms and the lowest latency of 93ms.

4.3.2. Path Optimization with Isolated Islands. Isolated
islands may occur during path optimization, which means
that there is no valid path for the data in one segment to be
effectively transferred or the resource utilization of one seg-
ment in the path is almost full. In this paper, a strong noise
source is manually added in depth 3 of layer 0 to simulate
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the isolated island situation. The layout information is shown
in Table 6.

Due to the additional noise source, the sinks in depth 2 of
layer 0 and depth 3 of layer 1 are affected by the new noise
source, which make them both in medium interference level.
Further, a redundant sensor configuration should be applied
to sink 4 and sink 7. In this situation, there is only one valid
path (sink 8-sink 7-sink 5-sink 2-sink 1-router) to transmit
data. However, the memory usage of sink 1 in this path is
almost 100%, which will cause more unpredictable problems
when data transmission is in progress. Note that we call the
path discussed above the “noninferior path” and put it in a
comparison experiment. According to Section 3.1, we can
get two optimization paths by extending graph matrix G.
The first path is called the extensional opt path by adding
three sinks and a router (i.e., sink N1, sink N2, sink N3,
and router 3) in extended layer 3, and the data in route 3 is
transmitted to the router via Ethernet. The extensional opt
path is sink 8-sink N3-sink N2-sink N1-router 3-router.
We get the second path called optimization path by adding
a new sink in depth 0 of layer 1 to transmit data to the router.
The optimization path is sink 8-sink 7-sink 5-sink 2-sink
4-router. Note that no sensors are in the additional sinks.
In this experiment, we evaluate four paths (noninferior path,
extensional opt path, optimization path, and the shortest
path) from four aspects. The comparison of average memory
usage is shown in Figure 16, the average bandwidth occu-
pancy is shown in Figure 17, the data accuracy is shown in
Figure 18, and the average latency is shown in Figure 19.

From Figure 16, we can figure out that the average mem-
ory usage of the extensional opt path achieves the best results
because no additional sensors are used in the extended layer.
However, the cost in the extensional opt path will increase
greatly, and an extension path may not be generated due to
space constraints. Still, compared to the extensional opt path,
the shortest path gets a better result. Memory usage of the
optimization path and the noninferior path are high because
both of the two paths transmit data through many sinks with
a redundant sensor configuration. Note that the memory
usage of sink 1 in the noninferior path is almost 100%, which
will greatly affect data accuracy, latency, and so on. In con-
trast, the optimization path effectively reduces memory usage
by avoiding a busy station, which makes it possible to trans-
mit data accurately and efficiently.

Similarly, we can find that in Figure 17 the extensional
path and the shortest paths perform well in bandwidth occu-
pancy. Since the optimization path avoids busy relay stations,
the bandwidth occupancy is acceptable in spite of transmit-

ting data through sinks with a redundant sensor configura-
tion. The bandwidth occupancy of the noninferior path
performs worst but is still within the bandwidth restriction.

In Figure 18, no data packet loss and error data occur in
the extensional opt path due to its shorter distance from sink
8 to the router and the lower influence of electromagnetic
interference; thus, it achieves the best performance. Although
the optimization path avoids strong electromagnetic interfer-
ence and busy relay stations, it still has 7% data packet loss
and 1.1% error data, with the total data accumulated to
1260000B in 120 minutes. This is because the path involves
three medium interference segments which will reduce the
accuracy of data transmission. Even so, this is the optimal
route without adding shielding devices or changing the over-
all sensor layout structure. The noninferior path and the
shortest path contain more data packet loss and error data.
For the noninferior path, it also contains three medium inter-
ference segments, and more importantly, the transmission
data has to wait for memory release due to the full memory
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Table 6: Layout information of isolated islands.

Depth
D0 D1 D2 D3

Layer

L0 Router Sink 1∗ Sink 4∗∗ Sink 6∗∗∗

L1 Sink N4∗ Sink 2∗ Sink 5∗∗ Sink 7∗∗

L2 — Sink 3∗∗ Sink 9∗∗∗ Sink 8∗∗

L3 Router 3 Sink N1∗ Sink N2∗∗ Sink N3∗
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usage in sink 1, which cause more data packet loss and error
data.

In Figure 19, the average latency in the extensional opt
path is 15ms, with the highest latency of 25ms and the lowest
latency of 13ms, and the latency curve is smooth. Note that
only a few latency oscillations occur due to the white noise.
The latency curves of the optimization path (average latency:
86ms; highest latency: 108ms; lowest latency: 73ms) and
noninferior path (average latency: 95ms; highest latency:
133ms; lowest latency: 65ms) are more shaky than the short-
est path because the two paths transmit data through three
medium interference segments and the interference seg-
ments form a complex electromagnetic interference field.
Note that the transmission data of sink 1 in the noninferior
path has to wait for memory release, which increases the
latency and causes more oscillation. The shortest path still

performs the worst in latency because of the strong electro-
magnetic interference.

5. Conclusion

Wireless sensor optimization deployment is an important
research issue for CPMTS, and the accuracy and stability of
transmitted fault/monitoring data are the keys to the system
performance. This paper investigates a strategy for WSN
distribution in CPMTS based on model development and
path optimization. In the proposed model, a single-station
transfer model is first represented to ensure that the layout
of sensors in each sink can meet the detection capability of
fault and monitoring data. By using the fuzzy graph, the
multihop-station transfer model and the data-collecting
model are developed to describe the data flow in a wireless
network. To achieve an optimization path, noise interference
and data position are taken as restrictions to optimize the
path. Then, a MILP problem is formulated and the optimiza-
tion solution is obtained by using the “branch and bound”
method. Finally, case studies about optimal sensor distribu-
tion on a single station and path optimization on a multihop
station are presented to illustrate the proposed strategy. The
case study on the single station validates that the proposed
sensor distribution in a single station can achieve higher
detectability with fewer resources, which contributes to the
increase of the real-time performance. The case studies on
the multihop station validates that when there exist valid
solutions, the optimization path proposed by this paper can
achieve the best performance with a minimum average
latency of 32ms and a data loss of 0.001% compared to other
paths. Although the shortest path performs best in the usage
of bandwidth and memory, it is strongly affected by electro-
magnetic interference, which causes a high average latency
of 109ms, a data loss of 40.8%, and error data of 13.5% that
cannot meet the requirement. Although the noninferior path
satisfies the restriction of data loss and average latency, the
optimization path has more available bandwidth and mem-
ory that ensures the scalability and stability of CPMTS.When
isolated islands occur in the path, the proposed extensional
opt path and optimization path that avoid high electromag-
netic interference and busy relay stations still achieve the best
result.

For future research, the authors suggest further investiga-
tions from two aspects: (1) extend the proposed strategy with
an energy consumption model to further optimize the sensor
distribution in CPMTS, and (2) integrate this sensor deploy-
ment strategy into a more complicated system so that it can
implement the strategy more effectively and adjust the sensor
deployment accordingly.

Nomenclature

GF : Fuzzy graph for BSD
U: Parameter matrix
Ai+1: Dynamic matrix
Bi+1: Dynamic matrix
Ci: System matrix
PN: Set of priority number (PN) value
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Figure 19: Latency comparison of four paths.
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SI: Set of sensor index (SI) value
A: Fuzzy subset
PDS: Set of paths from node Di to node Sj
PSB: Set of paths from node Sj to node Bz

CP: Connection path
R, E: Sets of edge elements in fuzzy graph
SDTR: Sensor data transmission ratio
SDI: Sensor data index
WT

i,n: Path connection matrix from depth i to depth n
VT

i,n: Path connection matrix in the same depth
GDF: Fuzzy graph for data-collecting architectures
M: Set of storage elements
P: Set of process elements
E′: Set of edge elements e′ in data-collecting

architectures fuzzy graph
F: Set of data flows
Π: Set of paths in data-collecting architectures

fuzzy graph
Pf ,π: Binary variable
T: Set of time operators
Alb,m: Binary variable
MIDlbi,lbj: Binary variable
Db: Integer variable
G: 4 × 4 directed graph matrix
D: 4 × 4 path matrix
T′: Time matrix

D′: Normalized matrix of D

G′: Extended matrix of G
One: Discriminant matrix.
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