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In this article, a new wavelet-based laser peak detection algorithm is proposed having subpixel accuracy. The algorithm provides
an accurate and rapid measurement platform for the rail surface corrugation with no need to any image noise elimination. The
proposed rail Corrugation Measurement System (CMS) is based on the laser triangulation principle, and the accuracy of such
system is mainly affected by the laser peak detection in the captured image. The intensity of each row or column of the image
is taken as a 1-D discrete signal. Intensity distribution of a laser stripe in this signal follows a Gaussian pattern contaminated
by the white noise. Against usual peak detection algorithms with need to prenoise-filtering process, the proposed method based
on the wavelet transform is able to perform these tasks efficiently and robustly. Present wavelet-based methods for the peak
detection are at pixel level, but for achieving high accuracy subpixel detection is proposed. Experiments show that the
capability of the proposed method for laser peak detection is more accurate and faster than the filter-based methods, especially
for low S/N ratios. Also, this technique can be utilized for any application in laser peak detection with subpixel accuracy. A
prototype system based on the proposed method for the rail corrugation measurement has been designed and manufactured.
Results of the rail corrugation measurement guarantee capability of the proposed methodology for accurate measurement of
the rail corrugation and its potential for industrial application.

1. Introduction

Rail corrugation as a quasisinusoidal irregularity along the
longitudinal direction of the rail occurs on the top of the rail
due to wear when a railway vehicle runs over it. It causes air-
borne noise or ground-borne vibration which decreases the
travel safety and level of the environment-friendliness, espe-
cially in subway or high speed tracks [1–3]. Thus, investiga-
tion and monitoring rail health through measurement of its
longitudinal profile, permanently and regularly, is a neces-
sary task for railways.

There are several methods for measuring rail corrugation
[4]. They can be divided into three main categories: (i)
chord-based measuring methods, (ii) low speed
accelerometer-based techniques, and (iii) axle box acceler-
ometer systems. Chord-based method is the first technique
used to measure the longitudinal profile of rails and is still
probably the most widely used method. Measurements are
made from a chord with the ends on the rail. The reference

of the measurement system moves with vehicle and a trans-
ducer on the chord measures the distance to the rail surface.
The disadvantage of this method is the dependency of the
measurements to corrugation wavelength.

In accelerometer-based profile measurement methods,
the main advantage is that the measuring system has an
inertial reference that does not depend on the path. A low
speed accelerometer system for measuring the longitudinal
profile of a rail has been described in [5]. At frequencies
much lower than the accelerometer resonance frequency,
the measured profile is the same as the input profile. There-
fore, to have an ideal measurement, the measurement speed
must be very low, and it is difficult to use such a system in a
railway vehicle, especially when traveling at line speeds.
Another challenge to use an accelerometer based method is
its sensitivity to the vibration of the rail. For high speed rail
profile measurement, axle box accelerometer methods have
been developed [6–8]. The acceleration of the wheel set as
a rigid body is measured. In fact, measuring acceleration is
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a direct technique to measure dynamic contact force and not
for profile measurement. In addition, the measurement
system is not an ideal system, since the results depend not
only on the speed of the vehicle but also on the characteris-
tics of the track.

Recently, a new approach based on the principle of laser
triangulation has been proposed in [9] that its results are
independent of the track quality; however, its accuracy
depends on the detection of the peak of the laser stripe in
the image captured by the system. Thus, accurate detection
of laser peak has an important role in accurate measurement
of 2-D rail profile [10]. In general, the laser peak detection
methods utilize a special color channel (such as red channel)
for an RGB image or grayscale channel for a grayscale image
(that originally obtained from a camera or by converting an
RGB image to a grayscale image). The value of a pixel in
each row or column of an image represents the intensity of
light; so, the intensity along that row or column is consid-
ered as a 1-D signal that makes the laser peak detection
problem as signal peak detection. The easiest way for signal
peak detection is the maximum value method. The profile is
achieved only by locating the pixel right at the maximum
amount of intensity. Due to the accuracy of the detection
at the pixel level, two challenges may appear: low accuracy
and noise sensitiveness [11].

According to the demand of a laser camera measure-
ment system for higher measurement accuracy, the subpixel
peak detection methods have received more attention.
There are several well-known methods for achieving sub-
pixel accuracy that consist of 1-Gaussian approximation
method, 2-center of the mass method, 3-Blais and Rioux
detectors, 4-parabolic estimator, 5-linear interpolation
method, and 6-zero crossing of the first derivative method
(FIR-finite impulse response filter approach) [12]. The effi-
ciency of the first five methods has been discussed in [13],
and the last one has been described in [14, 15]. The center of
mass or gray-gravity method is an efficient method, which is
simple and easy to use [16–19]. Due to the sensitivity of the
addressed techniques to noise, results of measuring profiles
are very much affected by it. To reduce the effect of the input
signal noise on the measurement results, it is necessary to elim-
inate the noise through a low-pass filter or to augment the peak
by convolving it to a Gaussian kernel (or crosscorrelation).
Accordingly, there are two approaches to complete the process:
1-low-pass filtering and 2-peak augmentation through convo-
lution (or crosscorrelation). In low-pass filtering methods, an
appropriate filter is designed for smoothing the intensity signal.
One way to determine the required filter and its coefficients is
utilizing a Fourier transform. Applying Fourier transform to
signal and smoothing it is a very useful technique for eliminat-
ing the noise. It should be emphasize that, in the first approach,
the nature of the noise and its characteristic is the basis, while in
the second approach, the shape of the signal and its similarity
to a specific pattern is important. In practice, the second
approach is more robust for peak detection, due to the high
power of the laser peak compared to the noise.

By considering the Gaussian distribution of a laser stripe,
one of the commonly used methods, which was originally
designed for analyzing the medical image, is the Steger

method [20] which has high robustness and accuracy in
3D coordinates measurement systems [21]. During the peak
detection process, all the data in the input signal (pixels in
the captured image) convolve with the Gaussian kernel,
and to achieve subpixel accuracy, the eigenvalues and the
eigenvectors of each Heissen matrix are solved [22]. This
therefore requires a huge amount of calculation and also
long processing time. The result relies highly on the param-
eters such as the standard deviation of the Gaussian pattern
and the threshold of the eigenvalues [23]. By a set of fixed
parameters, this method is hardly compatible with stripes
with different widths and noise amplitudes.

There are other techniques based on the Gaussian correla-
tion. Cai et al. used the principal component analysis method
for estimating the normal direction, and then subpixel laser
peak was calculated using the second order Taylor expansion
[24]. This method is also has high computational expense.
Sun et al. proposed a robust laser peak detection method
which is based on the grey level moment and the smoothing
spline algorithm [25]. This analysis is based on the fact that
the light intensity is uniformly distributed. Meanwhile, cross-
sectional intensity of most laser stripes follows the Gaussian
distribution [26]. In addition, some methods are through
calculation of crosscorrelation [27–29]. The effect of noise
on the signal peak detection can be effectively suppressed,
but these methods require a large amount of computation
due to crosscorrelation process.

While the above noise filtering algorithms and peak
detection methods have been developed for the signal peak
detection, wavelet transform analysis is able to perform both
of tasks efficiently and simultaneously. Accordingly, wavelet-
based methods for the peak detection are considered in the
analysis of spectral data [30, 31]. The wavelet transform
template matching is capable of detecting the signal peak
with different latitudes and domains, but at pixel level. So,
low accuracy is a consequent disadvantage.

In this paper, a wavelet-based laser peak detection algo-
rithm proposed at subpixel accuracy. The wavelet transform
is utilized for the pattern matching (especially a Gaussian
pattern), and its coefficients are used for subpixel accuracy.
The wavelet transform pattern matching can robustly detect
the laser peak at pixel level, and for achieving the subpixel
accuracy, the appropriate coefficients of the wavelet transform
have been utilized. Thus, by use of the wavelet transform
pattern matching and by calculating its coefficients, the peak
of the laser stripe is accurately detected, and there is no need
to smooth the signal in the presence of noise. The proposed
method is useful for applications such as laser peak detection
in the laser triangulation measurement system. Some experi-
ments are carried out to compare the proposed method with
the high accuracy techniques that first smooth the signal with
a suitable filter and then detect the signal peak. Results show
that the subpixel accuracy obtained through the proposed
method is better than those obtained by the others. This
method is presented to be utilized in an exact geometric
measurement system for the rail corrugation investigation.

The rest of the paper is categorized as follows: the
proposed corrugation measurement system is explained in
Section II. Section III presents the laser light modeling.

2 Journal of Sensors



Section IV explains the nature of the noises produced in an
imaging system. Section V discusses the proposed method.
Section VI presents the results of the experiments. Finally,
Section VII ends up with the conclusion.

2. Proposed Corrugation Measurement System

The proposed corrugation measurement system is a type of
laser measurement system which works based on the trian-
gulation principle. Design of a machine vision system for
industrial usage has been explained in [32]. Major parame-
ters that are important for a rail corrugation measurement
system based on this principle are as follows: the corrugation
wavelength and amplitude, repeatability, accuracy, reliabil-
ity, cost, and the imaging speed. Moreover, environmental
issues such as environment light, surface reflection, dust,
temperature, and humidity should be also taken into design
considerations. All of the parameters and constraints should
be taken into account as well as the software and hardware
requirements for the system.

2.1. System Configuration. The measurement system consists
of a digital SLR camera (Canon EOS 500D, 22:3 × 14:9mm
sensor size, ISO speed of 100-3200, a lens kit with 18-55mm
variable focal length, provides up to 4752 × 3168 still image
resolution) for acquisition an image with shutter speed up to
“4000” (1/4000th of a second), three laser emitters equipped
with a suited lens to project three laser lines onto the rail
surface, a basis for keeping the whole setup on a car body,
and a digital processing system include HP EliteBook Folio
9470M, which processes the image taken from the camera
to extract the rail corrugation of the track. The proposed
corrugation measurement system is shown in Figure 1.

Camera uses a USB interface to connect to the host
laptop for processing the captured images. On the other
hand, each light projected onto the rail surface is a laser line
generated by a laser diode with a power of 50mW and a
cylindrical lens. The laser beam wavelength is about
685nm. Thus, using an optical filter, the imaging device is
able to easily capture the laser beams reflected from the rail
surface while reducing the ambient noise effects.

2.2. Measurement Principle. Corrugation as a quasisinusoi-
dal irregularity appears on the running surface of the rails
and normally has wavelength of less than one meter. The
present corrugation measurement system works based on
laser triangulation principle.

For the rail corrugation, the 2-D profile of the rail in
longitudinal direction should be measured. CMS device
should be perpendicular to the rail surface and parallel along
the rail longitudinal direction for a perfect measurement. In
practice, these two conditions sometimes may not be met.
The measurement error due to nonperpendicularity of the
CMS device as well as nonparallel laser lines along the rail
longitudinal direction can be eliminated through projecting
the extracted 2-D profile to the measurement plane which
passes through rail longitudinal and surface normal axes.

The corrugation of the rail is measured at the head of the
rail. The instrument should align mechanically on a car

body. If the angle of deviation of the CMS device from the
longitudinal direction of the rail is less than 10 degrees, the
measurement error is less than 1.5% in corrugation wave-
length. Running surface is defined as the contact area
between the rail and the wheel where the wheel is most often
in contact with the rail. The use of three laser planes enables
the CMS to cover the entire running surface for measure-
ment. Also, with several lasers’ lines, the normal surface of
the rail can be calculated. Once the surface normal is
obtained, the 2-D extracted profile can be corrected.

3. Laser Light Modeling

A typical kind of the laser measurement system based on the
triangulation principle is shown in Figure 2. This system
consists of a laser and a camera to measure the geometric
shape, especially 2-D profile of an object. In order to mea-
sure a profile, the laser stripe peak needs to be determined
in the image captured by the system.

The reflection of the laser light is different for each sur-
face, depending on its optical property, specular reflection,
or diffusion will happen. Dealing with a rail surface, due to
its roughness (diffuse and specular combined reflection),
reflection usually behaves like Figure 3.

An image captured by the camera from the reflection of
the laser light from such a surface shows that the distribution
of the laser intensity in the monochrome or grayscale follows
a Gaussian pattern. The pattern is illustrated in Figure 4.

For convenience, each row/column of the image can be
considered as a 1-D input signal representing the light inten-
sity along that row/column, and the laser peak is detected by
identifying the maximum value of the light intensity in the
input signal. Thus, by considering each row/column of the
image as an input 1-D signal and by modeling the laser light
distribution as a Gaussian pattern, identifying the maximum
value problem converts into a template matching (Gaussian
wavelet) issue. Figure 5 shows a sample of the laser stripe in
a captured image with intensity distribution of 1-D input
signal in a specific column.

Under controlled conditions of ambient light and laser
intensity, the laser peak detection is a direct task. In indus-
trial application especially for the railway usage, images are
affected by environmental light, multiple reflections, rail

Figure 1: Configuration of the proposed CMS.
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oxidation, greasy surfaces, speckle effect, optical aberrations,
and image sensor saturation.

One of the most efficient ways to reduce the influence of
environmental light on the accuracy of measurement is
using shroud coverage. A laser camera system based on the
image processing has been developed for real-time vertical
track deflection measurement [33]. In this system, the ambi-
ent light, specifically the sunlight, ruins the image of the laser
lines across the rail and makes it impossible for the image
processing program to distinguish the laser lines. Therefore,

a shroud assembly has been utilized to shade the sunlight.
Even in very sunny conditions, the shroud provides ade-
quate shading for the laser and camera image. Also, a camera
lens hood (cylindrical lens hood or petal lens hood) is useful.

In addition, one of the most important design parameters
in developing a machine vision system is the dominant type of
lighting, which depends on the light source and the related
optics [32]. For this purpose, using the coherence character-
istic of laser source with wavelength of 680nm, a special lens
(a narrow band filter) with wavelength of 680nm has been
added to the camera to suppress the unrequested lights input.
Also, the camera setting especially exposure time has been
changed to decrease the influence of ambient light on the
measurement accuracy. At short exposure time, the image
sensor saturation as well as image brightness due to light
reflection from rail surface both disappears.

4. Image Noise in a Digital Camera

The images captured by an imaging system are often accom-
panied by noise, which is normal in any system such as elec-
tronic devices. Image noise in digital cameras is a random
variation in the intensity of a pixel for a grayscale image or
a random change in the value of a specific color channel
for a color image and is usually an aspect of electronic noise.

There are three common types of noise in an image cap-
tured by a digital camera: 1-random noise, 2-“Fixed pattern”
noise, and 3-banding noise. Figure 6 shows the effects of
three types of noise on an image captured from a normal
smooth gray background.

Random noise is recognized according to a change in the
light intensity or color of a pixel higher or lower than the
actual light intensity. The pattern of random noise changes
even if the camera setting is fixed.

Fixed pattern noise shows “hot pixels” in the image; hot
pixels are defined as pixels whose intensity is much higher
than the amplitude of the random noise. This noise has a
unique pattern in the same camera setting.

Banding noise is a camera-dependent noise, and it appears
when the camera reads digital sensor data. It depends on the
camera model.

The characteristics of these types of noise are listed in
Table 1. As addressed in the table, the random noise usually
occurs at high ISO speed and short exposure time, banding
noise happens in a susceptible camera, and the fixed pattern
noise occurs at low ISO speed and long exposure time.

Banding and fixed pattern noises are among the con-
trollable noises, and due to their fixed pattern, they can
be easily eliminated, or it is possible to provide conditions
at which they are less likely to occur. This operation can
be done by identifying the camera’s internal electronics
and detecting noise pattern. These noises are less common
in modern digital cameras and cause fewer image problems
than random noise. Although random noise has a less ampli-
tude than other noises, it is more difficult to eliminate the ran-
dom noise and cannot be achieved without reducing image
quality. Therefore, we consider random noise and its effects
on the image here.

Laser

Cylindrical
lens

Camera

Object

Figure 2: Schematic of a typical triangulation-based laser
measurement system.

Camera

Surface reflectance

Laser beam

Figure 3: Distribution of laser light reflected from a rail surface
(diffuse and specular combined reflection).

Laser beam

Surface reflectance

Rail

Gaussian pattern

Figure 4: Distribution of laser light reflected from a rail surface.
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5. Laser Peak Detection Using Continuous
Wavelet Transformation

A wavelet is defined as a function ψðtÞ in L2ðRÞ such as ψðtÞ
satisfies the following condition:ð+∞

−∞
ψ tð Þdt = 0: ð1Þ

Continuous wavelet transform for function f ðtÞ is
defined at point ðt0, sÞ as follows:

W f , ψ½ � t0, sð Þ = f , ψt0,s

D E
= 1ffiffi

s
p
ð+∞
−∞

f tð Þψ t − t0
s

� �
dt, ð2Þ

where ψt0,sðtÞ is ψðtÞ which is shifted as t0 and scaled tos.

ψt0,s tð Þ =
1ffiffi
s

p ψ
t − t0
s

� �
: ð3Þ

Results of the continuous wavelet transform coefficients
show the pattern of peaks distribution. By utilizing such pat-
tern, the location and power of the peaks in the input signal
f ðtÞ can be robustly obtained. This is done based on the
similarity of a segment in the input signal including the peak

and a scale of waveletψt0,s which is obtained throughGaussian
pattern of the laser intensity. By varying s in ψt0,s, wavelets
with different widths are provided. Here, depending on the
nature of the laser pattern, the wavelet width is determined.

5.1. Appreciate Wavelet Selection. The most similar pattern
to a laser reflected pattern from the rail surface can be
obtained through a Gaussian pattern. The Gaussian func-
tion has several orders, which each of them have specific
shape. Here, the Ricker wavelet known as Mexican hat
wavelet that is the negative normalized second derivative
of a Gaussian function is utilized for the laser peak detection
(shown in Figure 7).

ψ tð Þ = 2ffiffiffiffiffiffi
3σ

p
π1/4

1 − t
σ

� �2
 !

e−
t2
2σ2 , ð4Þ

where σ is the standard deviation of the Gaussian
function.

5.2. Range of Scales. One of the most important factors in
using wavelet transform to detect the peak of the signal is
to determine the range of scales required for the transform.
Range of scales is obtained by the width of Gaussian pattern
due to laser intensity in the image taken by the laser
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Figure 5: Laser stripe. (a) The captured image. (b) Intensity of the laser in a specified column of the captured image (in grayscale mode). (c)
Image intensity.
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measurement system, so that all possible widths are covered.
Each triangulation-based laser measurement system has a
specific working range (since lens focus and field of view
are limited). The working range is defined as the distance
between the laser measurement system and the object to be
measured. The minimum and maximum of this distance
are supposed to be rmin and rmax, respectively. The camera
pin-hole model (shown in Figure 8) is defined by

xc

yc

zc

1

2666664

3777775 =
R t

OT
3 1

" # xw

yw

zw

1

2666664

3777775, ð5Þ

where ðxw, yw, zwÞ is assumed to be the coordinates of a
point P on the object in the world coordinate system
(WCS), and its corresponding coordinates are represented
by ðxc, yc, zcÞ in the camera coordinate system (CCS). R
and t are the rotation matrix and translation vector,
respectively.

(a) (b)

(c)

Figure 6: Common noise types in an image captured by a digital camera. (a) Banding noise. (b) Random noise. (c) “Fixed pattern” noise.

Table 1: Properties of three types of noises in a digital camera.

Noise type Random Banding Fixed pattern

Exposure Short Camera-dependent Long

ISO speed High Camera-dependent Low
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Figure 7: Distribution of the laser light reflected from a rail surface.
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Figure 8: Laser and camera model for a rail corrugation measurement system (based on triangulation principle).
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Table 2: Existing methods for laser peak detection in subpixel accuracy [10–13].

Estimation method Formulae

Gaussian approximation bδ = 1/2: ln að Þ − ln cð Þ/ln að Þ + ln cð Þ − 2:ln bð Þð Þ
Center of mass bδ = c − a/a + b + c

Blais and Rioux detectors bδ =
g ið Þ/g ið Þ − g i + 1ð Þ, f i + 1ð Þ > f i − 1ð Þ
g i − 1ð Þ/g i − 1ð Þ − g ið Þ, f i + 1ð Þ < f i − 1ð Þ

(
Parabolic estimator bδ = 1/2:a − b/c − 2:b + a

Linear interpolation X̂ =
x − a − c/2 b − að Þ, c < a

x − a − c/2 b − cð Þ, otherwise

(
Zero crossing of first derivative X̂ = x0 − y0: x1 − x0ð Þ/y1 − y0
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Figure 10: Calibration of the CMS. (a) The calibration checkerboard plane. (b) Different positions of the calibration plane. (c) The laser
planes extracted thorough surface fitting.
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Then, we have

h

v

1

2664
3775 =

f x αc h0

0 f y v0

0 0 1

2664
3775

xc/zc
yc/zc
1

2664
3775, ð6Þ

where f x and f y are defined as focal lengths in directions x
and y, respectively. ho and vo are coordinates of the center
of the image coordinate system. αc shows the skew between
h and v axes. After applying mathematical operations,

zc:

h

v

1

2664
3775 =

f x αc h0

0 f y v0

0 0 1

2664
3775 R1 t1

OT
3 1

" # xw

yw

zw

2664
3775: ð7Þ

The above parameters are known as internal and exter-
nal parameters of a camera and can be determined by the
existing methods [34–36]. Also, the nonlinearity of the cam-
era model can be taken as lens distortion in the above model,
but without loss of generality, the lens distortion is not taken
into account; as in new lenses, the distortion is negligible and
has small effect on the results. Also, the range of scales is an
approximate parameter and defined by a margin of safety.

According to Figure 8, the diameter of the laser emitter is
denoted by d (its unit is mm). The laser light that emits from
laser diode source is modeled as a flat plane as follows:

xw − xlð Þ:nx + yw − ylð Þ:ny + zw − zlð Þ:nz = 0: ð8Þ

xl, yl, and zl are the coordinates of a point on the laser
plane, and nx, ny, and nz are the components of the normal
vector of the laser plane. Some techniques to extract the laser
plane parameters are explained in [37–41].

When the camera and laser parameters were determined,
the range of scales can be obtained to be.

R =
1 0 0
0 1 0
0 0 1

2664
3775, t =

0
0
0

2664
3775: ð9Þ

As can be seen in Figure 9, the minimum and maximum
of the scales are defined as follows:

smin =
f x
rmax

× d × sin αð Þ, ð10Þ

smax =
f x
rmin

× d × sin αð Þ, ð11Þ

where α = arctan ðny/nzÞ denotes the angle between
camera and laser plane at origin. It can be determined from
the normal vector of laser plane. f x is the focal length in the
x-direction, if a row selected. So, the range of scales is
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Figure 11: Synthetic signal generated by MATLAB software to simulate the laser light intensity in a row/column of a captured image. (a)
The raw signal. (b) Close view of the signal peak (region of interest).

Pixel

Br
ig

ht
ne

ss
 in

te
ns

ity

70 80 90 100 110 120 130 140 150
0

Raw signal
Smoothed signal

50

100

150

200

250 X: 107.5
Y: 272.2

Figure 12: Smoothed signal after filtering and peak detected.

9Journal of Sensors



defined between the minimum of scale denoted as smin and
the maximum of scale denoted as smax. In practice, due to
different optical surface properties, a margin of safety about
25% of the range is considered in upper and lower border.

5.3. Achieving Subpixel Accuracy. All the methods summa-
rized in Table 2 are suitable for the laser peak detection at
subpixel accuracy, but for implementing the wavelet trans-
form capability for laser peak detection at subpixel accuracy,
the wavelet coefficients of appreciate wavelet in the range of
scales should be taken into calculation. As the energy distri-
bution of a laser stripe follows a Gaussian pattern, a wavelet-
based template matching can robustly detect the laser peak
in the image. Suppose W½ f , ψ�ðt0, sÞ as the wavelet trans-
form coefficients of f ðtÞ in the s-scale, in this method, there
is no need to smooth or bias the input signal before utiliza-
tion. To achieve the subpixel accuracy, the wavelet coeffi-
cients which are greater than a threshold are selected:

WSel f , ψ½ � t0, sð Þ =W f , ψ½ � t0, sð Þ > T threshold: ð12Þ

Threshold T can be obtained through the energy of
laser Gaussian pattern. Now, by use of the selected wavelet
coefficients, laser peak will be detected in subpixel accu-
racy as follows:

tpeak =
∑n

i=1t0i :WSeli f , ψ½ � t0i , si
� �

∑n
i=1WSeli f , ψ½ � t0i , si

� � , ð13Þ

where t0i is the shift of i′th wavelet coefficient WSeli ½ f , ψ�
ðt0i , siÞ in scale of si. Accordingly, the laser peak detection
in subpixel accuracy is accomplished. In fact, the proposed
method is a variation of center of the mass method.

6. Experimental Results

Methodology of calibration and error analysis is described
for the fabricated set up in this section. Subsequently, exper-
imental results are presented and discussed.

6.1. System Calibration. The presented CMS is modeled as
a laser camera triangulation system. In this system, each
of the components including camera and laser is sepa-
rately modeled, but, just a single checker board plane is
utilized for calibration.

Camera is considered as a pinhole model. The camera
parameters (rotation matrix, translation vector, lens deflec-
tion, axis skew and…) are extracted from the corresponding
point pairs by minimizing the summation of the squared
errors. Corresponding pairs are defined as pairs between
points on the calibration plane and their corresponding
points on the image plane (shown in Figure 10(a)). Also,
the effect of nonlinear deformation due to the lens distortion
is considered. By utilizing an appropriate software (such as
MATLAB Camera Calibration Toolbox [42]), the checker-
board pattern can be automatically detected.

A laser can be considered as a planner plane; so, the
model of the laser follows equation of a plane. In order to
obtain the parameters of the three laser planes, the checker
board plane is placed at an arbitrary position in front of
the camera. While the laser emitters are on, camera uses a
snapshot from them (as shown in Figure 10(b)). Therefore,
the patterns of checkerboard and laser planes are captured
together. 3D coordinates of the laser points are then
obtained through reprojection of the laser peaks detected on
the image to the calibration board. Laser rays passing from
the center of the camera coordinate system and laser detected
peaks on the image plane are intersected by the checkerboard
plane. Then, the parameters of the lasers’ planes are obtained
thorough surface fitting (shown in Figure 10(c)). By utilizing

Pixel

Ra
ng

e o
f s

ca
le

s

50 100 150 200 250 300 350 400 450

5

6

[X,Y]: [108 6]

[R,G,B]: [0.9922 0.9922 0.9765]
Index: 235

7

8

9

10

11

12

13

14

15

(a)

Pixel

Ra
ng

e o
f s

ca
le

s

50 100 150

90 100 110 120

200 250 300 350 400 450

5 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

6

[X,Y]: [108 4]

[R,G,B]: [0.498 0 0]
Index: 0.9632

7

8

9

10

11

12

13

14

15

(b)

Figure 13: Signal peak detection in pixel accuracy using wavelet transform. (a) Wavelet transform coefficients and the range of scales. (b)
Scalogram of wavelet transform.

Table 3: Result of 100 tests on synthetic data (100 different random
noisy signals generated by MATLAB software).

Peak detection
Accuracy
(pixel)

Processing time
(sec)

Center of gravity method ±0.0154 3.6612e-5

Center of gravity method after
filtering

±0.0121 0.0031

Proposed method ±0.0062 0.1823
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the above method, the laser camera system is calibrated using
only a single plane, and no extra equipment is required.

6.2. Algorithm Evaluation. In order to evaluate accuracy and
performance of the proposed method, some experiments
were performed on both synthetic and real data. At first, a
synthetic discrete signal was created. This signal is a random
noisy signal generated using random function of the
MATLAB software. The signal length is selected to be 480
pixels, which is equal to the number of rows in an image
with 640 × 480 resolution (480p 4 : 3 aspect ratio). In order
to simulate the laser peak in the corresponding signal, a
Gaussian pattern was generated using the related function
in MATLAB software. The width of the pattern (the stan-

dard deviation of Gaussian kernel) was selected such that
to be near to the laser width in the image captured by an
ordinary laser measurement system. The amplitude of the
peak was selected so that the signal-to-noise ratio is similar
to the reality. In fact, the values of the signal represent the
light intensity of each pixel in a specific color channel or in
a grayscale image. This high-frequency noisy signal inte-
grated by the Gaussian pattern is shown in Figure 11(a).

The signal has been defined such that the peak was
located at 107.5 pixels of the signal. But as can be seen in
Figure 11(b), a close view of the signal shows that if no pre-
processing is performed, the peak is detected at pixel 108.
This phenomenon indicates that, in the presence of noise, a
large error in peak detection may occur. In a triangulation-

(a) (b)

(c)

Figure 14: Rail simulator. (a) Manufactured rail simulator. (b, c) CAD model of rail simulator.

(a) (b)

Figure 15: Samples for simulating the rail corrugation. (a, b) Two views of the manufactured samples for simulating the rail corrugation
with wavelength of 5 cm and amplitudes of 50 and 100 micrometers.
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based measurement system, detecting the laser stripe peak in
pixel accuracy causes large errors in measurement; hence, all
of the available methods try to detect laser peak in subpixel
accuracy.

To detect laser peak by use of available methods, its better,
the signal to be smoothed using a proper filter. Hence, a low-
pass filter is designed; here, the filter coefficients are deter-
mined through Fourier transform and based on the nature
of the signal noise. After designing the filter, the correspond-
ing signal is smoothed by use of the designed filter and the
laser peak detected through the center of gravity method in
subpixel accuracy. Figure 12 shows the smoothed signal and
the detected peak. The difference between the detected signal
peak and its real value is 0.012 in subpixel accuracy.

Now, the signal peak is detected by use of the proposed
method. Here, the range of scales determined through the
width of generated Gaussian pattern which is integrated in
the synthetic signal (Gaussian pattern width is equal to
10units, scales range smin and smax defined as 5 and 15 pixels,
respectively). As shown in Figure 13(a), the laser peak is
detected at 108, robustly. Scalogram of the signal is illustrated
Figure 13(b). To detect the signal peak in subpixel accuracy,
first, the wavelet transform coefficients are calculated. Thresh-
old for selecting the best coefficients can be determined
through the calculation of the area under an ordinary laser
Gaussian pattern in the synthetic data. Then, the laser peak
will be detected through Eq. (13). The difference between the
detected signal peak and its real value is 0.006 in subpixel accu-
racy. The above test was performed on 100 signals with signal-
to-noise ratio of about 30dB. The experimental results
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Figure 16: Designed and manufactured prototype based on the laser triangulation method for the rail corrugation measurement [97]. (a)
Prototype and its test rig for simulating the corrugated rail as a moving object. (b) Samples produced by CNC machine for simulating
the rail corrugation. (c) 3D laser reconstruction of the sample.

Table 4: Specification of the proposed corrugation measurement
prototype and the range of scales.

Parameters Value

Camera resolution 4752 × 3168 pixels

Camera type Canon 500D

Camera focal length @ 24mm 5106 and 5107 pixels

x and y direction

Laser wave length 685 nm

Laser diameter 2mm

Angle between laser and camera, α 42 degrees

Working range, rmin 35 cm

Working range, rmax 55 cm

Range of scales, smin 10.5 pixels

Range of scales, smax 21.5 pixels

Table 5: Result of 40 tests on 4 different samples manufactured by
CNC machine to simulate the corrugation of the rail (with
wavelength of 5 and 10 cm and amplitude of 50 and 100
micrometer).

Corrugation measurement
Error (mm)

Wavelength Amplitude

Center of gravity method ±0.19 ±0.009
Center of gravity method after filtering ±0.17 ±0.008
Proposed method ±0.11 ±0.005
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including the accuracy and computation time are listed in
Table 3. As can be seen by using the proposed method, the
laser peak was detected in subpixel accuracy more robust than
the filtering method.

It should also be added that the accuracy and speed of
detection also depend on the system settings including the
camera and the digital processing system. As shown in
Table 3, a comparison between the proposed laser peak detec-
tion and two other popular peak detectionmethods performed
by a similar digital processing system shows that the accuracy
can be doubled with almost the same processing time. This is a
remarkable benefit for the field measurements.

To simulate a real field test, it was decided to design and
manufacture a rail simulator that could simulate conditions
similar to the actual conditions that occur when the
proposed corrugation measurement system measures a rail
corrugation. For this purpose, the rail is oscillating, and the
measuring system is fixed. Figure 14 presents the proposed
rail simulator.

The proposed rail simulator is based on the Scotch yoke
mechanism and operates in a reciprocating manner that
moves the rail for a maximum speed of up to 30 km/h.

Also, to determine the characteristic of rail corrugation,
some artificial samples have been made by a CNC machine
as like as a sine wave to simulate a corrugated rail (the accu-
racy of the production is about ±20 micrometers). Then, the
sine wave amplitude is measured again using a micrometer
to confirm the accuracy of production. The samples for simu-
lating the rail corrugation have been produced by wavelength
of 5 and 10cm and amplitude of 50 and 100 micrometer.
Figure 15 shows the produced samples with wavelength of
5 cm and amplitudes of 50 and 100 micrometers.

An experiment was also designed to get real data. As
shown in Figure 16(a), a prototype based on the laser trian-
gulation, for the rail corrugation measurement, was designed
and manufactured. The specifications of the corrugation
measurement prototype and its corresponding range of
scales are depicted in Table 4. Camera parameters are com-
puted by use of Camera Calibration Toolbox for MATLAB
[43]. Range of scales was determined through Eqs. (9) and
(10) by considering the focal length of the camera, working

range, and the angle between camera and laser source of
the laser measurement system.

As shown in Figure 16(b), some samples for the simulat-
ing rail corrugation were produced by CNC (computer
numerical control) machine. Each sample has unique wave-
length and domain that indicates the specification of a rail
corrugation type. By use of the laser measurement prototype
developed for rail corrugation measurement, the wavelength
and amplitude of the samples are measured. The 3D recon-
structed points of the sample are depicted in Figure 16(c). By
comparing the exact and measured wavelength and ampli-
tude of the fabricated specimens, the error of the rail corru-
gation measurement can be calculated. Also, a method for
evaluation and analysis of digitizing errors of a laser scan-
ning system has been described in [44]. Table 5 indicates
the results of measurements error for 40 tests on 4
different samples manufactured by CNC machine to simu-
late the corrugation of rail (with wavelength of 5 and
10 cm and amplitude of 50 and 100 micrometer).

In addition to the tests carried out on the corrugated rail
samples with amplitudes of 50 and 100 micrometers, extra
experiments were performed on the other CNC manufac-
tured samples with the wavelength of 5, 10, and 15 cm and
the amplitudes of 1, 2, and 3mm. Results show that the
accuracy of measurement for theses amplitudes and wave-
lengths is in the same percentage order as that was measured
before for the corrugated rail samples.

Figure 17 shows the image captured by the proposed
rail corrugation measurement system (wavelength of 5 cm
and amplitude of 50 micrometer). The rail corrugation
should be measured on running surface of the rail. The
use of three laser planes enables the CMS to cover the
whole running surface of the rail. As can be seen, three
laser planes are utilized for the laser peak detection and
3d reconstruction, and the light intensity of each laser
and its power (S/N ≈ 30 dB) is clear. Figure 18 shows results
of rail corrugation measurement for two samples. The sam-
ples wavelengths are 5 cm but their amplitudes vary
between 50 and 100 micrometer. It is seen that results of
the proposed method are reliable both in estimating the
amplitude and the wavelength.
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Figure 17: Image captured from a sample of corrugated rail (wavelength of 5 cm and amplitude of 50 micrometer). (a) Captured image from
3 laser beams. (b) Light intensity of each laser and its power (S/N≈30 dB).
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As addressed before, the corrugation is a quasisinusoidal
irregularity, but as a mathematical model, it is considered as
a sine wave. To extract the parameters of the corrugation, a
sine wave fitting is required. For a simple sine wave fitting,
two standard algorithms exist: 1-four-parameter sine wave
fit (4PSF), known as IEEE-STD-1057, and 2-three-
parameter sine wave fit (3PSF), known as IEEE-STD-1041.
The main difference between the raised algorithms is in
knowing the parameter λ (the wavelength of the sine wave)
which makes the problem linear or nonlinear for solving.

The proposed CMS has a moving reference, and the
extracted 2-D profile data has an extra degree of freedom,
i.e., rotation. In the presence of the rotation, the problem of
sine wave fitting is completely nonlinear. The parameter λ as
corrugation wavelength is extracted at first through THE
ellipse fitting method. Then, the rotation angle and other
corrugation parameters are obtained by fitting a rotated sine
wave to the 2-D profile data. Then, accurate parameters are
extracted in an iterative manner [9].

7. Conclusions

Rail corrugation as an important source of noise and vibration
in railways and subways should be continuously monitored,
especially in public transportation. The existing measuement
systems for the rail assessment use the laser triangulation-
based corrugation measurement method. The accuracy of
such systems is quietly depends to the algorithm utilized for
the laser peak detection.

In this paper, we applied the Gaussian wavelet transform
to detect the laser peaks, because the laser peak distribution
follows a Gaussian pattern. The wavelet transform is capable
of detecting the laser peak by pattern matching in a robust
and rapid process. To achieve the subpixel accuracy, the
wavelet transform coefficients were utilized.

The accuracy of the proposed method for synthetic data
is 0.0062 pixels that in contrast with the filtering methods

with accuracy of 0.0121 pixels gives two times better results.
Also, the prototype system for the rail corrugation measure-
ment based on the proposed method allows measurements
at 5% of the range (up to 5 microns).

Applying the new methodology based on the wavelet
transform provided a new rapid and accurate measurement
platform for the rail longitudinal profile measurement. Sim-
ulation results as well as the experimental outcomes showed
that the proposed method is quite independent from the
rail quality and less affected by the random noise. Thin
conclusion will candidate this new methodology for the
industrial application.
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