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With IoT development, it becomes more popular that image data is transmitted via wireless communication systems. If bit
errors occur during transmission, the recovered image will become useless. To solve this problem, a bit-error aware lossless
image compression based on bi-level coding is proposed for gray image compression. But bi-level coding has not considered
the inherent statistical correlation in 2D context region. To resolve this shortage, a novel variable-size 2D-block extraction
and encoding method with built-in bi-level coding for color image is developed to decrease the entropy of information and
improve the compression ratio. A lossless color transformation from RGB to the YCrCb color space is used for the
decorrelation of color components. Particularly, the layer-extraction method is proposed to keep the Laplacian distribution of
the data in 2D blocks which is suitable for bi-level coding. In addition, optimization of 2D-block start bits is used to
improve the performance. To evaluate the performance of our proposed method, many experiments including the
comparison with state-of-the-art methods, the effects with different color space, etc. are conducted. The comparison
experiments under a bit-error environment show that the average compression rate of our method is better than bi-level,
Jpeg2000, WebP, FLIF, and L3C (deep learning method) with hamming code. Also, our method achieves the same image
quality with the bi-level method. Other experiments illustrate the positive effect of built-in bi-level encoding and encoding
with zero-mean values, which can maintain high image quality. At last, the results of the decrease of entropy and the
procedure of our method are given and discussed.

1. Introduction

With cloud computing and Internet of Things (IoT) devel-
opment, the requirement for data transmission and storage
is increasing. Fast and efficient compression of data plays a
very important role in many applications. For instance,
image data compression has been used in many areas such
as medical, satellite remote sensing, and multimedia.

There are many methods to compress image data includ-
ing prediction-based, transformation-based, and other
methods such as fractal image compression and deep learn-
ing with Auto Encoder (AE) [1, 2], Recurrent Neural Net-
work (RNN), Convolutional Neural Network (CNN) [3],
and Residual Neural Network (RestNet) [4]. The

transformation-based method includes Discrete Cosine
Transform (DCT), Karhunen-Loeve Transform (KLT),
Hadamard transform, Slant transform, Haar transform,
and singular value decomposition [5]. Usually,
transformation-based or deep learning methods are used in
lossy compression while prediction-based methods are used
for lossless compression.

In some cases, lossless compression must be applied
when data acquisition is expensive. For example, lossless
image compression must be applied in aerial, medical, and
space images [6, 7]. In industry, many engineered lossless
compression methods including Portable Network Graphics
(PNG), WebP [8], and Free Lossless Image Format (FLIF)
[9] are used. Also, some deep learning-based lossless
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compression methods [10–12] are early researched. As one
classical method for lossless compression, the prediction-
based method takes into account the difference between
pixel values and their predicted values, which are generally
smaller numbers than the pixel values themselves. Thus,
each difference value needs a smaller number of bits to
encode [13]. It mainly has three kinds of methods including
context-based, least-square (LS)-based, and spatial
structure-based. Among these methods, the method based
on spatial structure with 2D context region is an effective
solution to improve the compression ratio (CR) because of
considering the inherent statistical correlation using block-
based methods such as quadtree-based block [14], reference
block [15], template-matching[16], and hierarchical decom-
position [17]. Quadtree-based block and hierarchical
decomposition methods split image to many subimages.
And the reference block method considers the phenomenon
that a physical object is constructed from numbers of struc-
ture components. Inspired from these methods, splitting
image into many blocks where each block has similar color
is taken as an effective method used by this work.

With IoT development, it becomes more usual that
image data is transmitted through wireless communication
systems and lossless image compression is used to improve
transmission throughput. However, if bit errors occur in a
wireless noisy channel during transmission, the recovered
image will be damaged or become useless. So, lossless
image compression must resolve the problem and keep
the recovered image be useful. Most methods including
engineered lossless compression methods and deep learn-
ing based methods are not suitable to transmission in
noise channel; to the best of our knowledge, fewer
researches have worked on this case except our previous
work [7]. By protecting the key information bits with error
control coding, our work proposed a bit-aware lossless
image compression based on bi-level coding for gray
image as a one-dimensional signal. In the coding method,
only the linear predictive bi-level block coding parameters
are encoded using (7,4) Hamming codes and residue
sequences are left as they are to improve the performance
of compression rate (CR). One reason for the efficiency of
bi-level coding is that it uses the sparsity property of data
which required fewer encoding bits.

In this work, we will use bi-level coding [7] for natural
images with red (R), green (G), and blue (B) components.
As R, G, and B are highly correlated, a linear transformation
is applied to map RGB to other color space and achieve bet-
ter CR [17, 18]. As discussed above, the spatial structure-
based method with 2D context region is taken as an effective
solution to improve CR. Therefore, image is split into many
2D blocks which has sparsity property and be suitable to be
encoded with bi-level coding. Finally, a novel variable-size
2D-block extraction and encoding method with built-in bi-
level coding is proposed to improve CR for color image
and robust to bit-error environment. An important 2D-
layer-block extraction method is used to split the image to
many 2D blocks with similar color and keep the Laplacian
or Gaussian distribution of data in one 2D block, which
has sparsity property.

The contributions of this paper are summarized as follows:

(1) For color image compression, a lossless color trans-
formation from RGB to the YCrCb color space is
used for the decorrelation of color components.
The prediction-based method is used to remove data
correlation and produce residue sequence

(2) To keep the data distribution with the sparsity prop-
erty and be suitable for bi-level coding, a novel 2D-
layer-block extraction method is proposed to keep
the Laplacian or Gaussian distribution of data in
2D blocks. Furthermore, by rearranging the order
of data encoded, the extraction method can decrease
the entropy of data and improve CR

(3) A novel variable-size 2D-block encoding method
with built-in bi-level is proposed to improve CR
and robust to bit-error environment just as the bi-
level coding method. The mean or min value in
one 2D block and key information bits in built-in
bi-level coding are protected with hamming code.
So, the image can be recovered and useful

The rest of this paper is organized as follows. In Section
2, related works on lossless compression are discussed. In
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Figure 1: The proposed method.
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Figure 2: Neighboring pixels for the predictor.
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Section 3, the details of the proposed method are briefly
introduced. In Section 4, several experiments including com-
parison and analysis of basic principles are conducted.
Finally, the conclusion and future researches are drawn in
Section 5.

2. Related Work on Lossless Compression

2.1. Prediction-Based Methods. The context-based adaptive
prediction method is based on a static predictor which is
usually a switching predictor able to adapt to several types
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Figure 4: Data distribution. (a) data distribution in blocks; (b) data distribution after 2D-block extraction; (c) data in one block.
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of contexts, like horizontal edge, vertical edge, or smooth
area. Many static predictors can be found in [6, 19]. Median
edge detector (MED) used in LOCO-I uses only three causal
pixels to determine a type of pixel area which is currently
predicted [20]. LOCO-I is further improved and standard-
ized as the JPEG-LS lossless compression algorithm, which
has eight different predictive schemes including three one-
dimensional and four tow-dimensional predictors [21]. To
detect edges, Gradient Adjusted Predictor (GAP) embedded
in the CALIC algorithm uses local gradient estimation and
three heuristic-defined thresholds [22]. Gradient edge detec-
tion (GED) predictor combines simplicity of MED and effi-
ciency of GAP [23]. In [19], the prediction errors are
encoded using codes adaptively selected from the modified
Golomb-Rice code family. To enable processing of images
with higher bit depths, a simple context-based entropy coder
is presented [6].

LS-based optimization is proposed as an approach to
accommodate varying statistics of coding images. To reduce
computational complexity, edge-directed prediction (EDP)
initiates the LS optimization process only when the predic-
tion error is beyond a preselected threshold [24]. In [25],
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Figure 5: Example of extracting 2D blocks.

M = matrix of one channel

BLK-A = [] // blocks in every layer

ARY-B = [] // remaindata in every layer

For bits = 1:8

Extract blocks A with max(:)-min(:) = 2^bits-1 from M

M = reshaped matrix of data except the data (A and B)

BLK-A = { BLK-A, A}

ARY-B = { ARY-B , B}

Figure 6: Extraction of 2D block.

1. Divide a line of residue data with a length of ns = m ×

nb into m blocks, in which each block consists of nb

samples; that is, nb is the block size. There are two types of

blocks: the level-0 block and the level-1 block. 

1 N1

nb data samples

...N1 N1

a. Level-1 block

0 N0

nb data samples

...N0 N0

b. Level-0 block

2. For a level-1 block, any sample in the block requires only

N1 bits (N1 < N0[original sample size]) to encode. Encode

each sample using N1 bits and add the prefix “1” to designate

the block as the level-1 block.

3. For a level-0 block, at least one of the samples in the block

needs more than N1 bits to encode. Encode each sample in

the block using N0 bits and add the prefix “0” to indicate the

level-0 block.

Figure 7: Bi-level coding rule.

N⁎ = 8 //the optimized value of start bits

For N = 1:7

Estimate p0(more than N bits)

If p0 × 1 ⁄ (8 − N)p0 ≤ 0.3

stop and return N⁎ = N

Figure 8: Optimization of Start Bits.
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the LS optimization is processed only when the coding
pixel is around an edge or when the prediction error is
large. And a switching coding scheme is further proposed
that combines the advantages of both run-length and
adaptive linear predictive coding [26]. Minimum Mean
Square Error (MMSE) predictor uses least mean square
principle to adapt k-order linear predictor coefficients for
optimal prediction of the current pixel, from a fixed num-
ber of m causal neighbors [27]. The paper [28] presents a
lossless coding method based on blending approach with a
set of 20 blended predictors, such as recursive least
squares (RLS) predictors and Context-Based Adaptive Lin-
ear Prediction (CoBALP+).

Although individual prediction is favored, the mor-
phology of 2D context region would be destructed accord-
ingly and inherent statistical correlation among the
correlated region gets obscure. As an alternative, spatial
structure has been considered to compensate the pixel-
wise prediction [29]. In [14], quadtree-based variable
block-size partitioning is introduced into the adaptive pre-
diction technique to remove spatial redundancy in a given
image and the resulting prediction errors are encoded
using context-adaptive arithmetic coding. Inspired by the
success of prediction by partial matching (PPM) in
sequential compression, the paper [30] introduces the
probabilistic modeling of the encoding symbol based on

Color space and predictor information Hamming protection data
Channel-1 data Channel-2 data Channel-3 data

(a)

Encoding layer 1 Header data Data

Encoding layer 2 Header data Data

Encoding layer 8 Header data Data
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Length of B (9 bits) Mean valuein B (9 bits)

Hamming pretection data Represent Bi-level encoding information: N0 (4 bits) N1 (4 bits) nb (6 bits) ns/nb (20 bits)
Bitstream of each Bi-level block type

(c)

Figure 9: 2D-block encoding scheme: (a) data encoding of one image; (b) data encoding in one channel of image; (c) header data encoding
of one layer.

Table 1: Images from Open Images and CLIC.

FileId FileName thn FileId FileName thn

(1) 077a21a70e1b7f86 102400 (7) IMG_20160522_165515 2024

(2) 3632d975bd623167 10240 (8) IMG_20170114_204505 1536

(3) 488d4412c71bf3f1 20480 (9) IMG_20170725_123034 3584

(4) 4e9226ecb7124541 20480 (10) IMG_20170730_133144 20480

(5) IMG_20131224_110518010_HDR 20480 (11) IMG_20170916_004924 2024

(6) IMG_20160312_095817 4096 (12) c1bfd9c6e7279456 20480
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its previous context occurrences. In [15], superspatial
structure prediction is proposed to find an optimal predic-
tion of the structure components, e.g., edges, patterns, and
textures, within the previously encoded image regions
instead of the spatial causal neighborhood. The paper
[17] presents a lossless color image compression algorithm
based on the hierarchical prediction and context-adaptive
arithmetic coding. By exploiting the decomposition and
combinatorial structure of the local prediction task and
making the conditional prediction with multiple max-
margin estimation in a correlated region, a structured set
prediction model with max-margin Markov networks is
proposed [29]. In [16], the image data is treated as an
interleaved sequence generated by multiple sources and a
new linear prediction technique combined with template-
matching prediction and predictor blending method is
proposed. Our method uses a variable-size 2D-block
extraction and encoding method with built-in bi-level to
improve the compression rate.

2.2. Engineered Lossless Compression Algorithms. PNG
remove redundancies from the RGB representation with
autoregressive filters and then the deflate algorithm based
on the LZ77 algorithm and Huffman coding is used for data
compression. Lossless WebP compression uses many types
of transformation including spatial transformation, color
transformation, green subtraction transformation, color

indexing transformation, and color cache coding and then
performs the entropy coding which uses a variation of
LZ77 Huffman coding [8]. FLIF use Adam7 interlacing
and YCoCg interleaving to traverse the image and perform
entropy coding with “meta-adaptive near-zero integer arith-
metic coding” (MANIAC) based on context-adaptive binary
arithmetic coding CABAC [9].

2.3. Deep Learning-Based Lossless Compression. Huffman,
arithmetic coding, and asymmetric numeral systems are
the algorithms for implementing lossless compression, but
they do not cater for latent variable models, so bits back with
asymmetric numeral systems (BB-ANS) are proposed to
solve the issue [10]. But BB-ANS become inefficient when
the number of latent variables grows, to improve its perfor-
mance on hierarchical latent variable models, Bit-Swap is
proposed [11]. In contrast to these works focusing on
smaller datasets, a fully parallel hierarchical probabilistic
model (termed L3C) to enable practical compression on
superresolution images [12].

3. Our Proposed Method

The proposed method is shown in Figure 1. In color image
data, R, G, and B are highly correlated. So, their straightfor-
ward encoding is not efficient. Therefore, a linear transfor-
mation from RGB to the YCrCb color space is used for the

Table 2: Comparison with prediction-based methods.

Image
Ref. [17] Ref. [16]

Best CR(7,4) Our
Calic jpeg2000 jpeg-xr Ref. method MRP CoBaLP2 LOCO-I

Lena 13.1787 13.5848 14.0942 13.6461 11.872 12.399 13.173 1.155179053 1.3876

Peppers 13.8661 14.8 15.3245 15.2102 0.989051407 1.2764

Mandrill 18.1511 18.0939 18.2553 18.5305 16.041 17.039 17.822 0.854952043 1.13

Barbara 14.9567 11.1612 12.1408 11.4575 1.228746525 1.2406

Airplane 10.121 11.06 1.355032676 1.5302

Average 1.116592 1.31296

Table 3: Comparison with engineering and deep learning methods.

Our CR Bilevel PNG(7,4) Jpeg2000(7,4) WebP(7,4) FLIF(7,4) L3C(7,4)

(1) 1.5141 1.4958 1.201423 1.195981 1.209832 1.26147 1.201423

(2) 1.8985 1.9171 1.589528 1.591757 1.629015 1.697848 1.589528

(3) 2.0597 1.9877 1.762672 1.724237 1.767789 1.811668 1.762672

(4) 1.8084 1.7509 1.350212 1.362216 1.343821 1.373226 1.350212

(5) 1.4849 1.4478 1.098277 1.11419 1.104521 1.131249 1.098277

(6) 1.7418 1.7397 1.578617 1.500231 1.544284 1.571556 1.578617

(7) 1.4761 1.4772 1.122815 1.098124 1.086112 1.100787 1.122815

(8) 1.7614 1.7707 1.667265 1.566052 1.611617 1.709558 1.667265

(9) 1.295 1.2774 0.918406 0.904853 0.911615 0.928585 0.918406

(10) 1.5852 1.5504 1.19649 1.176481 1.216922 1.201159 1.19649

(11) 1.807 1.8237 1.740748 1.670904 1.780918 1.795483 1.740748

(12) 1.7631 1.7602 1.528354 1.461382 1.506129 1.576181 1.528354

Average 1.682933 1.66655 1.396234 1.363867 1.392715 1.429898 1.396234
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decorrelation of color components [31]. To approximate the
original color transform well enough, the lossless color
transform with equations (1) and (2) in [32] is adopted in
our algorithm. As [7, 19] mentioned, the prediction residues
have reduced amplitudes and are assumed to be statistically
independent with an approximate Laplacian distribution.
Therefore, a predictor in Figure 1 is employed to further
remove data correlation in Y, Cb, and Cr channels, respec-
tively. The predictor value of Xp can be obtained with equa-
tion (3), where Ap, Bp, and Cp are the pixel value and their
location is illustrated in Figure 2. After the prediction step,
variable-size 2D blocks are extracted and key information
about the blocks are encoded with Hamming code. Finally,
these 2D blocks are separately encoding with built-in bi-
level coding to make use of the sparsity property of Lapla-
cian distribution and achieve better signal quality and robust
to bit errors [7].
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The procedure of 2D-block extraction and encoding is
further shown in Figure 3; the 2D-layer-block extraction
method is used to keep the Laplacian or Gaussian distribu-
tion of data in Layer-1~n or 2D blocks, which have the spar-
sity property and are suitable for bi-level coding. n in Layer-
n represents n bits required to encode in the extracted
blocks, and the remaining data not belonging to any blocks
is left to the next layer for extraction. The 2D-block encod-
ing method with built-in bi-level is used to improve CR
and keeps robust to bit errors. The built-in bi-level proce-
dure split the 2D block into many one-dimension signals,
and each signal is encoding separately. It is because the bi-
level method has the maximum encoding length, which is
normally the same as the width of image.

3.1. 2D-Layer-Block Extraction Method

3.1.1. Principle of the Extraction Method. In the proposed
algorithm, to keep the data distribution have the sparsity
property and be suitable for bi-level coding, a novel 2D-
layer-block extraction method is proposed to keep the Lapla-
cian or Gaussian distribution of data in 2D blocks. In addi-
tion, the extraction method can rearrange the order of data
encoded and the entropy of data is decreased, so CR can
be improved. The principle of the method is introduced as
follows.

For encoding residues, if a two-dimension block, called
2D block, can be encoded with n bits per residue, all of these
datum x in the block must be satisfied with condition shown
in (4). Therefore, it is feasible to find these blocks for n = 1
bits, then n = 2, ::8.

max xð Þ −min xð Þ ≤ 2n − 1: ð4Þ

Let us consider all these datum x in the block governed
by a probability density f ðxÞ, and the entropy is calculated
by (6) [33].

f xð Þ = 1
2πσ

e− x−μð Þ/2σ2ð Þ2 , ð5Þ

H xð Þ = −
ð∞
−∞

f xð Þ log f xð Þdx: ð6Þ

By inserting (5) into (6), the entropy for a Gaussian dis-
tribution is expressed as

H xð Þ = log
ffiffiffiffiffiffiffiffiffiffi
2πeσ

p 2
Gaussianð Þ: ð7Þ

Since the residue sequence with Gaussian distribution
has maximum entropy, the following inequality holds in
general.

H xð Þ ≤ log
ffiffiffiffiffiffiffiffiffiffi
2πeσ

p 2 ingeneralð Þ: ð8Þ

According to (4), the fixed standard deviation σ is less than
ð2n − 1Þ/2 and (9) can be deducted when we assume μ = 0; L is
the sample size in all of these datum x in one block. By
substituting (9) to (8), equation (10) can be obtained. When
blocks for n bits are found starting from 1 to 8, the entropy
of these data in blocks is increased later and later according
to (10). So, the entropy is decided by n and it is possible to
improve the compression ratio with this method.

σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L
〠
L

i=1
xi − μð Þ2

vuut ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2n − 1ð Þ
2

, ð9Þ

H xð Þ ≤ log
ffiffiffiffiffiffiffiffi
2πe

p 2n − 1ð Þ
2

: ð10Þ

According to the discussion above, we assume μ = 0. After
performing prediction and making it zero-mean by removing
the average, many residue values are close to zero and the res-
idues follow a Laplacian distribution as shown in Figure 4(a).
That is, all the data in one of these encoding 2D blocks will sat-
isfy (11). Note that the sample size L in the block is above a
threshold value of thn and data in the block possess a Lapla-
cian or Gaussian distribution approximately.

mean xð Þ ≈ 0, L ≥ thn: ð11Þ

To proceed, if all of these 2D blocks with n = 1 bits are
found, they will be extracted from residue data. The rest of
the residue data consists of three portions. The first portion
has values bigger than ð2n − 1Þ/2, and the second portion
has values smaller than −ð2n − 1Þ/2, while the third portion
contains data which size is smaller than thn. It is noted that
after the residues ∈½−ð2n − 1Þ/2, ð2n − 1Þ/2� shown in
Figure 4(a) are extracted, the rest of the residue data will nearly
keep the Laplacian distribution. When the extraction is
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Figure 11: Effect of bi-level on CR (BER = 0:001, optimal thn).
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repeated from n = 1 to 8, the Laplacian distribution of the
remained residue data will change with decreasing the proba-
bility density around zeros as shown in Figure 4(b). In addi-
tion, the Laplacian or Gaussian distribution in these 2D
blocks will be flattened as depicted in Figure 4(c) because of

increasing value of ð2n − 1Þ. In this paper, the procedure is
called as layer extraction.

3.1.2. Procedure of the Extraction Method. According to (11),
2D-layer blocks each having a sample size above the threshold
of thn are extracted repeatedly. For example, in Figure 5, image
residue data is given as a matrix 40 ∗ 40 and many 2D blocks
belonging A are extracted. The data which are not included in
blocks are reshaped as a matrix M with the same height as the
original residue image, while other remaining data are collected
as an array of B. After the first layer is finished, matrix M is
processed similarly in the next layer. With the extraction and
matrix reshape operations, many edge values will be merged
with other data and have less effect on compression [24]. The
pseudocode of block extraction procedure is shown in Figure 6.

3.2. Built-In Bilevel Coding

3.2.1. Bilevel Coding. As most of these data in one of 2D
blocks has a sparse distribution discussed above, a bi-level
coding scheme proposed by our previous works [7, 34] in
Figure 7 can be applied.

Let p0 as the probability of a data sample requiring more
than N1 bits and less or equal to N0 bits to encode. Assuming
that nbp0 ≤ 0:3 [34], the average total length is expressed in
the following:

Lave =
ns
nb

+ nsN1 + N0 −N1ð Þnsnbp0, nbp0 ≤ 0:3: ð12Þ

For a given 2D block for n bits, N0 = n, the original total
length is N0 ∗ ns. When bi-level block coding is applied, the
compression ratio will be improved according to (12).
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Figure 12: Effect of bi-level on PSNR (BER = 0:001, optimal thn).
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3.2.2. Optimization of 2D-Block Start Bits. According to (12),
for an 8-bit gray image data, ns is a constant, N0 = 8. Given
N1, p0, which can be estimated, optimal nb can be deter-
mined to achieve a minimum length of Lave. By taking the
derivative of (12) and setting it equal to zero, the optimized

block size x can be calculated by equation (13). So, the min-
imum N1 satisfying nbp0 ≤ 0:3 can be found through
Figure 8. Finally, the “bits” value in Figure 7 can start from
the minimum N1 and the efficiency of 2D-block extraction
will be improved.
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Figure 14: Effect of zero-mean on PSNR (BER = 0:001, thn = 128, no bi-level).
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x∗ =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N0 −N1ð Þp0
p =

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 −N1ð Þp0

p : ð13Þ

3.3. 2D-Block Encoding. Figured 9(a)–9(c) show the details
of the encoding scheme. When one color image is given,
three channels are separately encoded and the head
information including the color space, predictor
information, and their hamming coding in (a). In each
channel, 2D blocks are extracted with extraction method
layer by layer so encoding is implemented recursively layer
by layer as well and each layer is encoded separately. In
each layer of (b), head data and image data are separately
encoded. (c) shows the encoding scheme of head data.
Width of parent matrix ∗ the height of image is the size of
M, and length of B is the length of the remaining data in
Figures 5 and 6. Every block has start position ðx, yÞ, its
size ðw, hÞ, mean value of the data in block, the maximum
bits used of each data in block, and the key information of
built-in bi-level coding including N0, N1, nb, the number
of block ns/nb, and bitstream of block type. Particularly,
the mean value of data in block has two functions. One is
used to improve the capability of robust to bit error
because the mean value keeps the key information of one
block. Another is used to ensure zero-mean of the block
data, which is the feature in bi-level coding.

4. Experiments

To validate our proposed algorithm, Open Images from
http://data.vision.ee.ethz.ch/mentzerf/validation_sets_
lossless/val_oi_500_r.tar.gz, CLIC mobile dataset from

https://data.vision.ee.ethz.ch/cvl/clic/mobile_valid_2020.zip
shown in Table 1, and many classic images from http://sipi
.usc.edu/database/ and http://homepages.cae.wisc.edu/
~ece533/images/ are used.

In the extraction of 2D blocks, an optimal threshold of
sample size thn is given in Table 1. All these data in one layer
will be split into many pieces with 512 samples, which is the
same as the width of image. To evaluate the effect of 2D-
block encoding, built-in bi-level coding and color space,
etc., experiments with different combinations are imple-
mented. All the results are the average values from 10 runs.
A bit-error rate (BER) is default set as 0.001. The bi-level
method is applied for RGB color image [7].

To evaluate the performances for the bit-error environ-
ment, the Peak Signal to Noise Ratio (PSNR in dB), Struc-
tural Similarity (SSIM) as (16) [35], Multi-Scale
SSIM(MSSSIM_Y), Spectral Residual-based Similarity
(SRSIM), Riesz-transform-based Feature SIMilarity
(RFSIM), Feature Similarity (FSIM), FSIMc, and Visual
Saliency-based Index (VSI) [36, 37] are used as error metrics
to measure the recovered image quality. In (15), Iðx, yÞ rep-
resents the original pixel, while Îðx, yÞ is the recovered pixel.
In (17) and (18), K1 = 0:01, K2 = 0:03, and L = 255.

PSNR = 20 × log10
255

RMSE

� �
, ð14Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M ×N
〠
M
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〠
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y=1
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SSIM x, yð Þ =
2μxμy + C1

	 

2σxy + C2
� �

μ2x + μ2y + C1

	 

σ2x + σ2y + C2

	 
 , ð16Þ

C1 = K1Lð Þ2, ð17Þ

C2 = K2Lð Þ2: ð18Þ

4.1. Comparison. In this experiment, our proposed method is
compared with many state-of-the-art methods from Refs.
[16, 17], engineered lossless compression algorithms includ-
ing PNG, Jpeg2000, WebP, FLIF, and deep learning-based
lossless compression algorithm L3C. As all of these methods
are not suitable to be applied in bit-error situation, these
methods with hamming code (7,4) are supposed a solution
robust to bit-error environment. The results are given in
Tables 2 and 3 and Figure 10.

In Table 2, the results are taken from Refs. [15, 16] and
the best results of CR with hamming code are listed in the
last second column. The average CR of our method is
1.31296 and better than 1.116592. In Table 3, the results of
Jpeg2000, WebP, and FLIF are achieved through the com-
pression tools including OpenJpeg, WebP from Google,
and FLIF from Cloudinary. As a deep learning method, the
result of L3C is achieved by using the neuron model trained
with Open Images dataset to compress images. The average
CR of our method is 1.682933 and better than others such
as bi-level (1.66655), FLIF (1.429898), and L3C (1.396234).
In addition, it is noticed that CR of L3C with images (5)
and (9) from the CLIC dataset get the worst results, which
are 1.098277 and 0.918406. One reason that leads to the
result is that the neuron model used to compress is trained
with Open Images dataset and L3C do not perform well on
the images from a different dataset CLIC.

Figure 10 shows the image quality assessment results.
PSNR, SSIM and MSSSIM_Y can better reflect the situation

of bit-error channel. Therefore, only these three assessment
results are discussed in the late section.

According to the comparison results in Tables 2 and 3
and Figure 10, the compression ratio of our proposed
method is higher than bi-level coding although 2D-block
encoding requires more header bits to encode the informa-
tion about the position and size of block. And similar image
quality with bi-level coding is kept in Figure 10. The reason
is that the 2D-layer-block extraction method rearranges the
data order to decrease the entropy and the data distribution
of one-layer blocks nearly keeps as Laplacian distribution
which is suitable for bi-level coding as discussed before. In
addition, the analysis will be further discussed in Section
4.6–4.7.

4.2. The Effect of Built-In Bilevel Encoding. To investigate the
advantage of the bi-level coding method, two experiments
including “built-in bi-level” and “no bi-level” are imple-
mented. The results are shown in Figures 11 and 12.

When the center of the Laplacian distribution is located
at zero, bi-level coding can require less bits to encode. So, the
built-in bi-level encoding method achieves the best compres-
sion ratio as shown in Figure 11. As bi-level coding is pro-
posed for noisy channel [7], it gets higher PSNR, SSIM,
and MSSSIM_Y and maintains a better image quality just
as shown in Figure 12.

4.3. Comparison between Zero-Mean and Positive Integers.
As we know, min value can also be as the key information
to improve image quality just as mean value. In this experi-
ment, positive integer values by removing min value are
encoded. The results are shown in Figures 13 and 14.

As discussed in Section 4.2, the compression ratio with
built-in bi-level coding is higher when zero-mean values
are used. While without the bi-level coding used, the com-
pression ratio with positive integer values by removing the
min value is higher than with zero-mean values in
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Figure 18: The entropy of 2D blocks for n bits (entropy ∗ number of samples, thn = 128). Left is the entropy of blocks extracted.
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Figure 13. The reason is that encoding with zero-mean
values requires the sign bit. But the usage of sign bit can
result in that encoding with zero-mean values has smaller

amplitude around the mean value, so encoding with zero-
mean values has less effect on PSNR and SSIM than with
positive integer values. Consequently, according to the
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PSNR and SSIM shown in Figures 14(a) and 14(b), encoding
with zero-mean values can achieve better PSNR and SSIM
than with positive integer, which is consistent with Section
3.3.

Figure 15 gives the reconstructed images in different
methods. According to the results of image (9) at the last
row, encoding with “positive integer” values shows worse
image quality than others. But in Figure 14(c), the MSSSIM
value of “positive integer” is higher than “zero-mean.”
Therefore, the MSSSIM result cannot be consistent with
the real image quality in some cases.

4.4. Evaluation with Optimization of 2D-Block Start Bits. In
the 2D-block coding method, the excessive number of blocks
can lead to a decrease of compression ratio. So, the experi-
ment based on optimization is conducted and the results
are given in Figure 16. It is observed that the optimization
does work and improves the compression ratio.

4.5. Evaluation with Different Color Spaces and Predictors. In
Figure 17, “RGB Direct” denotes that RGB image is directly
encoded without a predictor while “RGB Predictor” desig-
nates that the RGB residue with a predictor is used. It shows
that color space YCrCb in “2D block” performs better than
color space RGB and “RGB Direct” is the worst, which vali-
dates that the difference between pixel values and their pre-
dictions is generally smaller numbers than the pixel values
themselves [13].

4.6. The Decrease of Entropy. In Figure 18, the original
entropy of gray image of (4) is 3.8453 while the average
entropy with the 2D-block encoding method is 3.772696. It
is indicated that the compression ratio is improved and less
than the value according to the information theory, which is
coincident with the principle in Section 3.1.

4.7. The Change of Data Distribution in Every Layer.
Figure 19 shows all the images with 2D blocks and the data
distribution of remained data or all the data in blocks from
gray image of (4) without the optimization of 2D-block start
bits. The images indicated reshape operator has changed the
distribution of edge cared about by many predictors [24].
The remained data distribution is close to the Laplacian dis-
tribution shown in the left histogram, and the data distribu-
tions in blocks are close to Gaussian or Laplacian
distribution shown in the right histogram. All of these are
coincident with the analysis in Section 3.1.

4.8. Discussion. Through these experiments, the results of
comparison proved that our method performs better than
state-of-the-art methods, engineering lossless compression
algorithms and deep learning methods under bit-error situ-
ation. There are four main reasons.

First, the 2D block extraction method extracts the data
encoded with smaller bits layer by layer; thus, the entropy
is decreased as Section 4.6 show.

Second, the edge data always cause poor compression
rate but the 2D-block extraction method has changed the
edge data distribution. And the data distribution of each

layer block nearly keeps as Laplacian distribution which is
suitable for bi-level coding as Figure 19 of Section 4.7.

Third, built-in bi-level coding with zero-mean value can
preserve high image quality under bit-error environment as
Section 4.2 and 4.3 discussed.

At last, optimization of 2D-block start bits and color
space used in “2D block” is an important mechanism to
improve the compression rate as the discussion in Sections
4.4 and 4.5.

5. Conclusions

When image data is transferred through wireless communi-
cation systems, bit errors may occur and will cause corrup-
tion of image data. To reducing the bit-error effect, a bit-
aware lossless image compression algorithm based on bi-
level coding can be applied. But bi-level coding is one of
the one-dimension coding methods and has not considered
the inherent statistical correlation in 2D context region. So,
to resolve this shortage, a novel 2D-layer-block extraction
and encoding method with built-in bi-level coding is pro-
posed to improve the compression ratio. With the layer
extraction method, the data distribution is close to the
Laplacian distribution after each layer extraction, which is
suitable for bi-level coding. For color image, a lossless color
transformation from RGB to the YCrCb color space is used
for the decorrelation of color components. Through experi-
ments, it is demonstrated that our proposed method obtains
the better lossless compression ratio and keeps the same
image quality with the bi-level method under noise trans-
mission channel. Although it is not as efficient when com-
pared to state-of-the-art methods in terms of lossless
compression ratio sometimes, it is more robust to bit errors
caused by noisy channel. Furthermore, after applying the
feed-forward error control scheme, different predictor, and
coding method, we can achieve better compression effi-
ciency, since the bi-level block coder requires a smaller num-
ber of bits by the bit-error protection algorithm than the
amount required by the entropy coder. Also, it is noted that
deep learning methods are trained with Open Images dataset
but perform poor on the images from a different dataset.
Therefore, the generalization ability of deep learning
methods is required to be improved in the future.
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