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Passive sensing networks can maintain the operation of the network by capturing energy from the environment, thereby solving
the energy limitation problem of network nodes. Therefore, passive sensing networks are widely used in data collection in complex
environments. However, the complexity of the network deployment environment makes passive sensing nodes unable to obtain
stable energy from the surroundings. Therefore, better routing strategies are needed to save network energy consumption. In
response to this problem, this paper proposes an IPv6 passive-aware network routing algorithm for the Internet of Things.
This method is based on the characteristics of passive sensing networks. By analyzing the successful transmission rate of the
network node transmission link, transmission energy consumption, end-to-end transmission delay, and waiting delay of IPv6
packets, the utility evaluation function of the route is obtained. After the utility evaluation function is obtained, the network
routing is selected through the utility evaluation function. Then, the utility value and the deep neural network method are
combined to train the classification model. The classification model assigns the best routing strategy according to the
characteristics of the current network, thereby improving the energy consumption and delay performance of the network.

1. Introduction

The Internet of Things is the expanding application and net-
work extension of the communication network and Internet.
It uses perception technology and intelligent devices to per-
ceive and identify the physical world. It is interconnected by
means of network transmission to complete the functions of
numerical operation, signal processing, and information
mining, so as to realize the information interaction and
seamless connection between people, things and things,
and between people and things, so as to achieve the purposes
of real-time control, accurate management, and scientific
decision-making of the physical world [1, 2]. The applica-
tion range of the Internet of Things in the real world is very
wide, including application fields such as smart home, vehi-
cle network, underwater detection, human health monitor-

ing, and industrial monitoring [3, 4]. The current research
on the Internet of Things mainly revolves around the active
perception network; that is, the nodes of the Internet of
Things are equipped with power supplies by default, and
there is no need to consider the energy problem of the Inter-
net of Things nodes. However, the active perception network
is no longer sufficient to meet people’s actual application
needs. Passive energy supply is an important link to truly
solve the space and time constraints of the Internet of
Things application and realize the large-scale application of
the Internet of Things.

The passive sensing network refers to a network com-
posed of passive sensing nodes. Its nodes are not equipped
with themselves or are not mainly dependent on their own
power supply equipment for power supply, but support their
computing, sensing, communication, and networking by
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obtaining energy from the environment [5, 6]. Since passive
nodes can maintain the operation of the network by captur-
ing the energy of the surrounding environment, they can
adapt to many application scenarios with limited energy
supply and are a very promising network form in the Inter-
net of Things. However, the passive sensing network can
capture the energy of the surrounding environment, but it
does not mean that it can obtain energy supply stably for a
long time. For example, for passive sensing nodes that rely
on optical energy, they will also lack energy in the face of
weak optical signals. Therefore, when selecting network
routes, we still need to pay attention to the transmission
energy loss of the network [7]. Moreover, passive sensing
nodes are often deployed in complex environments to per-
form monitoring tasks, so the network transmission delay
will be relatively high under the influence of environment
and terrain. Therefore, the routing propagation delay of pas-
sive sensing networks is also a problem that needs to be paid
attention to when studying routing protocols.

In the research of the passive network of the Internet of
Things, Hadi et al. proposed a general QoS-aware scheduling
program for passive optical networks. In this research, the
author discussed the service differentiation dynamic band-
width allocation scheme in time division and wavelength
division multiplexing passive optical. In the network appli-
cation, in order to further reduce the computational com-
plexity, the optimized closed-form solution involved in
each scheduling iteration is derived and the transmission
delay is directly included in the scheduling, which effectively
reduces the transmission delay [8]. Li-ting et al. proposed a
passive network architecture of an optical data center with
high throughput and low delay, using passive optical devices
such as an arrayed waveguide grating router, coupler, and
demultiplexer, and gave wavelength allocation and packet
transmission methods for each scale of architecture, with
lower delay and higher throughput [9]. Hong-Chao et al.
propose an opportunistic routing protocol with energy con-
sumption and delay balance in passive sensing networks.
The protocol estimates the expected energy consumption
of the node by analyzing the node communication process,
so that the node selects the neighbor node with low energy
consumption as the forwarding candidate. The protocol
makes decisions by combining the duty cycle information
of the next hop neighbor node of the candidate node, so that
the transmitting node can select the candidate node that can
forward data faster to reduce the delay, so as to achieve the
balance of energy consumption and delay performance [10].

This paper mainly focuses on the routing transmission
energy consumption and transmission delay of passive sens-
ing nodes in the Internet of Things. In the second section,
the successful transmission rate, transmission energy con-
sumption, transmission delay, and waiting delay of IPv6
packets are analyzed, and the utility evaluation function of
routing is obtained. In the third section, a model is trained
by using the method of the deep neural network and the
method of utility value, so that it can select the best routing
strategy for the current network. The fourth section carries
out simulation experiments on the research methods of this
paper and analyzes the results.

2. Node Communication Link Analysis

In the passive sensing network of the Internet of Things, IoT
devices located in the IPv6 network often need to send con-
trol/query commands to specific nodes in the passive sensing
network, and these commands are encapsulated in IPv6 data
packets. For example, the IoT center that performs monitor-
ing tasks can send IPv6 packets to passive-aware network
nodes deployed in complex environments through the IPv6
network to control the corresponding nodes to perform spe-
cific operations. This type of application requires that the
transmission delay and transmission energy consumption
be reduced as much as possible on the premise of reliable
delivery of IPv6 packets. Figure 1 is a schematic diagram of
a 10-node passive sensing network. The IoT node communi-
cates with neighboring nodes within its communication
radius to form a communication link, and there is a process-
ing system in the network as the IoT center through the
communication link sends control/query commands to IoT
nodes.

2.1. Node Link Successful Transmission Rate. Using ðnodei,
node jÞ to represent the communication link between the i
-th Internet of Things node nodei and the j-th Internet of
Things node nodej in the network, the bit error rate of link
ðnodei, nodejÞ is

BREi,j =
1
2π

ð∞
a
e−t

2/2dt,

a =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Pt − Plossð ÞBN

R

r
,

ð1Þ

where Ploss = Pl + 10γ log10ðdi,jÞ + Pt .
Pl represents the power loss per unit distance, Pt repre-

sents the received power threshold of the device, and the
received power threshold of all devices is the same by
default. di,j represents the distance between the i-th IoT
node nodei and the j-th IoT node nodei, and γ represents
the power attenuation coefficient.

In this network, assuming that IPv6 packets are sent
using a dynamic allocation strategy, if Ai,j is used to
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Figure 1: 10-node passive awareness network example.
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represent the number of fragments used by node nodei in
link ðnodei, node jÞ, the probability of success that node
nodei successfully transmits a data packet to nodej by link
ðnodei, nodejÞ for

pij = 1 − BREi,j
� �Kv6/Ai, j , ð2Þ

where Kv6 represents the length of the IPv6 packet.

2.2. Transmission Energy Consumption. For passive sensing
networks, IoT nodes maintain the operation of the network
by capturing energy from the environment. For example,
nodes can perceive and capture energy from the surround-
ing environment such as sunlight, temperature, wind, and
RF signals, so as to support the operation of IoT devices
and solve the energy limitation problem of IoT. However,
limited by the comprehensive impact of a complex environ-
ment, nodes cannot stably obtain energy from the surround-
ings for a long time. Therefore, reducing transmission loss
and saving energy as much as possible is an important stan-
dard to evaluate node routing performance for passive sens-
ing networks.

For the energy loss in the transmission link ðnodei, nod
ejÞ, we use Eij to represent the unit transmission loss of the
link, which is expressed as

Eij = α−1e0 + β−1e1D
2
i , ð3Þ

where α represents the transmission loss coefficient, e0 rep-
resents the energy consumption of the node sending or
receiving 1 bit on the circuit, e1 represents the amplifier
energy consumption for sending 1 bit of data under the
communication radius Di of the node i, and β represents
the amplifier loss coefficient.

Then, a coded packet of length s is transmitted, and the
sending energy consumption of node nodei is

Eij
t sð Þ = sEij: ð4Þ

The receiving energy consumption of node nodej is

Eij
t sð Þ = sα−1e0: ð5Þ

Considering that the IPv6 packet adopts a dynamic allo-
cation strategy, it needs to be decoded when Ai,j coded
packets are correctly received, so that node nodej can suc-
cessfully receive a complete IPv6 packet. Therefore, here,
we consider the transmission energy consumption in the
case of successfully receiving an IPv6 packet. If the success
probability ofnodeisuccessfully transmitting a data packet
tonodejthrough theðnodei, nodejÞlink ispij, the total trans-
mission energy consumption of an IPv6 packet from nodei
sending to node j successfully receiving is

∗Eij
t =

Ai,j Eij + α−1e0
� �

pij
: ð6Þ

2.3. End-to-End Transmission Delay. For passive sensing
networks used in emergency scenarios such as disaster mon-
itoring or battlefield environment monitoring systems, the
requirements for link transmission delay are very high.
Therefore, in order to construct a better node route, we also
need to consider the transmission delay problem.

The transmission delay for nodei which transmits a data
packet of length li,j to node node j is

delayij = tp +
li,j
tv

1 + εdi,j
� �

, ð7Þ

where the subscript of li,j means transfer from nodei to nodej,
tp represents the time required for a node to compete for chan-
nels and encode data before sending data packets, tv represents
the transmission rate of unit data, li,j/tv represents the trans-
mission duration, and ε represents the loss factor per unit
propagation distance.

We consider thatAi,jcoded packets need to be correctly
received before they can be decoded and reassembled into
a complete IPv6 packet. According to the successful trans-
mission probability pij of the data packet of the ðnodei, nod
e jÞ link, the delay from sending an IPv6 packet from nodei
to nodej successfully receiving is

∗delayij =
tp + Ai,j/tv

� �
1 + εdi,j
� �

pij
: ð8Þ

2.4. Time Delay of Waiting IPv6 Packets. Because passive
nodes may not be able to transmit IPv6 packets successfully
due to insufficient energy, they need to wait until sufficient
energy is captured from the surrounding environment to
continue to complete the transmission of IPv6 packets.
Therefore, for the transmission process of data packets, we
also need to consider the waiting delay when the remaining
energy of nodes is insufficient.

We assume that the remaining energy of nodei is E
p
i and

that nodei needs to successfully send k IPv6 packets to nodej.
If the remaining energy is insufficient, then the amount of
energy that nodei needs to capture is Ep

ijðkÞ:

Ep
ij kð Þ = k

Ai,jEij

pij
− Ep

i : ð9Þ

The electric energy that a node can obtain from the sur-
rounding environment during the duration t is

Ec tð Þ = δηt, ð10Þ

where δ represents the charging efficiency coefficient of the
node capacitor and η represents the average energy capture
rate of the node.

According to formulas (9) and (10), when the remaining
energy of nodei is E

p
i and k IPv6 packets need to be success-

fully sent to node j, the required waiting delay tij is
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tij =
k Ai,jEij/pij
� �

− Ep
i

δη
: ð11Þ

2.5. Routing Utility Evaluation Function. In order to enable
the selected node routing strategy to comprehensively con-
sider the performance of the link successful transmission
rate, transmission energy consumption, transmission delay,
and waiting delay of the passive sensing network of the
Internet of Things, we adopt an optimal routing evaluation
function to determine the utility value of node routing; a
routing strategy with a higher utility value is more suitable
for the current network. Taking the ðnodei, nodejÞ link as
an example, we express the routing utility evaluation func-
tion as

Qij =
w1pij

w2
∗Eij +w∗

3delayij +w4tij
: ð12Þ

w1, w2, w3, and w4 are the weighting factors of the link
successful transmission rate, transmission energy consump-
tion, transmission delay, and waiting delay, respectively,
which can be specifically set according to the performance
requirements of the network. ∗Eij represents the total trans-
mission energy consumption of the IPv6 packet from the
sending of nodei to the successful reception of nodej, D rep-
resents the delay of the IPv6 packet from the sending of
nodei to the successful reception of nodej, and the transmis-
sion delay calculated by tij includes the required when the
remaining energy of the node is insufficient charging time.

Assuming that the route is ðnode1, node2,⋯,nodenÞ, the
best route evaluation function of the route is expressed as

Q1n =
∑n−1

i=1,j=i+1Qij

n − 1 : ð13Þ

Through the best route evaluation function, we can
determine the utility value Q1n of the route ðnode1, node2,
⋯,nodenÞ. We can choose the node routing strategy accord-
ing to the utility value. The route with the higher utility value
is more likely to be selected as the best routing strategy.

However, currently, there are many routing strategies
for the Internet of Things commonly used. To select the
best routing strategy for the current network through the
utility value method, the amount of calculation involved is
very large. Therefore, in the following chapters, we use the
deep neural network method, using specific network
instances as input, 150 routing strategy IDs as labels, and
the routing strategy ID with the largest utility value as the
true label of the instance, to perform the deep neural net-
work training. After the neural network model is trained,
when a new network instance is inputted, the optimal rout-
ing strategy can be selected without performing utility value
calculation.

3. Routing Selection Based on Deep
Neural Network

A deep neural network (DNN) is a neural network structure
composed of a large number of neurons through an input
layer, an output layer, and multiple hidden layers (usually
at least two hidden layers). DNN has achieved great success
in common tasks such as natural language processing, image
processing, and other major machine learning problems [11,
12]. At present, the research field of the computer network
also uses DNN technology to optimize the network. In the
research of this paper, our node routing is selected by a deep
neural network, and the neural network is trained by intro-
ducing a feedforward deep neural network and back propa-
gation learning algorithm [13, 14]. In a feedforward
network, information flows from the input node to the out-
put node through the network without any feedback/loop
connection. In the back propagation, the network model is
optimized through the gradient optimization algorithm.
The structure of the deep neural network is shown in
Figure 2.

3.1. Neural Network Structure Used. In this algorithm, we
construct the input layer node by taking the number of net-
work nodes, node communication radius, network state,
successful transmission probability of link, transmission
energy consumption, end-to-end transmission delay of path,
and waiting delay of the IPv6 packet as the characteristics of
the instance. Taking the ID number of the optimal routing
strategy corresponding to the example as the real output,
the routing strategy is predicted by constructing the feedfor-
ward propagation from the input layer to the hidden layer
and from the hidden layer to the output layer, and the
parameters are learned by back propagation.

In order to make the constructed deep neural network
play a role in routing selection, we used the characteristics
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Figure 2: Deep neural network structure.
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of the data set, and the structure configuration of the con-
structed deep neural network model is as follows:

(1) Network input layer: the nodes of the input layer are
determined according to the feature number of the
data set. The input layer nodes are connected with
the first layer hidden layer nodes, and the activation
function of Relu is used. The form of the Relu func-
tion is as follows:

f xð Þ =max 0,∞ð Þ: ð14Þ

x indicates that the Relu function gets inputted.

(2) Network output layer: the output layer uses the soft-
max function. The softmax function is often used in
the multiclass structure of deep neural networks to
normalize all output results. Each instance can only

belong to one class (that is, a certain routing strat-
egy):

Si =
ei

∑m
i=1ei

, ð15Þ

where ei represents the i-th output result; there arem
outputs in total.

(3) Network hidden layer: we use 8 hidden layers. The
number of nodes in the hidden layer can be adjusted
according to the number of input characteristics of
network instances. All hidden layers use Relu activa-
tion function.

(4) Network loss function: the loss function we use is
“cross-entropy loss.” Cross-entropy loss is very effec-
tive for estimating the loss of multiple classification
methods. The form of the cross-entropy loss func-
tion used is as follows:

H Xð Þ = −〠
n

i=1
p xið Þ log q xið Þð Þ, ð16Þ

where xi represents a specific instance and pðxiÞ rep-
resents the real label. In this article, when the label of
the instance belongs to the real category, pðxiÞ = 1.
When the label of the instance does not belong to
the true category, pðxiÞ = 0. qðxiÞ represents the pre-
diction result after the instance is processed by the
model.

(5) Network optimization method: in this deep neural
network model, we use Adam as the network opti-
mizer. The learning rate is the default learning rate
of the “Adam Optimizer,” which is 0.001.

(6) Number of network iterations: the network model
has been trained for multiple iterations in this article.

(7) Index: the performance evaluation index used is
accuracy. The accuracy rate represents the propor-
tion of the number of correctly classified instances
to the total number of instances.

(8) Verification data: in order to verify the performance
of the model, a verification split of 0.2 is used in this
article; that is, we use 20% of the training data to ver-
ify the network model.

The flow of the entire algorithm is as follows:

(1) Select multiple routing strategies to build a routing
set C

(2) For the data set composed of network instances, the
label of each network instance is a routing policy in
C, and the real label is the routing policy with the
largest utility value of the network instance in C,
wherein the utility value of the network instance is
obtained according to the routing utility evaluation
function of formula (12)
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(3) After obtaining the real label of each network
instance in the data set, the data set is divided into
a training set, verification set, and test set, and is sent
to the deep neural network model for training. The
trained model can select the routing strategy with
the maximum utility value for the network instance
from the routing set C under the condition of a given
network instance

3.2. Data Set Scheme. For the data set used for deep neural
network model training, we use the OMNET++ simulator
to obtain the simulated data set, which contains 50,000
instance samples. Each network instance sample contains

several characteristics of the number of network nodes, node
communication radius, network status, link’s successful
transmission probability, transmission energy consumption,
end-to-end transmission delay of the path, and waiting delay
of IPv6 packets. We equip the entire data set with 150 rout-
ing strategies as the classification result; that is, each network
instance corresponds to an optimal routing strategy as the
true label. The best routing strategy is determined according
to the best routing evaluation mechanism proposed in this
paper, which can make the routing strategy with the greatest
utility value the best routing strategy. The 150 routing strat-
egies include routing with minimum energy consumption,
routing with minimum delay, general IoT node routing algo-
rithms, and heuristic algorithms. The model obtains the best
weights through training, so that when we enter a new net-
work instance, we can base on the number of network nodes,
node communication radius, network status, link’s success-
ful transmission probability, transmission energy consump-
tion, and path. The end-to-end transmission delay and the
waiting delay of IPv6 packets output an optimal routing
strategy.

4. Experimental Simulation Results

Before getting the final usable deep neural network model,
we first analyze the influence of different hidden layers on
the model in the experimental test link, so as to determine
an optimal number of hidden layers. We test the loss and
training time of the model according to the number of hid-
den layers, and test the accuracy of our model under differ-
ent iteration times. We show the results of the model on the
test data set. The deep neural network model adopts the
PyTorch framework and is implemented using Python lan-
guage programming. The PC configuration used in the
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experiment includes NVIDIA GeForce RTX 3080 Ti 12GB
GDDR6 video memory, Intel i9 processor, 32G memory.
Different hidden layers are all experimented on the same
computer. The result obtained is shown in the following
figure.

Figure 3 shows how the training loss of the model
changes with the number of hidden layers. It can be seen
from the figure that the training loss gradually increases after
5 hidden layers. In deep neural networks, the number of hid-
den layers is not as large as possible. Sometimes, using more
hidden layers than required by the model will cause the
model’s classification ability to decrease. Therefore, for this
article, using a 5-layer hidden layer deep neural network to
achieve routing strategy selection will get better results.

It can be observed from Figure 4 that the training time of
the model will increase as the number of hidden layers
increases. Since we set the same number of neurons in each
hidden layer, as the number of hidden layers increases, the
number of neurons will also increase. In a deep neural net-
work, each neuron has a weight, so more neurons will
increase the amount of weight calculation, so the training
time will increase as the number of hidden layers increases.

Figure 5 shows the accuracy of the model on the test set
after training under different iterations of the training set. It
can be seen from the figure that when the training set is iter-
ated to 300 times, the accuracy of the model converges to a
certain value, and then, the accuracy value will not change
significantly.

Through the above experiments, we have determined
that the deep neural network model of this article uses 5 hid-
den layers and only iterates 300 times during the training
process to optimize the model parameters to obtain our final
model results. In order to verify the effectiveness of the
trained model in node routing, we use the trained model
and other algorithms to compare the total energy consump-
tion of routing transmission and the total end-to-end trans-

mission delay. The comparison algorithms are the passive
network multipath routing proposed in the literature [15]
(here, we abbreviate it as PNMR for the convenience of
expression) and the passive label network multihop routing
protocol proposed in the literature [16] (here for the conve-
nience of expression, we referred to it as PTNMT) for com-
parison. Among them, literature [15] conducts network
multipath routing detection from link average delay and
load balancing, and literature [16] considers the problems
of asymmetry of communication links and transmission
interference in passive sensing networks.

We first conducted a comparison experiment on routing
energy consumption. With different numbers of nodes, we
let the system randomly select the source node and the des-
tination node, and then, we let the three comparison algo-
rithms choose the node route by themselves, so that the
source node can successfully transmit the IPv6 packet to
the destination node. Figure 6 shows the total energy con-
sumption of the PNMR method, PTNMT method, and the
method in this paper under a different number of nodes in
the network routing. It can be seen from the figure that as
the number of network nodes increases, the total energy
consumption of the network routing of the three algorithms
continues to increase. When the number of network nodes is
small, the total energy consumption of the routing of the
three algorithms is relatively close. When the number of net-
work nodes increases, the total energy consumption of rout-
ing in this paper will be less, because the deep neural
network model of this paper will select the best routing strat-
egy for the current network to reduce end-to-end transmis-
sion loss.

In another group of comparative experiments, we also let
the system randomly select the source node and destination
node under different number of nodes, then let the three
comparison algorithms select the node route by themselves,
and record the delay time when they successfully transmit
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Figure 8: Average data packet loss rate.
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IPv6 packets from the source node to the destination node.
As can be seen from the results in Figure 7, for Figure 7,
the end-to-end routing delay of the network may increase
with the increase of the number of nodes. This is because
when the number of nodes increases, and the source node
and destination node are randomly selected by the system,
the number of routing hops from the source node to the des-
tination node may need to be more and the delay will be
greater. In Figure 7, we can see that the method in this paper
has less end-to-end routing delay than the other two
algorithms.

The following figure shows the comparison of the aver-
age data packet loss rate of the three algorithms. It can be
seen from the results in Figure 8 that as the number of nodes
increases, the distribution of the average data packet loss rate
of the network will gradually decrease and tend to be flat.
Since the source node and the destination node are ran-
domly selected by the system, when the number of nodes
is small, the probability of link interruption may increase,
resulting in a higher network packet loss rate. From the
comparison of the three algorithms, it can be seen that the
data packet loss rate of the algorithm in this paper is close
to that of the PNMR algorithm, and the packet loss rate of
the PTNMT algorithm is smaller.

5. Conclusions

In the Internet of Things, a passive sensing network can cap-
ture energy from the surroundings through Internet of
Things devices, so as to solve the problem of energy limita-
tion when the Internet of Things is deployed in the field
environment. However, the uncertainty of the field environ-
ment makes the Internet of Things devices unable to capture
stable energy, and node routing still needs to reduce energy
loss as much as possible. Therefore, this paper studies an
IPv6 passive sensing routing strategy selection method for
the Internet of Things, which is aimed at reducing the data
transmission energy consumption and transmission delay
of node routing, and at improving the operation efficiency
of the network. Combined with the method of the deep neu-
ral network, this paper intelligently selects routing strategies
for the current network through an artificial intelligence
model. Simulation results show that the proposed method
can reduce the transmission energy consumption and trans-
mission delay of the network.
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