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Patrol unmanned aerial vehicles (UAVs) in coal mines have high requirements for environmental perception. Because there are
no GPS signals in a mine, it is necessary to use simultaneous localization and mapping (SLAM) to realize environmental
perception for UAVs. Combined with complex coal mine environments, an integrated navigation algorithm for unmanned
helicopter inertial measurement units (IMUs), light detection and ranging (LiDAR) systems, and depth cameras based on
probabilistic membrane computing-based SLAM (PMC-SLAM) is proposed. First, based on an analysis of the working
principle of each sensor, the mathematical models for the corresponding sensors are given. Second, an algorithm is designed
for the membrane, and a probabilistic membrane system is constructed. The probabilistic SLAM map is constructed by
sparse filtering. The experimental results show that PMC can further improve the accuracy of map construction. While
adapting to the trend of intelligent precision mining in coal mines, this approach provides theoretical support and
application practice for coal mine disaster prevention and control.

1. Introduction

UAV application scenarios have high requirements for nav-
igation performance, especially in complex environments,
and a single navigation mode has difficulty meeting these
requirements. At present, inertial navigation sensors, lasers,
vision sensors, and other sensors are mainly used for multi-
sensor data fusion with an effective SLAM control algorithm.
Navigation with a single sensor is gradually being replaced
by integrated navigation due to environments with increas-
ing complexity. Reference [1] improves the accuracy of data
association by using the complementary advantages of point
and line features. This method is only tested in a simulation

environment and lacks training on actual scenes. In refer-
ence [2], when the laser cannot work normally, a vision-
based path planning method for UAVs is implemented by
using a fully convolutional neural network; this approach
achieves good results, but its generalization ability is limited
for high-dimensional data or large scenes. In reference [3],
UAV SLAM is realized by neural cell population coding,
but the simulation can only be completed under specific
constraints. In reference [4], a neural network is used to
predict the error before and after particle filtering, which
reduces the positioning error caused by unreliable laser data.
In reference [5], based on adaptive filtering, the state noise
variance matrix and noise variance matrix of the Kalman
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filter are modified in real time by means of the residual mean
and variance, thereby improving the adaptability and robust-
ness of the model. Reference [6] proposes a control strategy
to avoid collisions. The detection model uses distance and
image width information to optimize the barrier-free space.
In reference [7], based on the inertial navigation method of
scene recognition, a drift error model between nodes is estab-
lished, and the purpose of correcting the drift error is
achieved. In reference [8], an integrated navigation control
system based on biomimetic polarized light navigation
sensors, metal-insulator-metal sensors (MIMs), and GPS is
designed. The system error does not accumulate with time
andmeets the accuracy and reliability requirements of auton-
omous navigation. In reference [9], a visual pose estimation
method for underground UAVs based on a depth neural net-
work is proposed. This method can significantly improve the
positioning accuracy of roadways in complex environments,
but there are some problems, such as large computing
resource demands and relatively long computing times. In
reference [10], a UAV rotor system that can sense an
unknown outdoor environment autonomously and plan a
path automatically in real time is designed and implemented.
The system basically realizes the real-time autonomous
perception and path planning of UAVs in unknown outdoor
scenes. In reference [11], a monocular vision semidirect
visual odometry/integrated navigation system (SVO/INS)
algorithm is proposed to estimate the position, attitude, and
velocity of a UAV. In terms of vision and inertial measure-
ment unit (IMU) combinations, whether from a single or
dual combination mode and combined with traditional or
intelligent algorithms, the autonomous navigation of UAVs
can be realized under certain conditions. Because the accu-
racy of pose acquisition depends mostly on the extraction
and matching of environmental features, it is a challenging
task to carry out effective SLAM in combination with the
characteristics of sensors in the face of a complex coal mine
environment.

Membrane computing (a p-system) is derived from nat-
ural computing and was developed by Pǎun in 1998 [12]. As
a framework of computational model research inspired by
the mechanism of cell organization, membrane computing
has made rich research achievements in theoretical explora-
tions and application studies and has gradually extended its
advantages to the field of optimal control [13–15]. Based on
the membrane computing model, an effective membrane
algorithm has been designed to solve optimization control
problems in various fields of application. An optimization
algorithm, which integrates a membrane structure and com-
puting methods, has successively solved SAT [16–18],
satisfiability [19–22], HPP [23, 24], and function optimiza-
tion problems [25, 26]. In recent years, the author’s team
has been engaged in attitude control and path planning for
UAVs in coal mines [27]. At the same time, membrane
computing is gradually achieving breakthroughs in the field
of optimal control, and it has become a hot research topic.

In this paper, a navigation algorithm for UAVs, IMUs,
LiDAR systems, and depth cameras based on probabilistic
membrane computing-based SLAM (PMC-SLAM) is pro-
posed, and the main contributions are as follows:

(1) Based on the sensor model, a corresponding mathe-
matical model is given

(2) A probabilistic membrane system-based calculation
model is further constructed

(3) An algorithm is designed to realize the map con-
struction process in the membrane

2. Sensor Model and Information Fusion

2.1. Inertial Measurement Unit. An IMU is composed of
accelerometers and gyroscopes. Gyroscopes measure angular
velocity and accelerometers measure linear acceleration; the
former is the principle of inertia and the latter is the princi-
ple of force balance. The accelerometer is correct in a long
time; it has errors in a short time due to signal noise. The
gyroscope is more accurate in a short time and has errors
in a long time due to drift. Therefore, the two need to adjust
each other to ensure the correct heading. The IMU is used to
measure the object’s uniaxial, biaxial, or triaxial attitude
angle (or angular rate) and acceleration device. For inertial
applications in attitude, it consists of a combination of a
three-axis gyroscope and a three-axis accelerometer. The
depth camera used in this paper, Intel RealSense D435i, inte-
grates an IMU unit, Bosch BMI055, which can synchronize
IMU data and depth in real time, suitable for UAV system
position awareness. The BMI055 is a 6-axis inertial sensor
consisting of a digital 3-axis 12-position acceleration sensor
and a 3-axis digital 16-position gyroscope with ±2000°/
SEC. It has a total of 6 degrees of freedom. It allows the mea-
surement of the angular velocity and acceleration of the
three vertical axes with very low noise, thus detecting the
UAV posture. The measurement value of an inertial mea-
surement is based on the coordinate system of the sensor
itself and the coordinate system of a non-UAV body. Accord-
ing to the UAV mechanical model constructed by the author
of this paper [27], the IMU is modeled; the body state vector
pose is assumed to be fcvi, rvig, the angular velocity is wvi,
and the acceleration is _wvi. Furthermore, it is assumed that
the position relationship between the sensor and the body
coordinate system is determined, where rsv represents rota-
tion and csv represents translation. The relationship between
the angular velocityw and the speed of the body in the sensor
coordinate system is shown as follows [27, 28].

w =wvicsv: ð1Þ

According to the principle of acceleration measurement,
the measured value of acceleration is expressed as

a = �r − gð Þcsi: ð2Þ

�r is the acceleration of the origin s of the sensor coordi-
nate, and g is the acceleration of gravity. Since the value
expressed in Formula (2) is not the value in the body coordi-
nate system, it is necessary to convert the coordinates of the
sensor and the body.
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rsi = cTvir
sv + rvi: ð3Þ

By using Poisson’s formula to derive Formula (3) twice, it
can be concluded that

�rsi = cTvir
sv _wvi∧ + cTvir

svwvi∧wvi∧ +�rvi: ð4Þ

The right side of Formula (4) consists of the initial
parameters. Substituting Formula (4) into Formula (2) yields

a = csv �r − gð Þcsi + rsvwvi∧wvi∧ + rsv _wvi∧
� �

: ð5Þ

Formulas (1) and (5) are further expressed in matrix
form:

w

a

" #
=

wvicsv

csv �r − gð Þcsi + rsvwvi∧wvi∧ + rsv _wvi∧
� �

2
4

3
5: ð6Þ

2.2. LiDAR. LiDAR uses a laser pulse to realize the position
measurement of the sensor and describes the azimuth and
elevation angle by controlling the reflection angle of the laser
beam; additionally, the distance is measured by the flight
time. In LiDAR ranging methods, both direct and oblique
laser triangulations can achieve high precision and noncon-
tact measurement of the measured object, but the resolution
of the direct laser is not as high as that of the oblique laser.
The RPLIDAR LiDAR of Silan Technology used in this paper
adopts the oblique laser triangle ranging method with high
resolution. Its unique RPVision 3.0 laser ranging engine can
conduct up to 16,000 ranging actions per second with a range
radius of 25 meters and an angular resolution of up to 0.225°.
Driven by the motor, the ranging core will rotate clockwise,
so as to realize the 360° omnidirectional scanning ranging
detection of the surrounding environment. In each ranging
process, the RPLIDAR series laser radar will emit a modu-
lated infrared laser signal; the laser signal after irradiating
the reflective target object will be received by the visual acqui-
sition system and then through the embedded RPLIDAR
DSP (Digital Signal Processor) real-time solution. The dis-
tance between the irradiated target object and the LIDAR
including the current included angle information is output-
ted through the communication interface; the schematic
diagram is shown in Figure 1 [29].

In Figure 1, the coordinates of point P are expressed
as [30]

p = rps = s, y, z½ �T : ð7Þ

In the form of a matrix, the above equation can be
rewritten as

p = cT αð ÞcT εð Þ r, 0, 0½ �T : ð8Þ

In Formula (8), r is the distance, ε is the pitch angle,
α is the direction angle, and c is the rotation matrix along

the coordinate axis. To further express the relationship
between Formulas (7) and (8), the rotation is inverted.

ε

α

r

2
664
3
775 =

sin z/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p� �−1
tan y/xð Þ−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

p

2
66664

3
77775: ð9Þ

2.3. Depth Camera. Compared with a traditional camera,
a depth camera can measure the depths of pixels. The
Intel RealSense D435i depth camera is taken as an exam-
ple and is shown in Figure 2.

In Figure 2, the coordinates of point P (x, y, z) and the
models of the left and right cameras are defined as [31]

ul:r

vl:r

" #
= p

f u 0 cu

0 f v cv

0 0 1

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
K

1
z

x ± b
2

y

z

2
6664

3
7775: ð10Þ

In Formula (10), K is the camera parameter, f u is the
horizontal pixel focal length, and f v is the vertical focal
length. Since the parameter matrices of the two cameras
are the same, when the left camera obtains an observation
value, the corresponding observation value (vertical) of the
right camera can be obtained along the real line in
Figure 2. Therefore, Formula (10) can be further developed
to obtain the model of the whole camera as

ul

vl

ur

vr

2
666664

3
777775 =

f u 0 cu f u
b
2

0 f v cv 0

f u 0 cu f u
b
2

0 f v cv 0

2
666666664

3
777777775
1
z

x

y

z

1

2
666664

3
777775: ð11Þ
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Figure 1: LiDAR schematic diagram.
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In Formula (11), there is a pose relationship ðcl:r = 1Þ
between the left and right cameras, and vl = vr can be
obtained.

2.4. Sensor Information Fusion. The UAV used in this paper
is equipped with an IMU, LiDAR (an SLR A2), and a depth
camera (an Intel D435i). During the process of mapping,
multisensor information needs to be fused. The multisensor
information fusion technology makes the multilevel and
multispace information complementary and optimal combi-
nation processing of various sensors and finally produces the
consistent interpretation of the observation environment. In
this process, multisource data should be fully used for ratio-
nal control and use, and the ultimate goal of information
fusion is to extract more useful information through multi-
level and multiaspect combination of information based on
the separated observation information obtained by each
sensor. This process not only takes advantage of the cooper-
ative operation of multiple sensors but also comprehensively
processes the data of other information sources to improve
the intelligence of the whole sensor system. Hybrid fusion
framework has strong adaptability, including the advantages
of centralized fusion and distributed, and its stability is
strong. The structure of the hybrid fusion method is more
complex than that of the first two fusion methods. Although
it increases the cost of communication and computation, the
airborne computer in this paper is sufficient to bear the load
of computation force. Gaussian convolution is used for
image projection. The convolution is a filtering operation,
weighted by adding the center point to its neighborhood to
get a new value for the center point. After filtering, the pixel

value of the central point is replaced by the weighted average
of the pixel value of its surrounding points, making the
boundary more blurred (low-pass filtering). The function
image of the Gaussian kernel is a normally distributed bell-
shaped line. The closer the coordinates are to the center
point, the larger the value is, and vice versa. The closer you
are to the center, the more weight you have; the farther away
you are from the center, the less weight you have. According
to the point coordinates of the filter, the value calculated by
the Gaussian kernel is the value of the filter, which is the
corresponding weight of each point on the image. The final
processing result is obtained by rolling multiplication of
the filter and the original image. If obstacles are not identi-
fied by simultaneous interpretations under different sensors,
this situation may lead to serious differences or even errors
in information, and thus, the dependence on map generation
cannot be coupled.

In this paper, simultaneous interpretation maps are built
under different sensors because the data between different
sensors are not interdependent. Suppose that the maps
generated by the three sensors are represented as map3,
which can be decomposed by de Morgan’s law:

p mapð Þ = 1−
Y

1 − p map3
� �� �

: ð12Þ

3. Extended SLAM Based on
Probabilistic Sparsity

3.1. Probabilistic SLAM. When the UAV does not know its
position, it cannot obtain a map of its environment, and all
the data are concentrated on the measurement data and con-
trol data. From the perspective of probability, the SLAM
problem is divided into full SLAM and online SLAM. Online
SLAM only includes the variable estimation problem at time
t, and its algorithm is incremental; the corresponding con-
trol quantity and measurement value are discarded after
processing. In full SLAM, in addition to the pose of the
UAV, the path and the posterior map need to be calculated.
The probability at time t can be expressed as

p x1~t,m ∣ y1~t , u1~tð Þ: ð13Þ

In online SLAM, the real-time pose and map posterior
are considered, and the temporal probability is expressed as

p xt,m ∣ y1~t , u1~tð Þ: ð14Þ

In Formulas (13) and (14), xt represents the position and
attitude of the UAV at time t, respectively, m is a map, and
y1~t , u1~t denotes the measurement and control data. The
respective models of these two types of SLAM are shown
in Figure 3.

The difference between online SLAM and full SLAM
mainly lies in the different branches of the algorithm, espe-
cially in the application of practical scenarios. The online
SLAM problem is the integration of the past positions of
the full SLAM problem; the process of online SLAM can
be realized by integrating the past state of the full SLAM; this

Left
infrared
camera

Right
infrared
camera

Infrared
projector

RGB
camera

•P

L R

Binocular baseline

Figure 2: D435i depth camera model.
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integration presents a continuous state, which is carried out
in turn, as shown in the following formula:

p xt,m ∣ y1~t , u1~tð Þ =∬⋯
ð
p x1~t,m ∣ y1~t , u1~tð Þdx1dx2 ⋯ dxt−1:

ð15Þ

Among continuous and discrete problems, a continuous
problem includes the UAV pose and location in its map, and
the study object is represented by a beacon during the
feature representation process. When an object is detected,
the algorithm calculates the correlation between the detected
object and the UAV, exhibiting a discrete feature, namely,
the “0” or “1” state. Therefore, it is necessary to define a
consistency variable. Combining Formulas (13) and (14),
the online and full SLAM models with consistency variables
are as follows:

p x1~t,m, f1~t ∣ y1~t , u1~tð Þ,
p xt,m, f t ∣ y1~t , u1~tð Þ:

(
ð16Þ

In Formula (16), f t is the vector corresponding to the
consistency variable.

3.2. Sparse Extended Filtering. The Kalman filter in the linear
problem was proven to be the optimal estimation; it is a very
big limitation; only processing the linear model and measur-
ing model for precise estimates of the nonlinear scenario
does not achieve optimal estimates of the effect; in order to
be able to set up a linear environment, a false process model
for the constant velocity model is required, but in the actual
application, this is not the case. Both process models and
measurement models are nonlinear. Compared with the

extended Kalman filter, for the purpose of online operation
and high computational efficiency, the sparse extended filter
represents information with high efficiency, inherits UAV
poses and map posteriori, and maintains the sparse matrix
through nonzero elements. The calculation process of the
sparse extended filter includes measurement updates,
motion updates, sparsification, and estimation.

The information matrix Ω and vector ζ are updated to
complete the processing of the control information accord-
ing to the Kalman filter [32].

_μt = FT
x δ + _μt−1, ð17Þ

〠
t

= FT
x RtFx + Gt〠

t−1
GT
t : ð18Þ

In Formulas (17) and (18), Σ is the covariance matrix, Fx
is the UAV state vector matrix, Gt is the derivative of the
Jacobian matrix with respect to time t, and _μt represents
the estimated mean value at time t. The expressions of Gt ,
Fx, and δ are as follows:

Gt = FT
x△Fx + I, ð19Þ

Fx =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
666664

3
777775, ð20Þ
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Figure 3: (a) Online SLAM and (b) full SLAM.
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δ =

ωt△t

vt
ωt

sin μt−1,θ + ωt△t
� �

−
vt
ωt

sin μt−1,θ
� �

vt
ωt

cos μt−1,θ + ωt△t
� �

−
vt
ωt

cos μt−1,θ
� �

0
BBBBB@

1
CCCCCA: ð21Þ

The following can be deduced from Formulas (18) and
(19).

_Ω = FT
x RtFx + FT

x△Fx + I
� �T

Ωt−1 FT
x△Fx + I

� �h i−1
: ð22Þ

In Formula (22), the dimension of Ω is random and
implemented in finite time. Assuming that Ω is sparse,
the update efficiency is enhanced, and the following can
be defined:

Φt =Gt
−1Ωt G

T
t

� 	−1
: ð23Þ

According to Formula (22), it can be concluded that

_Ω = FT
x RtFx +Φ−1

t

� 	−1
: ð24Þ

From the inverse of the matrix, it is further obtained
that

_Ω = FT
x RtFx +Φ−1

t

� 	−1 = κtΦt : ð25Þ

It is assumed that Φt is calculated based on Ω in a
limited time frame; then, the calculation is feasible under
the condition of finite time. Using the matrix elements
(nonzero) of the UAV poses and map features, the calcu-
lation does not depend on the size of Ω. Considering the
inverse of Gt , G

−1
t can be calculated as follows:

G−1
t = I + FT

x I + Δð ÞFx + FT
x IFx

� �
= ψt + I: ð26Þ

In Formula (26), the corresponding map feature ele-
ment is nonzero.

The measurement update considers the filter update in
the flight process of the UAV, which is realized by an
extended Kalman filter.

Ω =HT
t Q

−1
t Ht + _Ωt ,

ξt =HT
t Q

−1
t
_ξt:

(
ð27Þ

In Formula (27), Qt is the noise covariance matrix.

3.3. Sparseness. Sparse extended filtering is necessary for
sparse Ω information matrices. Through sparse representa-
tion, the posterior distribution is in a sparse state. Based
on this, the relationship between the UAV positions and
the map features is eliminated, and the number of features

is further limited. To realize the above idea, two new connec-
tions are introduced. First, a feature is activated by an inac-
tive connection, and a new connection is introduced
between the UAV pose and the corresponding feature.
Second, UAV motion introduces two new connections
between active features to limit the number of active features
and to avoid having two nonsparse boundaries. At this time,
the sparsity is obtained by less active features.

In the process of sparse definition, the feature set is
divided into three (disjoint) subsets.

m =m0 +m1 +m2: ð28Þ

In Formula (28), m1 is the feature set of activity contin-
uation, m0 is the characteristic of the activity to be stimu-
lated, and m2 is inactive. The inactive state is continued in
the sparsification step; at the same time, the connection
between the UAV pose and m0 is deleted. Sparseness is
introduced into the posterior because m1 and m0 contain
all the current features, and the posterior can be character-
ized as follows:

p yt z1~t , u1~t , f1~tjð Þ
= p xt ,m0,m1,m2 z1~t , u1~t , f1~tj� �
= p m0,m1,m2 z1~t , u1~t , f1~tj� �

p xt ,m0,m1,m2 z1~t , u1~t , f1~tj� �
= p m0,m1,m2 = 0 z1~t , u1~t , f1~tj� �

p xt ,m0,m1,m2 z1~t , u1~t , f1~tj� �
:

ð29Þ

In Formula (29), if m0 and m1 are known, xt does not
depend on the inactive feature m2, so m2 can be taken as a
random value. Using the general term sparsification proto-
col, reducing the dependence on m0, and taking m2 = 0,

_p xt ,m0,m1,m2 z1~t , u1~t , f1~tj� �
= p m1,m2 = 0 z1~t , u1~t , f1~tj� �

p xt ,m0,m1,m2 z1~t , u1~t , f1~tj� �
= p xt ,m1, m2 = 0, z1~t , u1~t , f1~t



� �
p m1 m2 = 0, z1~t , u1~t , f1~tjð Þ p m0,m1,m2 z1~t , u1~t , f1~tj� �

:

ð30Þ

4. Probability Membrane System-Based SLAM

4.1. Probabilistic Membrane System. In a probabilistic mem-
brane system, rules are executed in a probabilistic mode, so
the system can process data quickly. Combined with the
powerful distributed and parallel characteristics of mem-
brane computing, an independent and collaborative mem-
brane system for data processing is constructed. The
modeling principle and process for UAVs in coal mines
are shown in Figure 4 by using a probabilistic membrane
system.

To determine the real-time position of a UAV, the mem-
brane controller receives the airborne sensor data ðx, y, θÞT
and the output position update data ðx′, y′, θ′ÞT at each
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cycle during the beginning of the execution process, and a
probabilistic membrane system with a degree of 3 is estab-
lished.

Y
= M, μ,w1,w2,w3, R, crf gr∈R
� �

: ð31Þ

Formula (31) has the following characteristics:

(1) M = fxij, yij, θijErr : i, j ∈ ½1, 2�g, where M is the
character set element contained in the probabilistic
membrane system

(2) μ = ½ ½ �2 3�1, where μ is the membrane mechanism of
the probabilistic membrane system of the UAV

(3) w1 = pðxt ∣ μt , xt−1Þ, where w1 represents the solution
probability density

(4) w2 = pðxt ′ ∣ μt ′, xt−1 ′Þ, where w2 represents the
probability density after noise interference

(5) w3 = pðxtˇ ∣ μtˇ, xt−1Þ, where w3 represents the ideal
probability density

(6) R is the rule set, and energy conservation is main-
tained during the transfer process

(7) cr is the probability of the evolution of objects based
on R rules

4.2. Probabilistic Membrane Calculation Model. According
to Section 3.2 of this paper, the state variable submatrix is
extracted by calculating the matrix for all excluded variables
that obey the distribution pðxt ,m0,m1 ∣m2 = 0Þ.

Ωt′= Fx,m,1,m0FT
x,m,1 ,m0Ωt Fx,m,1,m0FT

x,m,1 ,m0 : ð32Þ

According to the matrix lemma, the matrix information
of pðm1 ∣m2, z1~t , u1~t , f1~tÞ and pðxt ,m0,m1,m2 ∣ z1~t , u1~t ,
f1~tÞ are defined as follows:

Ωt′′=Ωt′−Ωt′Fm0 Fm0Ωt′FT
m0

� �−1
Ωt′FT

m0 ,

Ωt′′′=Ωt′−Ωt′Fx,m0 Fx,m0Ωt′FT
x,m0

� �−1
Ωt′FT

x,m0 :

8>><
>>: ð33Þ

In Formula (33), all states are projected into a projection
matrix containing variable quantum set states. Similarly,
pðm0,m1,m2 ∣ z1~t , u1~t , f1~tÞ can be transformed into a
matrix.

Ωt′′=Ωt′−Ωt′Fx FxΩt′FT
x

� �−1
Ωt′FT

x : ð34Þ

The combination of Formulas (32) and (34) can be
obtained:

_Ωt =Ωt′+Ωt′′+Ωt′′′=Ωt′−Ωt′Fm0 Fm0Ωt′FT
m0

� �−1
Ωt′FT

m0 +Ωt′

−Ωt′Fx,m0 Fx,m0Ωt′FT
x,m0

� �−1
Ωt′FT

x,m0 +Ωt′

−Ωt′Fx FxΩt′FT
x

� �−1
Ωt′FT

x ,

ð35Þ

_ξt = μt
_Ωt = μt Ωt′+Ωt′′+Ωt′′′

� �
: ð36Þ

Due to the limited cycle time of the probabilistic mem-
brane algorithm, it does not depend on the scale of the
map itself. At the same time, control is added to the cal-
culation estimation. Through the efficient calculation of
features, the UAV position and feature vectors are repre-
sented during the process of building the map and updat-
ing the elements in the matrix (vector). The P-Lingua file
framework for the probabilistic membrane calculation
model is shown in Figure 5.

4.3. Map Consistency Fusion. Ωt and ξt are inputted accord-
ing to the UAV posterior. The displacement d and the angle
vector α determine the current position in the coordinate

Inertial navigation
calculation

(IMU)

Environmental
feature extraction

(depth camera)

Environmental
feature extraction

(laser radar)

The second
membrane

The third cell
membrane

The first cell
membrane
data fusion
threshold is

updated

Map
information

Probabilistic membrane system

Dynamic threshold

Dynamic threshold

Figure 4: Modeling process of the probabilistic membrane system.
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system. At the same time, the displacement and vector are
mapped to the body coordinate system. Based on the rota-
tion and translation, the pose and map characteristics of
the UAV are expressed as follows [33, 34]:

xt

yt

θt

2
664

3
775 =

xit

yit

θit

0
BB@

1
CCA

0 sin α cos α
0 cos α inα
1 0 1

0
BB@

1
CCA +

dit

dit

αit

0
BB@

1
CCA, ð37Þ

mt =
mi

t

mi
t

mi
t

0
BB@

1
CCA

0 sin α cos α
0 cos α sinα
1 0 1

0
BB@

1
CCA +

dit

dit

0

0
BB@

1
CCA: ð38Þ

Formulas (37) and (38) describe the rotation and trans-
lation of matrices and vectors, respectively. The next step
gives the proofs of these two formulas. ℝ and δ are defined
as

ℝ =
0 sin α cos α
0 cos α sinα
1 0 1

2
664

3
775, ð39Þ

δ = dx dy α
� 	T

: ð40Þ

The state vector derivation for Formulas (39) and (40)
can be obtained as follows:

yt =ℝyit + Δ: ð41Þ

According to the similarity principle of spatial coordi-
nate transformation, the posterior model of the UAV with
respect to time is defined by translation and rotation, the
information matrix, and the vector as follows:

@ model<probabilistic>
Def init_membrane_structure()
 {
@Mu=[[]’ 2[]’ 3[]’ 4[]’ 5]’ 1;

 }
Def init_multisets()
 {
@ ms(1) +=x, y, z, 0 ;
@ ms(2)=Measure update;
@ ms(3)=Active update;
@ ms(4)=Map update;

 }
Def init_rules()
 {

Evolutionary rule-sets;
 }
Def main()
 {
Call init_membrane_structure();
Call init_multisets();
Call init_rules();

 }

Figure 5: P-Lingua file frame for the membrane computing model.

1: Δ = dx dy α
� 	T

:

2: ℝ =
0 sin α cos α
0 cos α sinα
1 0 1

2
664

3
775:

3: Ω =ℝTΩiℝ:

4: ξ = ðξi − ΔΩiÞℝ:

5:Ω =
0 Ω1

Ω3 0

 !
:

6: ξ =
ξ1

ξ3

 !
:

7: C; for any eigenvector in the map
8: Ω = FFT +Ω:
9: Return ξ, Ω

Algorithm 1: Map fusion.

Table 1: Main hardware information parameters of the
experimental platform.

Platform Parameter information

Software 1 P-Lingua virtual machine

Software 2 MATLAB simulation

Helicopter stand JCZK450L

Development board NVIDIA Jetson TX2

Inertial measurement unit MTi-8ATG6

Depth camera Intel RealSense D435i

Motor HF500

Figure 6: The experimental scene of coal mine roadway.
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p y1~3 z11~t , u11~t


� �

= η exp y1~3ξ1~3 −
1
2 y

1~3,TΩ1~3y1~3
� �

= η exp ξ1~3 ℝyit + Δ
� �

−
1
2 ℝyit + Δ
� �

Ω1~3 ℝyit + Δ
� �� �

= η exp yi,Tt Ω1~3Δ + yi,Tt ℝTξ1~3 −
1
2 ξ

1~3ℝTyi,Tt

� �
:

ð42Þ

Because ℝT =ℝ‐1, the following exists for ℝ:

Ω1~3 =ℝTΩ1ℝ,
ξ1~3 =ℝ ξ −Ω1~3Δ

� �
:

(
ð43Þ

There is a problem of data equivalence in the process of
data fusion. By adding constraints to further control and
map the feature penalty matrix C, the larger the value of C
is, the stronger the constraint. The fusion algorithm is as
follows in Algorithm 1.

The implementation process of Algorithm 1 is described.
The relative pose between the UAV coordinate systems is

determined by dx dy α
� 	T , which includes the local rota-

tion and translation of the information matrix and vector
while maintaining the sparsity of the algorithm. Map fusion
is realized by constructing a joint posterior map, which con-
tains the corresponding features in different maps. For the
same two features, a connection between the two features
in the information matrix is added.

5. Experimental Verification

To verify the proposed SLAM algorithm, experiments are
performed, and the experimental software and hardware
platform and parameters are shown in Table 1.

The coal mine roadway shown in Figure 6 is selected
for the experiments. The roadway is 200 meters long, 3.5
meters wide, and 4 meters high. The UAV flies from point
A along the green line to point B. The methods based on
“LiDAR,” “LiDAR+IMU,” and “LiDAR+IMU+vision (depth
camera)” are used for positioning and mapping experiments,
respectively. The mapping effects are shown in Figures 7–10.
The attitude error and trajectory error are shown in
Figures 11–13.

By comparing the experimental results in Figures 7–9, it
can be seen that when using only LiDAR for mapping, the
mapping is more accurate in a small area, but in a long-dis-
tance, large-scale (space) area, the mapping accuracy
decreases, and the precision and shape distance error are
large. In the case of the “LiDAR+IMU” mapping, due to
the auxiliary role of the IMU, the mapping accuracy and
effect are significantly improved. However, as the UAV flies
farther away, the cumulative error gradually increases. As
shown in Figure 7, for the terminal B area, the corridor arc
area, and the square area overlap, mapping errors occur. In
the “LiDAR+IMU+vision (depth camera)” method, a depth
camera is added to provide image feature information. Even

in the long-distance scene, the mapping effect is very stable;
as shown in Figure 9, the end B area, arc area, and square
area are more accurate. The experimental results in
Figures 7–9 show that the effect sensor fusion with three
kinds of sensors in the same scene is obviously better than
that of a single sensor or a two-sensor combination. The

B A

Figure 7: Map effect based on LiDAR.

B A

Figure 8: Map effect based on LiDAR+IMU.

B
A

Figure 9: Map effect based on LiDAR+IMU+depth camera.

B A

Figure 10: Mapping of LiDAR+IMU+camera based on PMC.
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mapping effect of “LiDAR+IMU+vision (depth camera)”
developed based on PMC in this chapter is shown in
Figure 10. Compared with that in Figure 9, the mapping
effect obtained based on the PMC is obvious, especially in
the red box marked in the figure. Furthermore, the simulta-
neous interpretation errors of the LiDAR+IMU+vision
(depth camera) approach based on PMC are compared with
those of Figures 11, 12, and 13. The experimental results
show that the SLAM effect of the fusion approach with three
sensors based on PMC is better than that of one sensor or
any combination of two sensors in the long and narrow
roadway that simulates the complex environment of a coal
mine.

6. Conclusion

Based on the analysis of LiDAR, IMU, and depth camera
sensor-based mathematical models, this paper designs a
probabilistic membrane system model and membrane algo-
rithm. In the same tunnel application simulation scenario,
a theoretical analysis and an experiment are combined.
The method is compared with the single-, two-, and three-
sensor fusion mapping methods, and it is verified that
PMC has a good effect on the mapping performance of
underground UAVs. The research results of this paper will
provide good theoretical support for engineering practice
with respect to disaster prevention and control during the
process of precise coal mining in the future.

As an expansion of the tissue membrane system model,
this paper puts forward the calculation model that each
membrane has the same probability of membrane structures
and evolution rules of operation, in the form of probability
in data operation process of randomness and uncertainty,
including the process of data fusion for collaboration.
Between cells may lead to mapping of the fusion accuracy
and computational efficiency decline. Next, to improve the
research of this paper, we seek a better membrane comput-
ing model and algorithm for mapping effect optimization
that will pave the way for the study of patrol UAV path plan-
ning in coal mines.

Data Availability

The experimental data used to support the findings of this
study are included within the article.
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