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In the process of acquiring point cloud data by a 3D laser scanner, some problems, such as outliers, mixed points, and holes, may
be caused in the target point cloud due to the external environment, the discreteness of the laser beam, and the occlusion of
objects. In this paper, a point cloud quality optimization and enhancement algorithm is designed. A self-adaptive octree is
established to rasterize the point cloud and calculate the density of each grid, combing with the statistical filtering to remove
outliers from the point cloud data. Then, a plane projection method is used for removing the confounding points from the point
cloud data. Finally, the point cloud is triangulated and a priority value is set, and then, points are preferentially inserted where the
priority value is the largest to repair the holes. Experiments show that while removing outliers and confounding points, the detailed
features of the point cloud can be maintained, holes are effectively filled, and the quality of the point cloud is effectively improved.

1. Introduction

In recent years, laser 3D scanning technology has developed
rapidly. As a new format of data, the three-dimensional
point cloud can accurately record the three-dimensional
topography, geometric features, spatial coordinates, and
other information about the surface of the object, and it
has many advantages that two-dimensional data does not
have [1]. In the process of acquiring point cloud data by a
3D laser scanner, outliers, mixed points, holes, and other
defects may be generated in the target point cloud due to
the external environment, the discreteness of the laser beam,
and the occlusion of objects [2–5]. These defects degrade the
quality of the point cloud and affect the subsequent recon-
struction accuracy of the three-dimensional surface.

Pirotti et al. [6] made some assessment with the two
commonly used outlier detection methods—statistical out-
lier removal (SOR) filter and local outlier factor (LOF) filter.
Four different filtering algorithms were well used for filtering
the raw point cloud data form a UAV by Mustafa Zeybek
[7], and a developed methodology contributes to the reduc-
tion of errors caused by data losses in various modelling
studies [8]. Fleishman et al. [9] proposed the moving least

squares algorithm, in which the noise points are projected
onto an estimated plane. But it is sensitive to a large number
of outliers. Based on the locally optimal projection (LOP)
algorithm proposed by Lipman et al. [10], Huang et al.
[11] proposed weighted locally optimal projection algo-
rithms that can remove some noise points during the projec-
tion. But these algorithms have poor robustness and cannot
keep the sharp features of the point cloud well. Rusu et al.
[12] proposed an algorithm based on neighborhood statis-
tics, which needs two iterations and takes much time to pro-
cess the large-scale point cloud. Meanwhile, it is a challenge
to guarantee accuracy when removing the noise. Ning et al.
[13] proposed a simple and effective noisy point trimming
method based on two geometric feature constraints, but it
is only suitable for certain types of noise. Ester et al. [14]
proposed a clustering algorithm DBSCAN, which can be
used for removing the redundant points including the noise
points. Leal et al. [15] presented a two-step method both for
normal estimation and for point position update, measuring
the sparsity of sharp features while discriminating between
noise and feature, but the performance in some models with
more detailed features is general. In addition to removing
noisy points, the optimization and enhancement of point
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cloud quality also need to repair the holes caused by the
object occlusion. Holes repairing algorithms based on trian-
gular meshes could be divided into two categories: surface-
based methods and volume-based ones [16]. Generally,
surface-based methods detect, repair, and refine the holes
on the given triangular mesh [17, 18]. Volume-based
methods convert the given mesh into a function with signed
distance on the volume mesh to fill the holes and then
extract the complete grid from the zero-order set of the dis-
tance function [19–21]. The holes repairing the algorithm
proposed by Leong et al. [22] directly connect the boundary
of the holes, but the repair is not effective since no new tri-
angle surfaces are added. Liu Zhenghong and Yun [23]
extracted the boundary of the holes and determined the
direction of contraction by calculating the direction of the
triangular surface’s normal vector related to the boundary
point. In this way, a complete triangular patch is iteratively
generated, but the number of additional points could not
be controlled. The point cloud quality optimization and
enhancement algorithm designed in this paper could effec-
tively remove the outliers and confounding points while
maintaining the sharp features of the point cloud. At the
same time, by setting the priority value, the number of new
points could be controlled when repairing holes.

2. Theoretical Derivation

The implementation steps of the proposed method are as
follows:

(1) Establishing a self-adaptive octree to rasterize the
point cloud and setting the thresholds for defining
the outliers to delete these points

(2) After removing the outliers, projecting the point
cloud onto the local least squares fitting plane to
remove the confounding points

(3) Establishing a priority value and inserting points at
the positions with higher priority values until the
hole filling which is completed

2.1. Outlier Removal. Outliers are usually disorganized, far
away from the main point cloud, sparse, and geometrically
discontinuous with inconsistent local point density. In con-
trast, the main point cloud is relatively concentrated and
dense. The statistical filtering algorithm is based on the char-
acteristics that the distance between the outlier points and
the neighboring points is considerable while the distance
between the main points and the neighboring points is small.
And the statistical analysis towards the neighborhood of
each point is used for removing the outliers [24]. In this
paper, density is introduced based on the statistical filtering
algorithm. First, an octree is established to take the mini-
mum enclosing cube of the point cloud as the root node,
and the cube is divided into eight subcubes with equal size.
If a subcube contains points, it should continue to be divided
into eight cubes with equal size until each point in the point
cloud obtains a unique index coordinate. Then, the density
of the point cloud in each small cube is calculated, and usu-

ally, the density of the subcube containing outliers is rela-
tively small.

The specific implementation steps are as follows:

(1) Establishing a self-adaptive octree to rasterize the
point cloud and calculating the density of the point
cloud ρn in each grid

(2) For any point pi ∈ P of the point cloud in each grid,
searching for the k-neighborhood point pjðj ∈ kÞ of
pi and calculating the distance between pi and pj

(3) Defining the probability of a point being an outlier as

δ =
∑k

j=1 pi − pj
���

���

kρn
ð1Þ

(4) Establishing a threshold. If δ is greater than the
threshold, pi is considered an outlier and is deleted

2.2. Confounding Point Removal. Confounding points can-
not be easily distinguished from the real point cloud. It is
difficult for traditional algorithms to achieve a balance
between removing the confounding points and maintaining
the detailed and sharp features of the point cloud. In this
paper, we use the least square to fit the local plane and
obtain the normal vector of the local plane. The mixed
points are projected onto the local fitting plane, which not
only improves the quality of the point cloud but also main-
tains the sharp features.

The least squares method is used for fitting the local
plane and obtaining the normal vector. First, we fit a local
plane with a set of points composed of a point pi ∈ P and
its k-neighborhood points. Suppose the local fitting plane
is Z = Ax + By + C, and then, the formula of the deviation
quadratic sum is as follows:

d = 〠
k+1

i=1
Axi + Bi + Cð Þ − zi½ �2: ð2Þ

It can also be written in matrix form as follows:

d = UB − lð Þ2, ð3Þ

where

U =

x1 y1 1
x2 y2 1
⋮ ⋮ ⋮

xn yn 1

0

BBBBB@

1
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,

B =
A

B

C
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l =

z1

z2

⋮

zn

0

BBBBB@

1

CCCCCA
: ð4Þ

When d takes the minimum value, the fitting degree is
the best. According to the least squares criterion, we can
use the following formula to obtain B.

B = UTU
� �−1

UTl: ð5Þ
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Figure 2: Denoising results of the three methods with 20% noise in the Bunny point cloud. (a) The original Bunny point cloud. (b) Bunny
point cloud with 20% noise. (c) Statistical filtering algorithm. (d) Radius filtering algorithm. (e) Our outlier removal algorithm. (f) Our
confounding point removal algorithm.
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Figure 1: Denoising results of the three methods with 10% noise in the Bunny point cloud. (a) The original Bunny point cloud. (b) Bunny
point cloud with 10% noise. (c) Statistical filtering algorithm. (d) Radius filtering algorithm. (e) Our outlier removal algorithm. (f) Our
confounding point removal algorithm.
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In this way, the fitting plane can be obtained, and the
normal vector of a certain point can also be got by substitut-
ing the coordinates of the point into the fitting plane.

Table 2: Denoising results of the three methods with 20% noise in
Bunny point cloud.

Algorithms
Total number of
noisy point clouds

Pd Rd F1

Statistical filtering 43173 0.6315 0.9339 0.7535

Radius filtering 43173 0.7001 0.9848 0.8184

Our method 43173 0.7441 0.9453 0.8327

Table 3: Denoising results of the three methods with 30% noise in
Bunny point cloud.

Algorithms
Total number of
noisy point clouds

Pd Rd F1

Statistical filtering 46732 0.5929 0.9046 0.7163

Radius filtering 46732 0.7124 0.9646 0.8192

Our method 46732 0.7588 0.9368 0.8385

Table 1: Denoising results of the three methods with 10% noise in
Bunny point cloud.

Algorithms
Total number of
noisy point clouds

Pd Rd F1

Statistical filtering 39542 0.6935 0.9704 0.8091

Radius filtering 39542 0.7029 0.9814 0.8189

Our method 39542 0.7541 0.7177 0.8279
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Figure 4: F-score of the three algorithms.
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Figure 3: Denoising results of the three methods with 30% noise in the Bunny point cloud. (a) The original Bunny point cloud. (b) Bunny
point cloud with 30% noise. (c) Statistical filtering algorithm. (d) Radius filtering algorithm. (e) Our outlier removal algorithm. (f) Our
confounding point removal algorithm.

Table 4: Chamfer distance in Bunny point cloud.

Noise level dCD s0, s1ð Þ dCD s0, s2ð Þ dCD s0, s3ð Þ
10% 1.5892 0.0464 0.0424

20% 2.7208 0.0748 0.0718

30% 3.7317 0.1132 0.0891
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The specific implementation steps are as follows:

(1) For a point pi ∈ P in the target point cloud P, search-
ing for its k-neighborhood points and calculating the
mean value pmi of the neighborhood points

(2) Using the least squares method to fit a local plane Li
and calculating the normal vector ni of pmi

(3) Calculating the projection of the vector pipmi in the
normal direction to obtain the distance d from the
point pi ∈ P to the local fitting plane Li

d = pi − pmj j ⋅ cos θ ð6Þ

(4) Projecting pi ∈ P onto the local fitting plane Li and
obtaining a projection point pi′

pi′= pi − d ⋅ ni ð7Þ

(5) Getting the new point set P′

2.3. Hole Filling. For the hole repair based on scattered point
clouds, the scattered point cloud data can be triangulated
first, and the possible holes in the point cloud data can be
transformed into grid holes. When using the triangulation
algorithm to fit the surface of a point cloud, the part of the
triangle with a hole is usually relatively large, so in the pro-
cess of repairing the point cloud hole, we can judge whether

(a) (b)

(c) (d)

Figure 5: Triangulation effect. (a) Noisy point cloud triangulation effect. (b) Point cloud triangulation effect after the viewing angle is
flipped. (d) Triangulation effect of the point cloud processed by the proposed algorithm after flipping the viewing angle.
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Figure 6: Denoising results of the three methods in the pantograph model. (a) The original pantograph point cloud. (b) Pantograph point
cloud with 10% noise. (c) Statistical filtering algorithm. (d) Radius filtering algorithm. (e) Our outlier removal algorithm. (f) Our
confounding point removal algorithm.
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there is a hole by the area of the triangle. In this paper, a pri-
ority value is established preferentially to repair the part with
a larger hole area in the point cloud. A higher priority value
means that a specific part in the point cloud has a larger area
of the hole. Then, a point is inserted firstly in the part with
the largest priority value. Next, the inserted point is merged
with the original point, and the above operations are
repeated until the holes are repaired.

The specific implementation steps are as follows:

(1) Triangulating the target point cloud using triangula-
tion algorithm

(2) Getting the corresponding three edges ai, bi, ci from
the vertices of each triangular patch; and using
Heron’s formula to calculate the area si of each trian-
gular patch; then getting the priority value corre-
sponding to each triangular patch

psi =
ai + bi + ci

2 , ð8Þ

si =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psi psi − aið Þ psi − bið Þ psi − cið Þ

p ð9Þ

(3) Getting the largest priority value, that is, finding the
triangular patch with the largest area and its vertices

(4) Inserting a point Phi at the center of gravity of the
triangle with the largest priority value and getting a
new point set

(5) Repeating (1) to (4) until the hole is repaired
completely

3. Experimental Results and Data Analysis

3.1. Algorithm Validation. The denoising accuracy and
denoising recall rate [25] are adopted to evaluate the effect
of the algorithm on the outlier removal so as to verify the
effectiveness of the proposed algorithm. Since the denoising
accuracy and the denoising recall rate are inversely propor-
tional, the F-score is introduced as the harmonic mean of
the two parameters. A higher F-score means a better perfor-
mance of the algorithm. The chamfer distance [26] is used
for measuring the average nearest squared distance between
the point cloud S1 and S2.

The denoising accuracy can be calculated as follows:

Pd =
Nq

Ns
, ð10Þ

where Pd is the denoising accuracy, Nq is the number of
noisy points removed, and Ns means the whole number of
noisy points.

The denoising recall rate is defined by the following
formula:

Rd =
Nq

Ny
, ð11Þ

–300
–600 –400 600400–200 2000

–280

(a)

–300
–280
–260

–320

–600 –400 600400–200 2000

(b)

–310
–300
–280
–290
–270 –600 –400 600400–200 2000

(c)

–300
–280

–600 –400 600400–200 2000

(d)

–300
–280

–600 –400 600400–200 2000

(e)

–300
–280

–600 –400 600400–200 2000

(f)

Figure 7: Denoising results of the three methods in the pantograph model. (a) The original pantograph point cloud. (b) Pantograph point
cloud with 20% noise. (c) Statistical filtering algorithm. (d) Radius filtering algorithm. (e) Our outlier removal algorithm. (f) Our
confounding point removal algorithm.
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Figure 8: Denoising results of the three methods in the pantograph model. (a) The original pantograph point cloud. (b) Pantograph point
cloud with 30% noise. (c) Statistical filtering algorithm. (d) Radius filtering algorithm. (e) Our outlier removal algorithm. (f) Our
confounding point removal algorithm.
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where Rd is the denoising recall and Ny is the number of
points that should be removed.

So the F-score can be obtained by

F1 = 2 ∗ Pd ∗ Rd

Pd + Rd
, ð12Þ

where F1 is the F-score.
We defined dCDðS1, S2Þ as the chamfer distance between

the point cloud S1 and S2, and it can be calculated as follows:

dCD S1, S2ð Þ = 1
S1

〠
x∈S1

min
y∈S2

x − yk k22 +
1
S2

〠
y∈S2

min
x∈S1

y − xk k22,

ð13Þ

where x is the point in S1 and y is the point in S2.
In the experiments, we added 10%, 20%, and 30% ran-

dom noise to the point cloud, respectively. The method of
adding noise points in this paper is as follows: some points
are selected randomly in the origin point cloud; then, the
coordinates of these points are changed within a range; here,
we used the 2 to 8 times of mesh resolution, so the con-
founding points and outliers could be obtained, adding these
points into the origin point cloud so that we can get the
noisy point cloud finally.

For enhancing the quality of the point cloud, first, we
removed the outliers using the proposed algorithm and
compared it with the statistical filtering and the radius filter-
ing. As shown from Figures 1–3 and Tables 1–3, four neigh-
borhood points are selected in the four algorithms, and the
highest F-score value of each algorithm and the correspond-
ing Pd and Rd are recorded. In the second part, we removed
the confounding points using the proposed method. After
processing the noisy point cloud by the proposed method,
we calculated the dcd in each part. Finally, the point cloud
was triangulated, and a priority value was set. Points are
preferentially inserted to where the priority value was the
largest so as to repair the holes.

Figure 1 and Table 1 show that after the Bunny point
cloud with 10% noise is processed by the proposed method,
the surface of the point cloud is smooth, uniform, and
almost without noise; meanwhile, the outliers and con-
founding points are removed. The denoising recall rate of
the radius filtering is higher than that of the statistical filter-
ing and the proposed outlier removal algorithm. But the
denoising accuracy rate and F-score of the outlier removal
algorithm are better than those of the statistical filtering
and the radius filtering.

Figure 2 and Table 2 demonstrate that after the Bunny
point cloud with 20% noise is processed by the proposed
method, no noticeable noise points appear on the surface
of the point cloud, together with the outliers and confound-
ing points removed. The denoising recall rate of the radius
filtering is better than that of the statistical filtering and the
outlier removal algorithm. Yet the denoising accuracy rate

Table 7: Denoising results of the three methods with 30% noise in
pantograph point cloud.

Algorithms
Total number of
noisy point clouds

Pd Rd F1

Statistical filtering 822534 0.7122 0.9512 0.8145

Radius filtering 822534 0.8334 0.9787 0.9002

Our method 822534 0.8336 0.9791 0.9004
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Figure 9: F-score of the three algorithms.

Table 8: Chamfer distance in pantograph point cloud.

Noise level dCD s0, s1ð Þ dCD s0, s2ð Þ dCD s0, s3ð Þ
10% 2.2505 0.0181 0.0163

20% 4.1081 0.0325 0.0273

30% 5.5758 0.0532 0.0447

Table 5: Denoising results of the three methods with 10% noise in
pantograph point cloud.

Algorithms
Total number of
noisy point clouds

Pd Rd F1

Statistical filtering 695990 0.7934 0.9812 0.8774

Radius filtering 695990 0.8377 0.9318 0.8823

Our method 695990 0.8319 0.974 0.8974

Table 6: Denoising results of the three methods with 20% noise in
pantograph point cloud.

Algorithms
Total number of
noisy points

Pd Rd F1

Statistical filtering 759262 0.7569 0.9687 0.8498

Radius filtering 759262 0.8358 0.9666 0.8964

Our method 759262 0.8358 0.9811 0.9028
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and F-score of our outlier removal algorithm are better than
those of the statistical filter and radius filtering.

In experiment 3, Figure 3 and Table 3 show that after in
the Bunny point cloud with 30% noise is processed by the
proposed method, no obvious noise points exist on the sur-
face of the point cloud, together with the outliers and con-
founding points removed. The denoising recall rate of the
radius filtering is better than that of the statistical filtering
and the proposed outlier removal algorithm. But the denois-
ing accuracy rate and F-score of our outlier removal algo-
rithm are better than those of the statistical filter and
radius filtering.

The effect comparison of the three algorithms in remov-
ing outliers with different noise degrees is shown in Figure 4.
The proposed outlier removal algorithm shows an upward
trend with the increase of noise level, the radius filtering
tends to be stable, and the statistical filtering shows a down-
ward trend. The algorithm in this paper has always been bet-
ter than the other two algorithms.

The s0 is the original Bunny point cloud, s1 is the noisy
point cloud, s2 is the point cloud after the outliers removed
by the proposed outlier removal algorithm, and s3 is the
point cloud after the confounding points removed by the
proposed confounding point removal algorithm. From the
evaluation indicators in Table 4, we can see that dCDðs0, s3Þ
is smaller than dCDðs0, s2Þ and dCDðs0, s1Þ, indicating that
the proposed algorithm can effectively remove outliers and
confounding points.

The Bunny point cloud with 20% noise added is taken as
an example to verify the effect of hole filling. Both the Bunny
point cloud with noise and that has been processed by the pro-
posed algorithm are triangulated, as shown in Figures 5(a) and
5(b). Figures 5(c) and 5(d) show the triangulation effect of the
point cloud with noise and that has been processed by the pro-
posed algorithm after the viewing angle is flipped, respectively.
The noise on the surface of the Bunny noisy point cloud is
completely removed, and the fitted surface is uniform and
smooth without apparent loss. The holes at the bottom of
the point cloud are also effectively filled. The results show that
the proposed algorithm in this paper preserves the sharp and
detailed features of the point cloud while removing the outliers
and confounding points and makes an effective repair for the
holes finally.

3.2. Experimental Verification of Algorithm Performance. To
further verify the effect of the proposed algorithm, the actual

point cloud data of the locomotive pantograph slide, obtained
by the laser line structured light three-dimensional scanner, is
set as the experimental object. In the data collection, the cam-
era type is Ranger3, the laser model is Lingyun (808nm,
15W), and the effective accuracy of the 3D scanner is
0.5mm. The collected pantograph data contains 632,718
points with some obvious defects on the surface. The results
are shown from Figures 6–8 and Tables 5–7.

Figure 6 and Table 5 show that after the pantograph
point cloud with 10% noise is processed by the proposed
method, no obvious noise points exist on the surface of the
point cloud, together with the outliers and confounding
points removed. Radius filtering has the highest denoising
accuracy. The denoising recall rate of the statistical filtering
is better than that of the radius filtering and the proposed
outlier removal algorithm. However, the denoising accuracy
of the proposed outlier removal algorithm is close to that of
the radius filtering, and the denoising recall rate is close to
that of the statistical filtering. The F-score of the proposed
outlier removal algorithm is better than that of the statistical
filtering and radius filtering. So the comprehensive perfor-
mance of the proposed method is the best.

Figure 7 and Table 6 show that after the pantograph
point cloud with 20% noise is processed by the proposed
method, no noticeable noise points appear on the surface
of the point cloud, together with outliers and confounding
points removed. The denoising accuracy rate, the denoising
recall rate, and F-score of the proposed outlier removal algo-
rithm are better than those of the statistical filtering and
radius filtering.

Figure 8 and Table 7 illustrate that after the pantograph
point cloud with 30% noise is processed by the proposed
method, no evident noise points remain on the surface of
the point cloud together with the outliers and confounding
points removed. The denoising recall rate of the radius filter-
ing is better than that of the statistical filtering and the pro-
posed outlier removal algorithm, but the denoising accuracy
rate and F-score of the proposed outlier removal algorithm
are better than those of the statistical filter and radius filtering.

The effect comparison of the three algorithms in remov-
ing outliers with different noise degrees is shown in Figure 9.
The proposed outlier removal algorithm and the radius fil-
tering show an upward trend with the increase of noise level,
and the statistical filtering shows a downward tread. The
proposed algorithm always performs better than the other
two algorithms.
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Figure 10: Hole filling effect. (a) Original point cloud. (b) Local hole in original point cloud. (c) Point cloud after hole-filling. (d) Local hole
after hole-filling.
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The s0 is the original pantograph point cloud, s1 is the
noisy point cloud, s2 is the point cloud after the outliers
removed by the proposed outlier removal algorithm, and s3
is the point cloud after the confounding points removed by
the proposed confounding point removal algorithm. From
the evaluation indicators in Table 8, the proposed algorithm
can remove both the outliers the confounding points.

To show the hole filling effects, we compared the original
pantograph point cloud with that after the hole filling, as
shown in Figure 10. Figures 10(a) and 10(c) illustrate the
original pantograph point cloud and that after the hole fill-
ing, respectively. Figures 10(b) and 10(d) demonstrate the
original pantograph point cloud with the local hole and that
after the hole filling. The results show that the algorithm
proposed in this paper effectively fills the hole.

4. Conclusions

In this paper, an algorithm for point cloud quality optimiza-
tion and enhancement is designed and verified. Firstly, an
adaptive octree is established to rasterize the point cloud
and to calculate the density of each grid. Then, the statistical
filtering is combined to remove the outliers from the point
cloud data. And the method of plane projection is used for
removing the confounding points. Finally, the point cloud
is triangulated, and a priority value is set up to insert the
point to the place where the priority value is the largest, so
as to repair the holes. To verify the effectiveness of the pro-
posed algorithm, we, respectively, added 10%, 20%, and 30%
noise to the Bunny point cloud and used the actual point
cloud data of the locomotive pantograph slider to test. Then,
the proposed algorithm was compared with the statistical fil-
tering algorithm and the radius filtering algorithm. Experi-
mental results show that the proposed algorithm can
decently keep the sharp and detailed features from the orig-
inal point cloud surface while removing noise. It can also
effectively fill the holes and comprehensively perform better
than the algorithms of statistical filtering and radius filtering.
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