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Arriving on time is of great importance for flight management and passenger experience. One of the essential factors that impacts
on-time arrival is the wind condition. Accurate information of wind speed and direction around the fuselage helps to improve the
performance of on-time arrival and four-dimensional trajectory (4DT) planning. To determine accurate wind information in
real-time, a novel airborne estimation method of wind speed and direction is proposed in this paper. Inertial Navigation System
(INS), Global Satellite Navigation System (GNSS), and Air Data System (ADS) are fused in an Unscented Kalman Filter (UKF),
which provides great accuracy and robustness in nonlinearity conditions. The dynamic models of wind are established, and
implementations of the UKF are detailed. Finally, simulations are designed and the effectiveness of the proposed method is
verified through the comparison with the traditional direct measurement method. Results demonstrate that the accuracy of wind
speed and direction obtained by our method is nearly two times higher than the traditional direct measurement method.

1. Introduction

The estimation of instantaneous wind speed and direction
at the location of the aircraft can be a significant problem
due to the inevitable presence of wind in the flying. This
problem is particularly important in four-dimensional tra-
jectory (4DT) planning [1, 2]. Four-dimensional trajectory
planning is aimed at conducting trajectory planning in
four-dimensional space [3, 4]. The resulting flight trajec-
tory includes all the three-dimensional positions where
the aircraft is flying and the flight time when it is in that
position, which means both the three-dimensional coordi-
nates of the trajectory and the time to reach the three-
dimensional coordinate point are planned. Since wind
speed and direction can have a great impact on the time
dimension of four-dimensional trajectory planning, accurate
real-time wind information is needed in 4DT. Besides, the
ambient wind speed and direction are also very useful

information for various objectives such as flight control [5],
micro aerial vehicles [6], atmospheric energy harvesting
[7–9], air traffic control [10], aerial refueling [11], and collision
avoidance. A popular approach to the wind estimation prob-
lem involves applying the aircraft dynamic model to predict
the information of wind through Kalman filter [12, 13].

A problem with the existing work using Extended
Kalman Filter (EKF) [14–17] for wind estimation [18] is that
the wind dynamic model is nonlinear so the linearization
accuracy of EKF may not be enough or even diffuse. Lefas
developed a simple filter for wind estimation using magnetic
heading, true air speed, and radar measurements; however,
the data transmitted through the air-ground data link of
the radar system can result in wildly erroneous measure-
ments [10]. Langelaan et al. conducted a thorough simula-
tion research on a method of directly estimating wind field;
however, the measurement error of wind speed increases
with the increase of airspeed [1]. Cho et al. proposed a
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method of horizontal wind estimation based on the EKF,
which combines simulation and experimental data; how-
ever, it is usually not feasible in practical application that
the aircraft needs to make banking turns or circle maneu-
vers, especially for civilian flights [19]. The horizontal wind
speed and direction are predicted by the assumption of ran-
dom moving noise, and then, these states are adjusted by
the wind triangle comparison of air speed and ground
speed provided by GPS [20, 21]. There is also some work
in wind estimation using the Unscented Kalman Filter
(UKF), though this work is limited in assuming a known
a priori wind direction [22]. Taylor presented a simulation
study of parameter estimation techniques for air data cali-
bration and wind estimation [23]. This method assumes
that the inertial velocities and Euler angles are accurate,
that the calibration models are correct, and that the
steady-state component of wind is constant throughout
the maneuver. Liu et al. [24] comprehensively evaluated
the sideslip angle estimation methods of vehicles in a com-
parative study. The results show that under the dynamic
model, the UKF has higher performance than EKF to a cer-
tain extent. To overcome the time-varying and complexity
of environmental noise information in practical application,
Wang et al. [25] derived an AEKF method from a
maximum-likelihood estimation for rolling state estimation.
The results show that AEKF has better performance and
feasibility than EKF. Under the condition of multisensor
measurement, Ding et al. [26] proposed a weighted mea-
surement fusion Kalman estimator based on centralized
fusion to estimate the longitudinal vehicle speed. Through
the combination of multiple sensor signals, three virtual
sensors are formed, each virtual sensor generates a corre-
sponding speed information, and the speed information
in a long time is obtained by weighting coefficient estima-
tion. It has high precision and reliability. This shows that
the combination of data fusion and Kalman filter is of
great significance.

The work introduced herein is to deduce the estima-
tion formulas of three-dimensional wind speed and direc-
tion based on the measurements from airborne Global
Satellite Navigation System (GNSS), the output results of
Inertial Navigation System (INS), and the information of
airspeed, angle of attack, and sideslip angle provided by
an Air Data System (ADS). The work also extends Cho’s
work including vertical wind and wind direction, as well
as angle of attack and sideslip information. In addition,
the three-dimensional position is also provided as mea-
surements, which is of great significance to improve the
accuracy of wind estimation. The contribution of this
work is that it provides an innovative method based on
UKF for real-time and accurate estimation of wind field
information around aircraft, as well as navigation, posi-
tion, and flow angle information.

The organization of this paper proceeds as follows.
Section 2 describes the aircraft dynamic equations. Section
3 introduces the Unscented Kalman Filter used in wind
speed and direction estimation in this paper. Section 4
presents various simulations and their results. Finally,
Section 5 presents the concluding remarks.

2. Problem Formulations

The estimation algorithm uses information from an Air Data
System (ADS), Global Satellite Navigation System (GNSS),
and Inertial Navigation System (INS) to estimate the three-
dimensional components of wind speed and direction.

2.1. Introduction of Coordinates. First, the coordinates that
are used in the paper are defined.

On − XnYnZn denotes the navigation frame which coin-
cides with the geographic frame (Og − XgYgZg), north east
and down (NED).

Ob − XbYbZb denotes the aircraft body coordinate frame.
Ob is at the center of gravity, Xb is in the plane of symmetry
of the aircraft and parallel to the design axis of the aircraft
and points to the nose, Yb is perpendicular to the plane of
symmetry of the aircraft and points to the right of the fuse-
lage, and Zb is in the plane of symmetry of the aircraft, per-
pendicular to the Xb and pointing below the fuselage. The
rotation from NED to the aircraft body coordinate system
is defined by Euler angles, as shown in Figure 1.

Ow − XwYwZw denotes the wind coordinate frame. Ow is
at the center of gravity and fixed connection with aircraft
body; Xw is pointing at the direction of airspeed Va; Zw is
in the plane of symmetry of the aircraft, perpendicular to
the Xw and pointing below the fuselage; and Yb is defined
by the right-hand rule. Rotation from the aircraft body coor-
dinate frame to the wind coordinate frame is defined by the
angle of attack α and sideslip β, as shown in Figure 2.

2.2. Dynamic Equations. The following quantities are studied
in this paper:

(1) The forward, rightward, and downward airspeed
components u, v, and w, respectively

(2) The rollϕ, pitch θ, and yawψ of the Euler attitude angles

(3) The northward, eastward, and downward wind
velocity components wx, wy, and wz

(4) The latitude L, the longitude λ, and the altitude H of
the aircraft

(5) The pitot tube velocity Vpitot, angle of attack α, and
sideslip angle β derived from the Air Data System

(6) The northward, eastward, and downward velocity
(ground speed) ðVxm Vym VzmÞ and positions
Lm λm Hmð Þ provided by the GNSS

(7) The accelerations ax ay az
� �

and angular veloc-
ity p q rð Þ derived from the Inertial Measure-
ment Unit (IMU).

Firstly, based on the flight dynamics and the assumption
that the plane is a rigid body, the motion equations of the
aircraft are established as follows.

The conversion from the aircraft body coordinate
frame to the geographic coordinate system is defined by
the Direction Cosine Matrix (DCM), which is derived
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from the continuous rotation of roll ϕ, pitch θ, and yaw ψ
of the aircraft.

Cn
b = DCM ϕ, θ, ψð Þ

=

cos ψ −sin ψ 0

sin ψ cos ψ 0

0 0 1

2
6664

3
7775

cos θ 0 sin θ

0 1 0

−sin θ 0 cos θ

2
6664

3
7775

�
1 0 0

0 cos ϕ −sin ϕ

0 sin ϕ cos ϕ

2
6664

3
7775:

ð1Þ

The following force equations can be obtained by
decomposing the total aerodynamic forces and the thrusts
ðFx, Fy, FzÞ into the aircraft body coordinate system and
then decomposing the gravity into the aircraft body coor-
dinate system, too:

_u = vr −wq − g sin θ + Fx

m
,

_v = −ur +wp + g cos θ sin ϕ +
Fy

m
,

_w = uq − vp + g cos θ cos ϕ + Fz

m
,

8>>>>>>><
>>>>>>>:

ð2Þ

where m is the total mass of the aircraft which is assumed

to be a constant. The relationship between the attitude rate
_ϕ _θ _ψ

� �
and the three angular velocity components

p q rð Þ in the body coordinate system can be
described by the dynamic equations as follows [27]:

_ϕ = p + r cos ϕ + q sin ϕð Þ tan θ,
_θ = q cos ϕ − r sin ϕ,
_ψ = r cos ϕ + q sin ϕð Þ sec θ:

8>><
>>:

ð3Þ

According to the characteristic of randomness, the
state model of wind speed is set as a random walk pro-
cess [19].

The dynamics for the position states are then given by
groundspeeds of the aircraft:

_L = Vx

Rm +H
,

_λ =
Vy

Rn +H
sec L,

_H = Vz ,

8>>>>>><
>>>>>>:

ð4Þ

where Rm = Reð1 − 2e + 3e sin2LÞ, Rn = Reð1 + e sin2LÞ, and
Re = 6378393m, and e = 1/297:3 is the oblation of rotating
ellipsoid. Vx Vy Vz

� �
are groundspeeds of the aircraft

in navigation coordinates. They can be correlated with the
wind speed in geographic coordinates and the airspeed in
the aircraft body coordinate through the Direction Cosine
Matrix as follows:

Vx

Vy

Vz

2
664

3
775 = Cn

b

u

v

w

2
664

3
775 +

wx

wy

wz

2
664

3
775: ð5Þ

Secondly, the mathematical models related with pitot
speed, angle of attack, and sideslip angle are presented.
The pitot speed Vpitot is calculated using the dynamic pres-
sure measured from a sensor connected to a pitot tube.
The calculation formula is based on Bernoulli equation,
and it yields

V2
pitot = K

2ΔP
ρ

= u2 + v2 +w2, ð6Þ

where ΔP is the dynamic pressure, ρ is the air density, and K
is the correction factor [28].

Attack angle α and sideslip angle β can be derived
from the airspeed components in the body coordinate sys-
tem [29]:

α = arctan w
u
, ð7Þ

β = arcsin vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2 +w2

p
� �

: ð8Þ

Figure 1: Relationship between the aircraft body coordinate frame
and the geographic system.
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Figure 2: Relationship between the wind coordinate frame and the
aircraft body coordinate frame.
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Through the angle of attack, the sideslip angle, and Vpitot,
airspeed Va in navigation coordinates can be expressed as

Va = Cn
b

cos α cos β
sin β

sin α cos β

2
664

3
775Vpitot: ð9Þ

Therefore, the wind speed wx, wy, and wz can be com-
puted directly from the wind speed triangle as [30]

wx

wy

wz

2
664

3
775 =

Vxm

Vym

Vzm

2
664

3
775 − Cn

b

cos α cos β
sin β

sin α cos β

2
664

3
775Vpitot: ð10Þ

This method is traditionally used for wind information,
and it is compared in the Section 4 for the better accuracy of
our method.

Besides of speed, the information of the wind field
around the aircraft also includes the wind direction, namely,
the wind azimuth and the wind pitch. The angle between the
wind speed and the north is defined as the wind azimuth:

waz = arctan wz

wx
: ð11Þ

The angle between the wind speed and the horizontal
plane is defined as the wind pitch:

wan = arctan
wyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
x +w2

z

p : ð12Þ

Their accuracy is also compared in the simulations.

3. Estimation Method of Wind Speed
and Direction

Since the GNSS/INS/ADS integrated navigation system pos-
sesses nonlinear characteristics, nonlinear estimation algo-
rithms such as EKF or UKF are needed. Because EKF is a
first-order approximation of nonlinear system, while UKF
has at least second-order approximation accuracy and Jaco-
bian matrices are unnecessary, which reduce the computa-
tion complexity, UKF is adopted to estimate wind speed
and direction online in this study. The research of Liu
et al. [24] and Ding et al. [26] also trues this point.

According to the dynamic equations detailed in Section 2,
the state vector X consists the following elements: the airspeeds
u v w½ �T in the body coordinate frame, Euler attitude

angles ϕ θ ψ½ �T , three-axis wind speed wx wy wz
� �T

,

and three-dimensional position L λ H½ �T . The input vec-
tor U consists of accelerations and angular rates obtained
through IMU. The groundspeed and position measured by
GNSS, airspeed, angle of attack, and sideslip angle provided
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Figure 3: Flight path.

Table 1: Standard deviations of measurement noise.

Parameter Variable Noise standard deviation

Position (GNSS) Lm, λm,Hm 1m

Ground speed (GNSS) Vx , Vy , Vz 0.2m/s

Acceleration (IMU) ax , ay , az 0.001 g

Angular rate (IMU) p, q, r 0.01°/h

Airspeed Va 0.5m/s

Angle of attack α 0.1°

Sideslip angle β 0.1°
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by the ADS are adopted as the measurements Z:

X = u v w ϕ θ ψ wx wy wz L λ H
� �T ,

U = ax ay az p q r
� �T ,

Z = Vxm Vym Vzm Vpitot α β Lm λm Hm
� �T

:

ð13Þ

The state equation of the UKF is established as follows:

Xk = f Xk−1, uk−1ð Þ +Wk−1, ð14Þ

where f is the nonlinear vector function detailed in equations
(2), (3), and (4) and Xk and Xk−1 are the state vectors at k
and k − 1 moment, respectively. Wk‐1 is the zero-mean
Gaussian process noise vector.

The measurement equation is established as follows:

Zk = h Xkð Þ + Vk, ð15Þ

where h is a nonlinear observation function detailed in equa-
tions (5), (6), (7), and (8). Vk is the zero-mean Gaussian
measurement noise vector.

The UKF algorithms are as follows.

First, select the initial filtering values:

X̂0 = EX0,

P0 = E X0 − X̂0
� �

X0 − X∧0ð ÞT
h i

,
ð16Þ

where E is the mathematical expectation, X0 is the initial
value of the state vector, X̂0 is the mean value of the initial
value of the state vector, and P0 is the covariance matrix of
the initial value of the state vector.

Second, calculate the sigma sample points at k − 1
moment:

~χ
0ð Þ
k−1 = X̂k−1,

~χ
ið Þ
k−1 = X̂k−1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + λð ÞPk−1

p	 

ið Þ
, i = 1, 2,⋯, n,

~χ
ið Þ
k−1 = X̂k−1‐

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + λð ÞPk−1

p	 

i‐nð Þ

, i = n + 1, n + 2,⋯2n,

ð17Þ

where n is the state dimension and λ = α2ðn + κÞ − n,
α ∈ ½10−4, 1�, κ = 3‐n.
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Figure 4: Position error obtained by integrated navigation.
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Third, determine the weight:

W mð Þ
0 = λ

n + λ
,

W cð Þ
0 = λ

n + λ
+ 1 − α2 + β,

W mð Þ
i =W cð Þ

i = 1
2 n + λð Þ , i = 1, 2,⋯, 2n,

ð18Þ

whereWðmÞ
0 andWðmÞ

i are the weights of the state vector of the i
th sigma point,WðcÞ

0 andWðcÞ
i are the weights of the covariance

matrix of the state vector of the ith sigma point, and β is the
state distribution parameter. For Gaussian white noise, β = 2.

Fourth, calculate the one-step prediction model value of
k moment:

χ
ið Þ
k/k−1 = f ~χ

ið Þ
k−1, uk−1

h i
, i = 0, 1, 2,⋯, 2n,

X̂k/k−1 = 〠
2n

i=0
W mð Þ

i χ
ið Þ
k/k−1,

Pk/k−1 = 〠
2n

i=0
W cð Þ

i χ
ið Þ
k/k−1 − X̂k/k−1

h i
χ

ið Þ
k/k−1 − X∧k/k−1

h iT
+Qk−1:

ð19Þ

X̂k/k−1 is the prediction state vector, Pk/k−1 is the covari-
ance matrix of the prediction state vector, and Qk−1 is the
state vector noise matrix in the last moment.

Fifth, calculate the one-step prediction sample point of
k moment:

χ
0ð Þ
k/k−1 = X̂k/k−1,

χ
ið Þ
k/k−1 = X̂k/k−1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + λð ÞPk/k−1

p	 

ið Þ
, i = 1, 2,⋯, n,

χ
ið Þ
k/k−1 = X̂k/k−1‐

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n + λð ÞPk/k−1

p	 

i‐nð Þ

, i = n + 1, n + 2,⋯2n:

ð20Þ

Sixth is measurement update:

Z ið Þ
k/k−1 = h χ

ið Þ
k/k−1

h i
, i = 0, 1, 2,⋯, n,

Ẑk/k−1 = 〠
2n

i=0
W mð Þ

i Z ið Þ
k/k−1,

P ZZð Þk/k−1 = 〠
2n

i=0
W ið Þ

i Z ið Þ
k/k−1 − Ẑk/k−1

h i
Z ið Þ
k/k−1 − Z∧k/k−1

h iT
+ Rk,

P XZð Þk/k−1 = 〠
2n

i=0
W cð Þ

i χ
ið Þ
k/k−1 − X̂k/k−1

h i
Z ið Þ
k/k−1 − Z∧k/k−1

h iT
,

ð21Þ
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Figure 5: Speed error obtained by integrated navigation.
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where Ẑk/k−1 is the prediction observation vector, PðzzÞk/k−1
is the covariance matrix of prediction vector and observa-
tion vector, PðXZÞk/k−1 is the covariance matrix of prediction
observation and state vector, and Rk is the observation
noise matrix.

Seventh is filter update:

Kk = P XZð Þk/k−1P
−1
ZZð Þk/k−1 ,

X̂k = X̂k/k−1 + Kk Zk − Ẑk/k−1
� �

,

Pk = Pk/k−1 − KkP ZZð Þk/k−1K
T
k ,

ð22Þ

where Kk is the gain matrix, X̂k is the estimated state vector,
and Pk is the covariance matrix of the estimated state vector.

4. Simulation Verifications

In order to evaluate the feasibility and effectiveness of the esti-
mation method for wind speed and direction, various simula-
tions were carried out. The simulated trajectory lasts 900 s, and
the three-dimension flight path is shown in Figure 3.

In the simulation experiment, the sampling rate of the
IMU is 100Hz and the frequency of integrated navigation

is 1Hz. The measurement noise is assumed to be Gaussian
white noise, and the standard deviations are shown in
Table 1.

The position error obtained by the integrated navigation
is shown in Figure 4. The standard deviations of latitude,
longitude, and height errors are 0.014m, 0.011m, and
0.65m, respectively.

The speed error obtained by integrated navigation is
shown in Figure 5. The standard deviations of the north,
east, and down speed errors are 0.070m/s, 0.065m/s, and
0.064m/s, respectively.

In the first simulation, wind speed and direction are set to
constants. The results of the proposed estimation method
based on UKF estimation are depicted in Figure 6. In the fig-
ure, the Measurements refer to raw wind speed information,
which is calculated according to equation (10). The Estimates
refer to the wind speed estimated by UKF, and Truth is the ref-
erence wind speed. As shown in Figure 6, the accuracy of wind
speed obtained by the proposed method in this paper is much
higher than that of the raw wind speed. The standard devia-
tions of the wind speed error of the proposed method are
0.12m/s, 0.14m/s, and 0.13m/s, respectively, while they are
0.33m/s, 0.34m/s, and 0.38m/s for raw wind speed scenario.

After the wind speeds are obtained, the corresponding
wind azimuth (as shown in Figure 7) and pitch (as shown
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Figure 8: Wind pitch measurements, estimates, and true values.

Table 2: Standard deviation of estimated and measured wind speed for constant wind.

Speed: m/s
Angle: °

Group 1 Group 2 Group 3

Standard deviation
of measurements

Standard
deviation of
estimations

Standard deviation
of measurements

Standard
deviation of
estimations

Standard deviation
of measurements

Standard
deviation of
estimations

North 0.33 0.12 0.43 0.12 0.53 0.11

East 0.33 0.13 0.31 0.13 0.31 0.12

Down 0.38 0.13 0.42 0.16 0.44 0.15

Resultant 0.33 0.12 0.43 0.13 0.54 0.12

Azimuth 4.78 1.69 4.70 1.83 4.70 1.73

Pitch 3.66 1.57 3.41 1.34 3.28 1.32
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in Figure 8) can be acquired. The standard deviations of the
wind direction error of the proposed method are 1.73° and
1.32°, respectively, while they are 4.70° and 3.28° for raw
wind speed scenario.

In order to verify the reliability of the proposed method,
we have carried out more than 1000 simulations and the sta-
tistical results are shown in Table 2.

Obviously, compared with the directly measured values,
the accuracy of the estimated values is improved by nearly
two times.

In order to further demonstrate the effectiveness of the
proposed method, we also carried out the simulations with
randomly changing wind speed. The true wind gust fields
are modeled using a frozen Dryden turbulence mode [31].
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Figure 11: Wind pitch measurements, estimates, and true values.

Table 3: Standard deviation of estimated and measured value of random wind speed.

Speed: m/s
Angle: °

Group 1 Group 2 Group 3

Standard deviation
of measurements

Standard
deviation of
estimations

Standard deviation
of measurements

Standard
deviation of
estimations

Standard deviation
of measurements

Standard
deviation of
estimations

North 4.62 0.51 1.42 0.50 1.71 0.50

East 1.35 0.37 0.72 0.36 0.58 0.37

Down 2.15 0.27 0.53 0.27 0.85 0.26

Resultant 5.23 0.60 1.46 0.59 1.93 0.59

Azimuth 1.35 0.73 1.41 0.73 1.32 0.75

Pitch 1.09 0.88 1.23 0.85 0.95 0.87
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Figure 12: Multifrequency random wind speed.
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Figure 13: Multifrequency random wind speed measurements, estimates, and true values.
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Figure 14: Multifrequency random wind azimuth measurements, estimates, and true values.
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Air mass movement is expressed as a sum of sinusoids:

w ·ð Þ =w ·ð Þ,0 + 〠
N

n=1
a ·ð Þ,n sin Ω ·ð Þ,ns + ϕ ·ð Þ,n

	 

, ð23Þ

where ð·Þ represents the gust component and s is motion
along the flight path. Random values of ϕð·Þ,n simulate the
random process, and the choice of coefficients að·Þ,n defines
the power spectral density.

The simulation results are shown in Figure 9. The stan-
dard deviations of the wind speed error of the proposed
method are 0.50m/s, 0.36m/s, and 0.27m/s, respectively,
while they are 1.42m/s, 0.72m/s, and 0.53m/s for raw wind
speed scenario.

Then, the wind azimuth (as shown in Figure 10) and
pitch (as shown in Figure 11) are compared. The standard
deviations of the wind direction error of the proposed
method are 0.73° and 0.85°, respectively, while they are
1.41° and 1.23° for raw wind speed scenario.

Similarly, more than 1000 simulations are carried out
and the statistical results are shown in Table 3.

In order to realize the establishment of the Dryden
model of random wind field from low to high frequency

and considering the amount of calculation, N = 5 in equa-
tion (23) is selected. The resultant velocity of the multifre-
quency random wind field generated by the simulation is
shown in Figure 12.

The corresponding simulation results are shown in
Figure 13. The standard deviations of the wind speed error
of the proposed method are 0.25m/s, 0.35m/s, and 0.27m/s,
respectively, while they are 0.69m/s, 0.55m/s, and 0.61m/s
for raw wind speed scenario.

The corresponding wind azimuth and pitch are shown in
Figures 14 and 15. The standard deviations of the wind
direction error of the proposed method are 0.83° and 0.88°,
respectively, while they are 1.65° and 1.43° for raw wind
speed scenario.

Similarly, more than 1000 simulations are carried out
and the statistical results are shown in Table 4.

For all the set of simulations, the proposed wind speed
estimation method provides wind speed with accuracy
nearly two times better than raw measurements.

5. Conclusions

This paper proposes a novel online estimation method for
the wind speed and direction around the fuselage, which
can be used to improve the performance of on-time arrival
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Figure 15: Multifrequency random wind pitch measurements, estimates, and true values.

Table 4: Standard deviation of estimated and measured value of multifrequency random wind speed.

Speed: m/s
Angle: °

Group 1 Group 2 Group 3

Standard deviation
of measurements

Standard
deviation of
estimations

Standard deviation
of measurements

Standard
deviation of
estimations

Standard deviation
of measurements

Standard
deviation of
estimations

North 0.68 0.23 0.82 0.25 0.64 0.24

East 0.63 0.44 0.57 0.39 0.52 0.40

Down 0.76 0.33 0.63 0.34 0.59 0.34

Resultant 0.70 0.28 0.82 0.29 0.65 0.27

Azimuth 1.86 0.91 1.74 0.92 1.59 0.92

Pitch 1.55 1.08 1.65 0.95 1.32 0.94
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in 4DT applications. The estimation method fuses INS,
GNSS, and ADS in an UKF and provides great accuracy
and robustness in nonlinearity conditions. The dynamic
models of wind are established, and implementations of
the UKF are detailed. Through flight simulations, the effec-
tiveness of the method is verified by comparing with the tra-
ditional direct measurement method. Results demonstrate
that the accuracy of wind speed and direction obtained by
our method is nearly two times higher than the traditional
direct measurement method.

Data Availability

The airplane design data used to support the findings of this
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