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Color descriptors, which involve the extraction of color information that is robust to illumination variation, are indispensable for
accessing reliable visual information as illumination variation is inevitable in many practical cases. There has been many color
descriptors proposed in literature, but the performance of different color descriptors in different scenes under illumination
variation and the influence of the surface characteristics have not been investigated. In this paper, we first systematically
introduced the theoretical basis of color descriptors, categorized the existing color descriptors according to the theoretical basis,
and then compared the performance of different color descriptors utilized for image recognition and image retrieval tasks on
both the indoor and outdoor image datasets. We adopted the recognition rate and normalized average rank as the evaluation
criteria to measure the performance of color descriptors. Experiment results show that the color moment invariants (CMI)
provide the optimal balance between the performance and dimensions in most tests, and color descriptors derived from
physical reflectance models are more suitable for object recognition and image retrieval. We also concluded the best color
descriptors for each kind of scene and surface characteristics.

1. Introduction

Color information is an important and efficient cue obtained
by optical image sensors. However, in computer vision field,
as illumination variation occurs in most of the real-world
scenes, the color-based information will change and thus
may easily result in errors in the follow-up applications.
Consequently, to obtain a satisfactory performance in digital
image processing, achieving color constancy in computer
vision is of great importance. Color constancy is usually con-
sidered the effect whereby the perceived or apparent color of
a surface remains constant despite changes in the intensity
and spectral composition of the illumination [1]. To elimi-
nate the influence of illuminations, illumination estimation
[1–3] and illumination-independent color descriptors are
two major approaches of achieving color constancy.

Color descriptors, which can represent the color features
of an image, have been proved to be successful in applica-
tions such as image registration [4, 5], object recognition
[6–8], face recognition [9–13], human detection [14], image

retrieval [15–18], video retrieval [19, 20], and image classifi-
cation [21, 22]. Hor [23] proposed an image retrieval
method based on the combination of local texture informa-
tion of two different texture descriptors robust to rotation,
which is constructed to improve computational efficiency.
Khwildi and Ouled Zaid [24] proposed a method to improve
the accuracy of high dynamic range image retrieval, whose
feature extraction is based on a combination of the HSV his-
togram and color moment. Jacob et al. [25] proposed an
interchannel color texture mode based on deep learning
algorithm, which gives the interchannel color texture informa-
tion of an image. It considers the unique channel information
and its relationship with the adjacent pixel information in the
opponent space. The experimental analysis using this descrip-
tor is much better than the previous work in the context of
image retrieval and face recognition. Kumar et al. [26] focused
on the 3D sign language recognition in human action recogni-
tion and proposed a new color-coded topographical descrip-
tor, which combines joint distances and angles computed
from joint locations. Based on the improved Otsu threshold
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algorithm, Wei et al. [27] proposed a new automatic fruit
extraction method for a fruit picking robot, which uses a
new feature in OHTA color space. In order to improve
the picking accuracy of fruit-picking robot in a three-
dimensional space, Wu et al. [28] proposed a new improved
descriptor combining color features and three-dimensional
geometric features.

Color descriptors are various and can be applied in dif-
ferent scenes, but their robustness to illumination variances
is different. Some color descriptors are derived by mapping
images to a different color space or via a physical reflectance
model. In addition, the moment functions such as Hu
moment [29] and Zernike moment [30] are also used as a
theoretical basis for obtaining color descriptors. A recent
work has concentrated on divisive information-theoretic
feature clustering (DITC) [31] to deduce color descriptors.
In addition, a color-texture descriptor against impulse noise
[32] has been proposed, the descriptor is robust to rotating
and impulsive noise, and its calculation is simple. Accord-
ingly, it is necessary to analyze the illumination’s robustness
of existing color descriptors effectively.

In this paper, we evaluated the performance of different
color descriptors for image recognition and image retrieval
on both the indoor and outdoor image scenes under differ-
ent illumination conditions. We compared a series of color
descriptors, which are influential in the field of pattern rec-
ognition and compared them using the same evaluation sce-
nario and the same image data. The evaluation criteria are
the recognition rate of object recognition and the normal-
ized average rank of image retrieval.

1.1. Related Work. There are some studies that conducted
comprehensive evaluation of the strengths and the weak-
nesses of different descriptor approaches which help in
identifying future research directions [33] in computer
vision. Mikolajczyk and Schmid [34] compared descriptors
computed on interest regions extracted with scale and
affine-invariant detectors for image matching and object rec-
ognition; the performance is comprehensively compared for
affine transformations, scale changes, rotation, blur, jpeg
compression, and illumination changes. It has been proved
that descriptors SIFT-style [35] descriptor outperforms
other methods in their paper. In the context of image classi-
fication, van de Sande et al. [36] evaluated invariance prop-
erties and distinctiveness of several color descriptors. The
performance is measured by mean average precision using
the SVM algorithm [37] and the position in rankings for
image benchmark. Burghouts and Geusekbroek [38] com-
pared the discriminative power and invariance of gray value
invariants to that of local color invariants in the context of
image matching, where the discriminative power is mea-
sured by determining the recall of the regions that are to
be matched and the precision of the matches. Setkov et al.
[39] discussed the invariance properties of some existing
color descriptors in that application for nonintrusive geo-
metric compensation. The performance is mainly measured
by two indicators: detection rate, which is the ratio between
the number of detected matches, and the number of feature
points in the image and FM precision indicating how match-

ing quality deteriorates in matching images. Bianconi [40]
proposed a general and extensible framework to classify
color texture, and the existing methods for color texture rep-
resentation are compared both theoretically and experimen-
tally. They pointed out that a separate color and texture
processing can achieve a balance between performance and
limited dimensions. In order to investigate the effects of illu-
mination variations on color texture features, Cusana et al.
[41] evaluated and compared several color texture descrip-
tors using a new texture database RaWFooT, they pointed
out that traditional texture descriptors have limited robust-
ness to illumination variations, and CNN-based descriptors
[42] outperform the handcrafted traditional and object-
oriented features in the context of texture classification. Ma
et al. [43] focused on the classic methods in the field of
image matching in the past two decades, as well as the
methods based on deep learning in recent years, which
covers feature detection, feature description, feature match-
ing, image registration, stereo matching, point set or point
cloud registration, and other related subfields. For the tradi-
tional feature description algorithm, they pointed out that
extracting more accurate and repetitive features, more sig-
nificant and distinguishable feature descriptors are the
future development trend. In order to remove the mis-
matches from image features, Ma’s team has done a lot of
researches; they proposed a locality preserving matching
method, which preserves the potential real matching in local
neighborhood [44]. They also try to transform feature
matching into a spatial clustering problem, which achieves
promising performance [45].

However, very little work focus on how color descriptors
are affected by different kinds of surface characteristics with
illumination variations. In addition, there is little introduc-
tion and classification of the theoretical basis for deriving
color descriptors.

In this paper, we aim to analyze the robustness of various
descriptors to illumination variations and the influence of
object surface characteristics on image recognition and
retrieval. The comparison for practicability of different color
descriptors is carried out in the context of image recognition
and retrieval. We believe that this manuscript may serve as a
handbook for those who need to select an appropriate
method for a specific scenario (indoor, outdoor scenes or
different surface characteristics), as well as a basis for devel-
opment of new color descriptors.

1.2. Overview. This paper is organized as follows: In Section
2, the taxonomy of color descriptors based on a theoretical
basis and a brief introduction of selected color descriptors
are presented. Section 3 describes the experimental setup
as well as our evaluation criterion and image data. Finally,
a discussion of results is given.

2. Color Descriptors

2.1. Theoretical Basis. A novel descriptor is possible to be
derived from different theories. The common theoretical
bases are the selection of color space or the establishment

2 Journal of Sensors



of new color space, physical reflectance model, mathematical
model, and information theory.

2.1.1. Color Space’s Selection or Establishment. The color
space is actually the process of image color digitalization,
different color spaces are just different representations of
the same physical quantity, there are transformations
between them. Koschan and Abidi [46] divided the most
classical color space into three families:

(i) Color spaces based on physics and technology,
which includes the color space based on the trichro-
matic theory (RGB, CMY (K), etc.), luminance-
chrominance color space (YIQ, YUV, etc.,), and
independent axis color model. The RGB color space
is the most common color space, which is mainly
used in the TV and computer color display system.
It uses red, green, and blue components to represent
the image. The CMY (k) color space is often used in
printing and publishing. The YUV and YIQ color
spaces, which use luminance and chrominance
components to represent color image, are com-
monly used to represent color image in the TV
system

(ii) Uniform color spaces (Lab, Luv, etc.,) which are
important applications for comparison of similar
colors. Lab and Luv color spaces, using the dig-
ital method to describe the human visual per-
ception, are color systems based on physiological
characteristics

(iii) Color spaces based on perception (HIS, HSV, oppo-
nent, etc.,) quantify the human color perception
using intensity, hue, and saturation. The HSV color
space is created according to the intuitive character-
istics of color, which divides the color signal into
three attributes: hue, saturation, and brightness.
The principle of the HIS color space is similar
to HSV

Several color descriptors are derived from the selection
or establishment of different color spaces. Li et al. [8] pro-
posed the central color coordinate system and edge-based
color coordinate system based on the diagonal-offset model.
It is of great importance for selecting a suitable color space
or proposing a new color space with color invariance to
improve the robustness of color descriptors to illumination
variation.

2.1.2. Physical Reflectance Model. Image information is mod-
eled by means of the Kubelka-Munk theory [47] for colorant
layers. The physical reflectance model resulting from the
Kubelka-Munk theory is given by [48]. The reflected spec-
trum in the viewing direction is given by Eðλ, x!Þ:

E λ, x!
� �

= e λ, x!
� �

1 − ρf x!
� �� �2

R∞ λ, x!
� �

+ e λ, x!
� �

ρf x!
� �

,

ð1Þ

where x! denotes the position at the imaging plane and λ the
wavelength. Further, eðλ, x!Þ denotes the illumination spec-
trum and ρf ðx!Þ the Fresnel reflectance at x!, and the mate-

rial reflectivity is denoted by R∞ðλ, x!Þ.
The other common physical illumination model is the

Lambertian model:

f x!
� �

=
ð
ω

e λð ÞS x!, λ
� �

c λð Þdλ, ð2Þ

where x! denotes the position at the imaging plane, λ the
wavelength, and ω the range of visible light; eðλÞ represents
the spectral distribution of the light source; Sðx!, λÞ denotes
the physical reflectivity of the surface of the object at the
point x! the light of wavelength λ; and photographic func-
tion of imaging device cðλÞ = ðRðλÞ,GðλÞ, BðλÞÞT .

Light scattering refers to the phenomenon that a part of
light deviates from the original direction when it passes
through the inhomogeneous medium. The condition of nat-
ural light illumination is mostly the mixture of direct light
and scattered light. Shafer [49] added scattered lighting into
the Lambertian model to simulate natural light conditions,
so that the model could be more universal:

f x!
� �

=
ð
ω

e λð ÞS x!, λ
� �

c λð Þdλ +
ð
ω

ϕ λð Þc λð Þdλ, ð3Þ

where ϕðλÞ indicates scattered lighting. This improvement is
more suitable for outdoor scenes. Similarly, Shafer obtained
a dichromatic reflection model [49] based on the Kubelka-
Munk model (KM).

Many new color descriptors are derived from these phys-
ical reflection models by adding other influence indicators.
The algorithm derived from the physical model has photo-
metric invariance, but it sacrifices the discriminant power
of the descriptors.

2.1.3. Mathematical Model. Moments are widely used in
image processing, and the moment sets that are calculated
from an image describe the global features of the shape of
the image and provide much information about the different
types of geometric features of the image. Hu [29] proposed
seven moment invariants of the first order to third order,
and a series of improved algorithms for Hu moments are
applied to object recognition and image retrieval [50, 51].
Hu moments have been proved to be robust to translation,
rotation, and scaling. According to different color channels
and Hu moments, color moment invariants can be deduced,
which has good robustness to illumination change. In addi-
tion, color moment invariants can be obtained by the Lie
group approach [52]. Note that the color moment invari-
ants’ dimension is small so that they are suitable for image
recognition and retrieval.

2.1.4. Information Theory. It is well known that a pixel value,
which is captured in a color space that can be mapped to the
same value in the photometric invariance color space, can
sacrifice the discriminative power of the color descriptors
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derived from the physical reflectance model. In order to find
the balance of illumination invariance and discriminative
power, a divisive information-theoretic feature clustering
algorithm (DITC) proposed by Dhillon [31] is used to con-
struct color descriptors with high discriminative power.
The DITC algorithm introduces the concept of information
entropy and Kullback-Leibler (KL) divergence information
theory. The color descriptors based on the information the-
ory are employed to find an optimum clustering approach in
the color space with higher discriminative power.

2.2. Brief Introduction of Current Color Descriptors. In the
following, color descriptors are presented and we categorize
them according to the four theoretical foundations men-
tioned above.

2.2.1. Color Descriptors Based on the Selection of the
Color Space

(1) Histogram.

(i) RGB histogram

The RGB histogram is a combination of three 1D histo-
grams based on the channel of R, G, and B in the RGB color
space. The spatial structure of the RGB color space is not con-
sistent with people’s subjective judgment of color similarity,
and it possesses no invariance to illumination changes.

(ii) rg histogram

It is the normalization process of the RGB color space,
and the chromaticity components r and g represent the color
information in images:

r

g

 !
= R/ R + G + Bð Þ

G/ R +G + Bð Þ
� �

, ð4Þ

Due to the normalization, the components r and g have
been proved to be invariant to scaling, light intensity
changes, shadows, and shading.

(iii) Hue histogram

When mapping images to the HSV color space, it is
proved that the hue becomes unstable near the gray axis.
Weijer et al. [53] have discovered that the certainty of the
hue is inversely proportional to saturation so that the hue his-
togram is made more robust by weighting each sample of the
hue by its saturation. Only the color channel H [53] is scale-
invariant and shift-invariant with respect to light intensity.

(i) Opponent histogram

The opponent histogram, in which images are mapped
to the opponent color space, combines the three 1D chan-
nels of histograms:

O1O2O3ð ÞT = T −Gffiffiffi
2

p R + G − 2Bffiffiffi
6

p R +G + Bffiffiffi
3

p
� �T

, ð5Þ

where the components O1 and O2 represent color infor-
mation, and the component O3 denotes intensity informa-
tion. van de Sande et al. [36] have proved that the
components O1 and O2 are shift-invariant with respect to
light intensity. The intensity channel O3 has no invariance
properties.

(2) Color SIFT Descriptors.

(i) SIFT

Lowe [35] proposed the SIFT to describe local features
using edge orientation histograms based on points of inter-
est. SIFT features possess invariance properties to rotation,
scaling, and light intensity variation. However, the SIFT is
not invariant to light color changes due to the combination
of R, G, and B channels in the intensity channel. Note that
SIFT is extensible and can be easily combined with other
forms of feature vectors.

(ii) RGB-SIFT

RGB-SIFT is the combination of the SIFT computed in
the R, G, and B channels separately. It has been proved that
RGB-SIFT is scale-invariant, shift-invariant, and invariant to
light color changes.

(iii) HSV-SIFT

The method of calculating the SIFT over three channels
of the HSV color space independently has been proposed by
Bosch et al. [54]. The descriptor has 128-dimensional fea-
tures for each channel. It is known that the H channel is
scale-invariant and shift-invariant with respect to light
intensity. However, the combination of HSV channels pro-
vided low invariance.

(iv) Hue-SIFT

van de Weijer et al. [53] introduced a concatenation of
the hue histogram with the SIFT descriptor. Weighting the
hue histogram with saturation solves the problem of insta-
bility near the gray axis for HSV-SIFT. The Hue-SIFT pos-
sesses invariance to intensity changes.

(v) Opponent-SIFT

Opponent-SIFT is constructed from the transformation
between the RGB color space and opponent color space
(5); similarly, the o1 and o2 channels describe color informa-
tion while the o3 channel represents intensity information in
images. In [36], opponent-SIFT shows the best result in the
context of image classification.

(vi) C-SIFT

C-SIFT [38, 55] is derived from the normalization of 2D
opponent color space which offsets the intensity information
in the o1 and o2 channels: O1/O3 and o2/o3. Because of the
lack of intensity information, C-SIFT possess lower discrim-
inative power.
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(vii) rg-SIFT

According to the normalization of the RGB color space
(4), the rg-SIFT can be regarded as an independent computa-
tion of SIFT features in the r and g chromaticity components.

(3) Two Famous Color Descriptors.

(i) Robust hue descriptor (HUE)

Weijer and Schmid [55] proposed to use the histogram
of the hue that is linearly transformed from the RGB color
space to describe image patches:

hue = arcan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 R −Gð Þp

R + G − 2B

 !
: ð6Þ

Weighting the influence of the histogram by saturation
of the corresponding pixel to make the hue more stable,
the hue descriptor is invariant with respect to lighting geom-
etry and specularities when assuming white illumination.

(ii) Opponent derivative descriptor (OPP)

Weijer and Schmid [55] proposed to represent the image
patches by a histogram of opponent derivative:

angox = arcan O1x
O2x

� �
, ð7Þ

where O1x and O2x denote the spatial derivative in the
color information channels. The descriptor weighted byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

O1x +O2x
p

has been proved to be invariant with respect
to specularities and diffuse lighting.

2.2.2. Color Descriptors Based on the Physical
Reflectance Model

(1) Color Descriptors Derived from Lambertian Model. Funt
and Finlayson [56] and Gever and Smeulders [57] proposed
photometric invariant images’ index on the basis of the
Lambertian model. However, the color descriptors men-
tioned above is susceptible to blur. Weijer and Schmid [58]
provided a construction scheme of color invariant descrip-
tors to counter the impact of image blur. However, these
descriptors all depend on the edge information of the image
so that they will lose much of the color information for
images with sparse edges.

(2) Color Descriptors Derived from the Kubelka-Munk Model.
Geusebroek and Boomgaard [48] proposed a framework of
five-color invariants (H, C,W,N , and E) to describe object
reflectance regarding five different image conditions, which
used the Gaussian scale space paradigm of color images.
The five different imaging conditions are as follows:

(a) equal energy and uneven illumination

(b) equal energy but uneven illumination and matte,
and dull surfaces

(c) equal energy and uniform illumination and matte,
dull surfaces and planar objects

(d) colored but uneven illumination

(e) arbitrary image conditions

The object reflectance is derived from the Kubelka-
Munk theory, extensive experiments show these color mea-
surements to obtain highly discriminative power while
maintaining photometric invariance.

2.2.3. Color Descriptors Based on a Mathematical Model. A
color image can be described by a function I derived from
every channel of the RGB color model at the spatial position:
fx, yg: Iðx, yÞ = ðRðx, yÞ,Gðx, yÞ, Bðx, yÞÞ. Mindru et al. [59]
have provided a definition of the generalized color moment:

Mabc
pq =

ð ð
xpyq IR x, yð Þ½ �a IG x, yð Þ½ �b IB x, yð Þ½ �cdxdy, ð8Þ

where Mabc
pq denotes a generalized color moment of order

p + q and degree a + b + c. In particular, it means a lack
of color information for moments of degree 0, i.e., M000

pq ,

while for moments of order 0, i.e., Mabc
00 , this means that it

does not contain any spatial information. The framework
can be applied to construct various moments; however, to
maintain the stability of color moments, only the generalized
color moments up to the first order and second degree are
adopted.

(i) Color moment

Generalized color moments up to the second degree and
the first order are adopted to construct the color moment
(CM) descriptor. Hence, the resulting color moments are a
combination of three possible situations for order: ðp, qÞ ∈
fð0, 0Þ, f1, 0g, f0, 1gg and ten possible situations for degree:
ða, b, cÞ ∈ fð0, 0, 0Þ, ð1, 0, 0Þ, ð0, 1, 0Þ, ð0, 0, 1Þ, ð2, 0, 0Þ, ð0, 2,
0Þ, ð0, 0, 2Þ, ð1, 1, 0Þ, ð1, 0, 1Þ, ð0, 1, 1Þg.

Consequently, the color moment descriptor has 30
dimensions and it is only robust to shift variation.

(ii) Color moment invariants

Mindru et al. [59] provided various constructions of
color moment invariants (CMI) based on the framework of
the generalized color moment. In this paper, due to the bet-
ter results achieved by PSO invariants, we select it. Further-
more, it is deduced under the circumstance that no
geometric deformations are present and the photometric
transformations are of Type SO. This yields 24 dimensions.

2.2.4. Color Descriptors Based on Information Theory

(i) Color name

Berlin and Kay [60] have defined basic color terms based
on a large number of anthropological studies, and they pro-
vided eleven basic terms to describe color: CN = fblack, blue
, brown, grey, green, orange, pink, purple, red, white, yellowg.
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According to the theory, Benavente et al. [61] proposed
the fuzzy color name (FCN) to model the category of arbi-
trary color terms by using the concept of fuzzy sets, where
the color name descriptor describes the probability of a color
stimulus belonging to arbitrary color terms. van de Weijer
et al. [62] have proposed a novel color name (CN) descriptor
to represent an image:

K = p n1 Rjð Þ, p n2 Rjð Þ,⋯, p n11 Rjð Þf g,

with p ni Rjð Þ = 1
N
〠
x∈R

p ni f xð Þjð Þ, ð9Þ

where ni is related to ith color name, x denotes the spatial
coordinates of N pixels in region R corresponding to the
L∗a ∗ b ∗ color space, i.e., f = fL∗, a∗, b∗g, and p = fnijRg
represents the probability of a color name under the corre-
sponding pixel value. It is proved that the color name has
good performance in image classification.

(ii) Discriminative color descriptors

The color descriptors derived from a physical-based
model can introduce a decline of its discriminative power.
Khan et al. [63] have proposed discriminative color descrip-
tors (DD) based on an information theoretic approach. The
DD bear some resemblance to the color name, which discre-
tize the color space into eleven parts. The DD are employed
to find optimized feature clusters for minimization of global
objective function, which in this case, separate the original
color space into m color words W = fω1,⋯, ωmg, where
m = 10 × 20 × 20 = 4000 in the L∗a ∗ b ∗ color space.

Note that image data with l classes is given by C = fc1,
⋯, c1g. Hence, the mutual information describing the dis-
criminative power of color words W regarding the problem
of differentiating the classes C is given:

I C,Wð Þ =〠
i

〠
t

p ci, ωtð Þ log p ci, ωtð Þ
p cið Þp ωtð Þ , ð10Þ

where pðci, ωtÞ and the prior pðciÞ and pðωtÞ can be mea-
sured empirically from image data.

3. Experimental Setup

We first give implementation details for the evaluated color
descriptors. We then describe the image datasets used for
evaluation. Finally, the evaluation criteria are given.

3.1. Feature Mapping Pipelines. To evaluate the essential
characteristics of color descriptors, the bag of features
(BOF) model [64] is used to obtain fixed-length feature vec-
tors. The main algorithm used in the BOF model is k-means
clustering. In essence, it is a process of clustering the
extracted image features to construct a visual codebook
and then mapping features against the visual codebook.
Hence, the BOF model implements vector quantization of
the color descriptors. As described in [64], the process of
establishing a visual codebook is as follows:

(a) Feature extraction and description. We use a grid
(16 × 16) with 50% overlap to extract patches from
images, and different color descriptors are calculated
on every patch

(b) Construction of visual codebook. The visual code-
book is constructed with the feature patches
extracted before, and the k-means algorithm is used
to cluster all patches, which are divided into k classes
(in this paper k = 300).

(c) Representation of image features. The frequency of
each feature word in the k-dimensional visual code-
book of test images is counted; then, each test image
can be represented as a k-dimensional vector

In addition, when calculating the whole image directly
for color descriptors based on histograms, we select 16 bins
for each color space channel.

3.2. Performance Evaluation

3.2.1. Dataset. We use the popular color datasets aiming at
studying the effects of illumination variance: SFU (Simon
Fraser University), ALOI (Amsterdan Library of illumina-
tion), Phos, RawFooT (raw food texture database), and
THRI2015 (time-lapse hyperspectral radiance images).

(i) Indoor dataset

The 321 SFU image data [65] is provided by Computa-
tional Vision Lab of Simon Fraser University, and it contains
330 images of 30 scenes under 11 different artificial lights.
Some images were culled from each set due to deficiencies
in the calibration data so that 321 images are adopted. It is
proved to be germane to study the computational color con-
stancy. The image data is split into four groups: images with
minimal specularities (Mondrian, 22 scenes, 223 images);
images with nonnegligible dielectric specularities (specular,
9 scenes, 98 images); images with metallic specularities
(metallic, 14 scenes, 149 images); and images with fluores-
cent surfaces (fluorescent, 6 scenes, 59 images). The 321
SFU image data is used for image recognition. In addition,
another image data, which is also from Simon Fraser Uni-
versity, consists of 220 images of 20 scenes under 11 differ-
ent illumination conditions. The ALOI image dataset [66]
contains 1200 objects, each one with 12 images obtained
under different illumination conditions; we choose the top
30 objects, 12 images of each one, and a total of 360 images
for experiments. The Phos image dataset [67] contains 220
images of 15 scenes under 15 different illumination condi-
tions, i.e., various strengths of uniform illumination and dif-
ferent degrees of nonuniform illumination. The RawFooT
image dataset [68] includes images of samples of textures,
acquired under 46 lighting conditions which may differ in
the light direction, in illuminant color, in its intensity, or
in a combination of these factors. We choose 460 images
of 10 objects under 46 different illumination conditions from
RawFooT.

(ii) Outdoor dataset
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The sequences of time-lapse hyperspectral radiance
images of Natural Scenes 2015 (THRI2015) [41] contains
34 images of four natural scenes under 7-9 different natural
light sources based on the passage of time. In other words,
the images were acquired at approximately 1-hour intervals
for each scene. For convenience of image retrieval, we reject
redundant images from each scene to make our data include
24 images of four scenes under 6 time points of natural light.

3.2.2. Evaluation Criteria. In the experiment of image recog-
nition, we use the common k-nearest neighbor classification
scheme where the Euclidean distance is adopted as a mea-
surement of the feature’s distance between images. Firstly,
k images with the closest feature distance are selected for
the test images in the training set, if one type of image
appears most frequently in the k images, then the test image
belongs to this category. In this paper, k values are selected
to be 1, 3, and 5 for the assessment of color descriptors.
We take the recognition rate of the objects as the evaluation
criteria. Suppose that a total of N experiments was con-
ducted, of which M times were correctly identified. Then,
the recognition rate (RR) can be defined as follows:

RR = M
N

× 100%: ð11Þ

We also calculate the average RR over three different k
values. For the experimental scheme, we choose the leave-
one-out approach. Suppose that there are N images in the
image data, and every time, only one is taken as the test image,
and the remaining N − 1 images are used as training images.
In this way, different images are selected as test images and
then N experiments are conducted.

In the context of image retrieval, the performance of
color descriptors is assessed by the normalized average rank
for a single query [55]:

NAR = 1
NNR

〠
NR

i=1
Ri −

NR NR + 1ð Þ
2

 !
, ð12Þ

where N denotes the total number of image data, NR is the
number of images relevant to the query image, and Ri repre-
sents rank of the ith relevant image in the query results. A
smaller NAR indicates a better retrieval result. The retrieval
result is perfect when NAR = 0, and NAR = 0:5 means that
the retrieval is random. We take the average NAR value
(ANAR) of all candidates as the final result on the image
data. For example, we select the first image on every scene
of the ALOI image data (360 images of 30 scenes under 12
different illumination conditions) as a candidate, and the
remaining images per scene are the training set so that 10
relevant images are possessed by every candidate. Hence,
N = 330,NR=11.

In addition, in order to measure the illumination invari-
ance of features, we also measure the Euclidean distance
between these color descriptors of the same scene including
indoor and outdoor scenes under different lighting condi-
tions. The indoor image data from the Amsterdam Library

of Object Images (ALOI) [67] contains 12 images of 1 scene
under 12 different artificial lights as shown in Figure 1(a),
and the outdoor image data extracted from THRI2015 con-
tains 6 images of 1 scene under 6 different natural illumina-
tions as shown in Figure 1(b).

4. Results

This section outlines the discussion of the results obtained
in our experiments. The performance of the color descrip-
tors discussed in Section 2 under illumination variation is
compared in the context of image recognition and image
retrieval. For the indoor image data, we divide images into
four kinds of surface conditions to analyze the effect of
different surface characteristics on the performance of
descriptors.

4.1. Experiment on Image Recognition. For ease of presenta-
tion in graph, the classification of descriptors is abbreviated
as follows: color descriptors based on the selection of color
space (Colorspace), color descriptors based on physical
reflectance models (Phy.), color descriptors based on math-
ematical models (Math.), and color descriptors based on
information theory (Inf.).

(i) Indoor image data

Figure 2 shows the results of color descriptors in SFU
321 image data for images with different surface characteris-
tics. From the results in Figure 2(a), the color descriptors
derived from the physical reflectance model such as W, C,
N , E, and H have a high degree of robustness to illumination
color variation, among which W is the best, because the
property of W can be interpreted as an edge detector and
it does not only represent object properties but also includes
the shadow edge information, at the same time, the con-
struction process of W, which is based on the situation that
equal energy, uniform illumination and matte, dull, surfaces,
makes W more suitable for these images containing mini-
mal specularities. For color space selection, a majority of
SIFT and color SIFT descriptors perform much better than
histogram-based descriptors. From the results in Figures 2(b)
and 2(c), and N followed by W performs better than other
color descriptors. The OPP followed by HUE also have good
performance, note that OPP, which uses a histogram over
the opponent angle to represent image patches, is invariant
to specularities and diffuse lighting; therefore, it has satisfac-
tory performance for images with metal reflection. The major-
ity of the histogram-based color descriptors lack illumination
invariance except rg histogram, which improves the robust-
ness of the rg color space to light change by normalizing the
RGB color space. The color descriptors derived from the phys-
ical reflectance model still have good performance with RR
> 90%. It is remarkable that H, which is related to the hue
of materials for equal energy but uneven illumination, has a
reduced performance with RR = 61:52%. The RR of color
descriptors based on information theory are more than
80%, of which CN performs slightly better than the 50-
dimensional DD. Regarding the results in Figure 2(c) for
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(a) (b)

Figure 1: Examples of images for invariance measurement. (a) Indoor images from ALOI. (b) Outdoor images from THRI2015.
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Figure 2: Mean RR of different color descriptors under different k values in the SFU 321 image data with different surface characteristics. (a)
Images containing minimal specularities. (b) Images containing metallic specularities. (c) Images containing at least on fluorescent surface.
(d) Images with nonnegligible dielectric specularities.
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images containing at least on fluorescent surface, most of the
color descriptors have an RR of more than 80 percent except
for histogram-based color descriptors, color moments,
DD11, SIFT, HSV-SIFT, and C-SIFT. Observing the results
in Figure 2(d) for images with nonnegligible dielectric specu-
larities, E performs best slightly reduced by N and C whereas
HSV-SIFT performs worst, which is due to HSV-SIFT lack
of invariant properties. Note that for descriptors based on
physical reflectance models, E has a more wide application
than others. Since N indicates transition in object reflectance,
N can keep stable for images with specular reflection. In addi-
tion, the RR of both CMI and color descriptors derived from
KM are higher than ninety percent. The OPP has better per-
formance than HUE, which is followed by CN. For all the sur-
face characteristics, CMI is better than CM, which is in
accordance with the expected theoretical results, and DD
shows an obvious improvement in performance with increase
of dimensions, among which DD with 50 dimensions is more
satisfactory.

According to the comparison for the influence of
descriptors in Figure 3, the performance of most color
descriptors with respect to the color space selection shows
an increase in images with metallic specularities (metallic)

or images with nonnegligible dielectric specularities (specu-
lar) compared with images with minimal specularities
(Mondrian) except opponent-SIFT. For images with specu-
larities, which may result in appearance of highlight area,
the performance of opponent-SIFT, which has been proved
that it is not robust to light color change and shift [28], is
reduced. Different surface characteristics have the least influ-
ence on the color descriptors based on physical reflectance
models. In view of information-theory-based color descrip-
tors, they all have better performance in metallic than in
Mondrian. Descriptors perform better in specular than in
Mondrian except DD50 and FCN. It is not difficult to find
that most color descriptors in the metallic category perform
better than those in the specular category. The nonnegligible
dielectric specularities have a more negative effect on color
descriptors than metal-containing specular reflection. Mean-
while, performance of most descriptors shows an improve-
ment for images with fluorescent surfaces, whose key
characteristic is that some of the light energy they absorb
is reemitted at longer wavelengths except DD25 and DD11.

Table 1 shows the performance of descriptors in indoor
image data. For ALOI image data, we can observe that C,
W, N , and CMI give perfect results, and E, followed by H,
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Figure 3: The influence of four different scenes’ surface characteristics on the value of mean RR for different color descriptors.
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obtains slightly lower score than the best, but they perform
better than all the other color descriptors. The descriptors
(C, W, N , E, and H) based on physical reflectance model
focus on edge information of color images; hence, it is suit-
able for ALOI image data with obvious image contour infor-
mation. SIFT-based color descriptors except for SIFT give
the lower score than the other descriptors.

From the results of descriptors in Phos image data, we
can find that H, whose property is related to the hue of
material, gives the highest score, OPP performs well, i.e.,
lower than H, but better than most of the other descriptors.
Note that CM performs worse than many other descriptors
for its’ lowest RR. CM does not work well for image data
with multiple objects in each image and has limited invari-
ance to illumination changes. CMI performs best among
the mathematical-based and CN gives the best results among
the information-theory-based.

For RawFooT image data based on texture information,
we can observe that Hue-SIFT, which is invariant to light
intensity change and shift [36], has the best performance
with RR higher than 93%, followed by OPP, W, and the
other descriptors. Note that Hue-SIFT performs best among
descriptors based on color space selection, W performs best
among the physical-model-based, CMI performs best among

the mathematical-based, and FCN performs best among the
information-theory-based. Benavente et al. [61] pointed out
that the color assignment of FCN is based on physical color
samples, which may result in some error when it applied to
other stimuli like light.

(ii) Outdoor image data

Table 2 presents the results for THRI2015 image data.
OPP obtain the highest score, and a slightly lower score is
obtained by HUE. In addition, the CN, FCN, DD25, and
DD50 also perform well for the outdoor data. HSV-SIFT,
which has poor performance in indoor image data, achieves
the lowest recognition rate for below 20 percent. It can also
verify the previous conclusion that the combination of HSV
color space does not have any robustness. Most color
descriptors derived from the physical reflectance model have
relatively better performance. The fact that CMI performs
much better than CM is consistent with previous results.

4.2. Experiment on Image Retrieval. Table 3 presents the
image retrieval results for all the image data.

(i) Indoor image data

Table 1: Performance comparison of color descriptors in indoor image data.

Recognition rate (RR) (%)

Descriptor
ALOI image data

Mean RR (%)
Phos image data

Mean RR (%)
RawFooT image data

Mean RR (%)
K = 1 K = 3 K = 5 K = 1 K = 3 K = 5 K = 1 K = 3 K = 5

RGB 98.61 97.22 90.56 95.46 66.67 61.33 65.33 64.44 81.52 71.74 67.61 73.62

rg 80.83 78.06 75.56 78.15 88 86.67 89.33 88 70.22 65.87 61.52 65.87

Hue 91.94 87.78 77.22 85.65 66.67 52 33.33 50.67 78.7 75.65 68.26 74.2

OPP 82.78 78.33 73.61 78.24 84 77.33 76 79.11 60.65 61.93 57.61 60.06

SIFT 93.33 89.72 89.44 90.83 32 30.67 38.67 33.78 68.26 61.09 58.48 62.61

HSV-SIFT 40 35.28 36.67 37.32 38.67 45.33 44 42.67 79.13 74.14 73.04 75.44

rg-SIFT 58.89 52.22 47.5 52.87 60 64 58.67 60.89 77.39 75.87 74.78 76.01

OPP-SIFT 36.11 38.89 39.44 38.15 46.67 44 49.33 46.67 75 73.04 74.78 74.27

C-SIFT 40 32.78 28.61 33.8 42.67 40 38.67 40.45 45.43 40.87 39.13 41.81

RGB-SIFT 35.56 36.39 35.56 35.84 52 46.67 41.33 46.67 77.61 77.39 73.48 76.16

Hue-SIFT 69.17 65.56 65.56 66.76 93.33 90.67 90.67 91.56 96.3 94.57 93.48 94.78

HUE 86.94 87.22 86.67 86.94 93.33 86.67 89.33 89.78 91.09 89.57 86.96 89.21

OPP 82.78 85.56 85.28 84.54 94.67 93.33 89.33 92.44 94.35 94.57 93.91 94.28

H 98.33 98.61 96.67 97.87 94.67 94.67 94.67 94.67 74.78 70 67.83 70.87

C 100 100 100 100 92 89.33 85.33 88.89 89.57 91.74 91.09 90.8

W 100 100 100 100 89.33 89.33 81.33 86.66 93.48 93.69 92.39 93.19

N 100 100 100 100 93.33 89.33 90.67 91.11 76.3 78.04 75.22 76.52

E 99.72 99.72 99.72 99.72 86.67 86.67 88 87.11 91.09 89.78 90 90.29

CM 92.5 92.22 90 91.57 18.67 9.3 4 10.66 63.91 55.87 54.13 57.97

CMI 100 100 100 100 60 58.67 57.33 58.67 75.87 70 65.87 70.58

CN 68.61 67.5 67.78 67.86 88 85.33 85.33 86.22 92.61 89.57 89.35 90.51

FCN 70 68.06 68.06 68.71 84 84 73.33 80.44 93.48 91.96 90.43 91.96

DD11 85 85.28 85 85.09 89.33 82.67 74.67 82.22 91.09 89.35 89.13 89.86

DD25 88.33 87.78 87.22 87.78 80 73.33 73.33 75.55 92.39 88.26 87.17 89.27

DD50 78.61 76.94 76.67 77.41 84 80 77.33 80.44 89.13 85.22 84.78 86.38
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For ALOI image data, w gives the best score for ANAR
= 0, followed by N , C, and other color descriptors. HSV-
SIFT fails on this image data for its’ highest value of ANAR.
We can observe that performance of the information-
theory-based is better than other types of color descriptors.

For Phos image data, it is observed that H performs sig-
nificantly better than other color descriptors, HUE and C
obtain a slightly higher value of ANAR than H, but they per-
form better than all the other descriptors. RGB-histogram
gives the largest value of ANAR, which reflects the lack of
robustness to illumination variation. Note that Hue histo-
gram, SIFT, HSV-SIFT, E, CM, and DD50 perform worse
than many other descriptors.

For RawFooT image data in the context of image
retrieval, W obtains the best results with ANAR = 0:0661.
E, CM, and DD50 fail on this example with the value of
ANAR higher than 0.3. Hue-SIFT also performs well with
ANAR = 0:0918, i.e., not as good as W, but better than all
other descriptors.

(ii) Outdoor image data

For THRI2015 image data, it can be seen that the Hue-
SIFT performs the best with the lowest ANAR = 0:0475. In

addition, CMI also has better performance than other
descriptors for ANAR = 0:12, respectively. When focusing
on the comparison of the same type descriptors, the rg-
histogram has better performance in histogram-based color
descriptors. After Hue-SIFT, OPP obtains the second lowest
ANAR value for descriptors based on color space selection.
For descriptors derived from the information theory, the
CN performs best and a slightly larger score is obtained by
the fuzzy color name. Note that CMI performs well.

Observing the results in Figure 4(a) for ALOI image
data, CMI performs best for its minimum Euclidean distance
between features under different illumination conditions,
and the C and W also have better performance for its Euclid-
ean distances are less than 0.01. It can be seen that the CM
has the worst performance for its extremely unstable Euclid-
ean distance under different illumination conditions; the
DD, OPP, HUE, and Hue histogram also perform poorly
for its Euclidean distance are greater than 1. However, from
the results in Figure 4(b), the FCN, CN, and DD perform
worst for its Euclidean distance are greater than 8 under differ-
ent illumination conditions, and the CMI still performs best
with lowest variation of Euclidean distances under different
illumination conditions; in addition, the Hue-SIFT also has
better invariance for its Euclidean distance are lower than 0.1.

Table 2: Performance comparison of color descriptors in
THRI2015.

Descriptors
Recognition rate (RR) (%)

Mean RR (%)
K = 1 K = 3 K = 5

RGB-hist 70.83 75 45.83 63.89

Rg-hist 83.33 54.17 70.83 69.44

Hue-hist 50 37.5 29.17 38.89

OPP-hist 20.83 25 25 23.61

SIFT 50 54.17 45.83 50

HSV-SIFT 12.5 12.25 16.67 13.81

rg-SIFT 45.83 45.83 33.33 41.66

OPP-SIFT 54.7 45.83 41.67 47.4

C-SIFT 50 33.33 37.5 40.28

RGB-SIFT 50 37.5 25 37.5

Hue-SIFT 70.83 79.17 79.17 76.39

HUE 95.83 91.67 91.67 93.06

OPP 100 100 91.67 97.22

H 83.33 62.5 66.67 70.83

C 87.5 87.5 75 83.33

W 75 50 45.83 56.94

N 83.33 79.17 75 79.17

E 95.83 87.5 87.5 90.28

CM 83.33 62.5 54.17 66.67

CMI 95.83 66.67 66.67 76.39

CN 100 91.67 83.33 91.67

FCN 100 91.67 87.5 93.06

DD11 91.67 83.33 75 83.33

DD25 95.83 95.83 83.33 91.66

DD50 100 95.83 75 90.28

Table 3: ANAR of color descriptors for all the image data.

Descriptors
ANAR

ALOI Phos RaWFooT THRI2015

RGB-hist 0.2086 0.4000 0.2885 0.22

Rg-hist 0.3747 0.1276 0.2446 0.175

Hue-hist 0.2704 0.3231 0.2789 0.3675

OPP-hist 0.3142 0.1933 0.2896 0.3750

SIFT 0.0212 0.3129 0.2857 0.3850

HSV-SIFT 0.3284 0.3300 0.2260 0.3825

rg-SIFT 0.1597 0.1849 0.1863 0.2975

OPP-SIFT 0.1390 0.1735 0.1695 0.32

C-SIFT 0.2772 0.1233 0.2365 0.3450

RGB-SIFT 0.0964 0.2435 0.1868 0.3325

Hue-SIFT 0.1261 0.1727 0.0918 0.0475

HUE 0.1630 0.0714 0.2124 0.19

OPP 0.0236 0.1186 0.2896 0.1275

H 0.2733 0.0578 0.2554 0.36

C 0.0061 0.0812 0.1684 0.28

W 0 0.1012 0.0661 0.3750

N 0.0028 0.1008 0.1865 0.32

E 0.0163 0.3118 0.3107 0.2950

CM 0.0258 0.3961 0.3258 0.3075

CMI 0.0101 0.2345 0.2609 0.12

CN 0.0448 0.1155 0.2253 0.23

FCN 0.0114 0.2353 0.2818 0.2325

DD11 0.0162 0.2769 0.2769 0.28

DD25 0.0108 0.2265 0.3094 0.3350

DD50 0.0696 0.3078 0.3135 0.26
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All in all, CMI, which combines the powers of pixel coor-
dinates and their intensities in each color bands, uniformly
describes the shape and color distribution of images and has
strong robustness to illumination variations. The color
descriptors derived from information theory, whose limitation

is the fewer vocabulary of color names, obtain high discrimi-
native power at the expense of photometric invariance.

In the unknown image scenes, we recommend giving
priority to CMI for its robustness to illumination variation
in the context of image recognition and retrieval.
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Figure 4: Illumination invariance measurement of color descriptors. (a) Indoor scene. (b) Outdoor scene.
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4.3. T-Test Measurement. In order to further analyze the
performance of color descriptors, Tables 4 and 5 show the
p value of a paired T-test, comparing the best color descrip-
tors in each image data with the remaining descriptors.
From the comparison of vertical directions in the table,
when p > 0:05, it reflects that the differences between a color
descriptor and the best one are not significant. In Table 4, we
can observed that the differences of hue-hist, OPP-hist, and
RGB-hist compared with the best descriptor W is significant
(p < 0:01) for Mondrian, which indicates performance of the
histogram-based except rg-hist is poor, whereas the differ-
ences between the best descriptor C and hue-hist are not sig-
nificant (p < 0:01) for fluorescent. In addition, there is a
significant difference between CM and the best descriptors
for all the surface characteristics, which reflects that CM
has limited robustness to illumination variation. From the
results of Table 5, the differences between the best descriptor
N and the remaining descriptors are not significant (p > 0:05
) except CM (p < 0:01) for ALOI image data, and the differ-
ences of hue-hist, OPP-hist, RGB-hist, CM, and CMI com-
pared with the best descriptor H are significant (p < 0:05)
for Phos image data, whereas for outdoor image data, a
paired T-test comparing the OPP with the other descriptors

shows a significant difference with all of them except C, N , E,
H, Hue-SIFT, rg-SIFT, CMI, Hue, and descriptors based on
information theory.

5. Discussion and Conclusion

In this paper, in order to compare the robustness of color
descriptors with different scenes and different surface char-
acteristics to illumination variation, we have presented a
performance evaluation of different color descriptors in the
context of image recognition and image retrieval. The rec-
ommended color descriptors for different surface character-
istic and different image data are shown in the following:

(i) Mondrian: W

(ii) Metallic: N

(iii) Fluorescent: CMI

(iv) Specular: E

(v) ALOI image data: CMI/W

(vi) Phos image data: H

Table 4: The mean RR and p value of a paired T-test on dataset SFU321.

Dimensions Descriptors
SFU 321

Mondrian Metallic. Fluorescent Specular
Mean RR p value Mean RR p value Mean RR p value Mean RR p value

300 C 99.25 0.28 100 — 100 — 97.92 0.26

300 W 99.4 — 98.21 0.70 100 0.47 97.96 0.22

300 N 99.1 0.26 100 0.65 100 0.55 99.32 0.24

300 E 98.06 0.32 96.65 0.55 99.42 0.58 100 —

300 H 96.41 0.29 61.52 0.53 90.06 0.64 91.16 0.34

300 OPP-SIFT 44.39 0.35 34 0.66 86.55 0.25 33.67 0.33

300 Hue-SIFT 55.01 0.28 56.15 0.39 84.8 0.28 57.14 0.17

300 rg-SIFT 43.05 0.38 53.53 0.67 84.13 0.26 61.9 0.29

300 RGB-SIFT 29.38 0.39 31.06 0.55 81.87 0.32 47.62 0.31

300 C-SIFT 39.01 0.36 48.1 0.60 65.5 0.26 52.04 0.29

300 HSV-SIFT 28.85 0.40 34.23 0.45 52.63 0.31 21.77 0.33

300 SIFT 21.97 0.43 31.99 0.59 52.04 0.33 44.22 0.29

16 × 16 rg-hist 45.59 0.18 72.26 0.30 79.51 0.18 88.78 0.29

16 × 16 Hue-hist 35.73 <0.01 31.99 0.04 71.93 <0.01 48.54 0.11

16 × 16 × 16 OPP-hist 44.39 <0.01 20.36 0.17 48.54 0.17 31.97 0.26

16 × 16 × 16 RGB-hist 19.58 <0.01 30.87 0.14 23.98 0.04 24.15 0.23

24 CMI 78.92 0.12 84.79 0.12 100 0.16 97.28 0.12

30 CM 44.89 <0.01 59.34 <0.01 66.06 <0.01 54.7 <0.01
11 OPP 97.31 0.47 96.42 0.52 98.87 0.48 97.86 0.33

11 Hue 83.56 0.15 93.06 0.08 94.35 0.27 92.86 0.10

50 DD50 86.1 0.52 95.97 0.33 96.05 0.50 88.1 0.41

25 DD25 83.86 0.38 92.62 0.28 86.44 0.44 79.25 0.40

11 DD11 78.48 0.37 89.93 0.36 80.79 0.29 74.49 0.26

11 CN 85.2 0.46 89.26 0.4 92.09 0.48 90.47 0.42

11 FCN 86.4 0.45 87.47 0.38 90.49 0.57 85.37 0.37

13Journal of Sensors



(vii) RawFooT image data: Hue-sift/W

(viii) THRI2015 image data: OPP/Hue-SIFT

In summary, we can get the following conclusions:

(i) Compared with objects with metallic specularities,
images containing nonnegligible dielectric specular-
ities have a more negative effect on the performance
of color descriptors, and for the objects with fluores-
cent surface, the performance of most descriptors
has been improved significantly. Consequently,
color descriptors are more suitable for images with
fluorescent surfaces, whereas for images with specu-
lar or metal reflections, the highlight part would
lead to the performance degradation of pure color
descriptors. It can be considered to fuse the color
information of images with the shape, texture, and
other information, or focus on the highlighted part
for further research

(ii) The color moment invariants (CMI) provide the
optimal balance between performance and dimen-
sions in most tests. Hence, CMI can be considered

an alternative when the high dimensionality of color
descriptors is an issue

(iii) Color descriptors derived from physical reflectance
models are more suitable for object recognition
and image retrieval

(iv) From the theoretical and experimental results, it
can be concluded that we can transform images
into a color space with illumination invariance
such as the rg color space and then calculate color
descriptors, which can improve the robustness of
color descriptors to illumination variations. This
also provides an effective way to improve existing
methods

Color descriptors play an important role in feature
extraction; future research may tend to build more distinc-
tive color descriptors and consider the relationship between
image pixels. Combining with deep learning methods is also
an important trend. Feature extraction in computer vision
does not point to a single feature; integrating color descrip-
tors properly with other features will play a greater role in
different application scenarios.

Table 5: The mean RR and p value of a paired T-test on dataset ALOI, Phos, RawFooT, and THRI2015.

Dimensions Descriptors
Indoor Outdoor

ALOI. Phos RawFooT THRI2015
Mean RR p value Mean RR p value Mean RR p value Mean RR p value

300 C 100 0.54 88.89 0.38 90.8 0.42 83.33 0.23

300 W 100 0.55 86.66 0.34 93.19 0.49 56.94 0.01

300 N 100 — 91.11 0.28 76.52 0.53 79.17 0.13

300 E 99.72 0.46 87.11 0.33 90.29 0.44 90.28 0.32

300 H 97.87 0.52 94.67 — 70.87 0.41 70.83 0.06

300 OPP-SIFT 38.15 0.41 46.67 0.25 74.27 0.02 47.4 <0.01
300 Hue-SIFT 66.76 0.51 91.56 0.26 94.78 — 76.39 0.06

300 rg-SIFT 52.87 0.44 60.89 0.37 76.01 0.11 41.66 0.08

300 RGB-SIFT 35.84 0.43 46.67 0.24 76.16 0.03 37.5 <0.01
300 C-SIFT 33.80 0.47 40.45 0.31 41.81 0.17 40.28 0.04

300 HSV-SIFT 37.32 0.46 42.67 0.28 75.44 0.11 13.81 <0.01
300 SIFT 90.83 0.45 33.78 0.42 62.61 0.11 50 0.02

16 × 16 rg-hist 78.15 0.29 88 0.53 65.87 0.12 69.44 <0.01
16 × 16 Hue-hist 85.65 0.35 50.67 <0.01 74.20 0.21 38.89 <0.01
16 × 16 × 16 OPP-hist 78.24 0.29 79.11 <0.01 60.06 0.27 23.61 <0.01
16 × 16 × 16 RGB-hist 95.46 0.33 64.44 <0.01 73.62 0.22 63.89 <0.01
24 CMI 100 0.16 58.67 0.02 70.58 0.52 76.39 0.10

30 CM 91.57 <0.01 10.66 <0.01 57.97 0.03 66.67 <0.01
11 OPP 84.54 0.45 92.44 0.24 94.28 0.52 97.22 —

11 Hue 86.94 0.48 89.78 0.18 89.21 0.55 93.06 0.12

50 DD50 77.41 0.38 80.44 0.21 86.38 0.57 90.28 0.08

25 DD25 87.78 0.40 75.55 0.24 89.27 0.57 91.66 0.25

11 DD11 85.09 0.38 82.22 0.30 89.86 0.52 83.33 0.57

11 CN 67.86 0.33 86.22 0.47 90.51 0.50 91.67 0.35

11 FCN 68.71 0.37 80.44 0.33 91.96 0.55 93.06 0.57
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