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The specific objective of this study is to propose a low-cost indoor navigation framework with nonbasic equipment by combining
inertial sensors and indoor map messages. The proposed pedestrian navigation framework consists of a lower filter and an upper
filter. In the lower filter which is designed based on the Kalman filter, the adaptive zero velocity detection algorithm is used to
detect the zero velocity interval at different motion speeds, and then, zero velocity update is applied to rectify the inertial
navigation solutions’ errors. In the upper filter which is designed based on the nonrecursive Bayesian filter, the map matching
method with nonrecursive Bayesian filter is adopted to fuse the map prior information and the lower filter estimation results
to correct the errors of navigation. The position estimation presented in this study achieves an average position error of 0.53m
compared to the ZUPT-aided inertial navigation system (INS) method under different motion states. The proposed pedestrian
navigation algorithm achieves an average position error of 0.54m as compared to the ZUPT-aided INS method among the
different tested distances. The proposed framework simplifies the indoor positioning system under multiple motion speed
conditions by ensuring the accuracy and stability property. The effectiveness and accuracy of the proposed framework are
experimentally verified in various real-world scenarios.

1. Introduction

In outdoor positioning systems, the preferred method for
localization is the Global Positioning System (GPS) [1, 2].
The GPS is the most widely used positioning technology in
the world, with the advantages of high accuracy, stability,
reliability, and continuous provision of output 3D position.
However, the result of the GPS positioning becomes very
unreliable in the GPS-degraded enviroments. The main dis-
advantage of the GPS is that it almost loses its positioning
function in areas where the satellite signal strength will be
weakened in obscured environments such as urban build-
ings, mountains, forests, or underground buildings. Thus,
the use of the GPS equipment for positioning is usually
effective exclusively in outdoor environments. Studies have
shown that over 80% of the human life will be spent indoors,

so indoor positioning technology has great research value
when the GPS is not available.

Nowadays, the demand for indoor navigation-related
services has been growing dramatically, such as navigation
to shops and intelligent spaces. From the sensors used for
localization point of view, indoor positioning technologies
can be separated into two categories: building dependent
or building independent. The first category includes Wi-Fi
[3], ultrawideband (UWB) [4, 5], Bluetooth [6, 7], radio fre-
quency identification (RFID) [8, 9], and visible light com-
munication (VLC) [10, 11]. Building-dependent absolute
positioning methods are all effective in locating consumers
and providing permanent solutions. Nevertheless, these
location methods usually demand large resources to set up
the indoor positioning systems. The second category, which
does not require any special hardware, is infrastructure-
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independent indoor positioning technologies. The pedes-
trian dead reckoning [12–14] and image-based technologies
[15, 16] belong in this class. Within these technologies, dead
rocking based on the foot-mounted inertial measurement
unit (IMU) is the favoured indoor positioning technology
[17–19]. In dead reckoning, the user’s position is estimated
by inertial measurement unit (IMU) sensor data. The indoor
positioning accuracy of dead reckoning based on a foot-
mounted inertial measurement unit (IMU) technology
depends on eliminating the accumulated errors and drift
errors.

The performance of zero velocity update algorithm
depends on zero velocity detection algorithm [20–22]. The
conventional zero velocity detection detects the zero velocity
state by comparing the inertial data with the precalibrated
fixed thresholds [23, 24]. Since foot movements are modifi-
able, fixed thresholds fail to accommodate different move-
ments. In this paper, we adopt the Bayesian approach to
the adaptive thresholding algorithm to solve the problem,
which often fails at high dynamic motions [25]. Nguyen
et al. proposed a Range-Focused Fusion of Camera-IMU-
UWB method to achieve accurate and drift-reduced localiza-
tion [26]. Zhu et al. proposed Wi-Fi/Bluetooth and PDR
fusion positioning, which solves the problem that the PDR
cumulative error is large [27]. Lee et al. used UWB position-
ing to enhance the performance of PDR [28]. However,
although these methods can significantly improve the accu-
racy of pedestrian inertial navigation, it is expensive to build
these navigation systems, and they require a lot of time and
money to install, maintain, and update. The map matching
method, which is an economical and efficient method, is
used to correct heading errors. The particle filter-based
map matching method can significantly improve the local-
ization accuracy but also has the problem of heavy computa-
tional burden [29]. Thus, we adopt the nonrecursive
Bayesian map-matching method [30, 31] to avoid the com-
putational burden. In this context, this paper proposes an
autonomous indoor positioning method by fusing indoor
map information and IMU data. Our main contribution
can be summarized as follows:

(i) Firstly, the algorithm is based on IMU data and
indoor map information fusion positioning naviga-
tion, which does not require prediction volume and
structure installation, greatly decreasing the time
and financial expense of indoor navigation systems

(ii) Secondly, the innovative combination of inertial
navigation based on adaptive threshold detection
and map matching, which makes full use of indoor
map information and IMU sensor information,
improves the accuracy of navigation calculation to
a certain extent

(iii) At the end of the work, the effectiveness of the algo-
rithm is verified by experimental results in different
scenarios

The cascade structure algorithm is briefly introduced in
Section 2, and then, the lower layer Kalman filter and the

upper layer nonrecursive Bayesian filter are discussed sepa-
rately in this section as well. The proposed method is exper-
imentally validated in Section 3. The original method is
analysed by field tests and conclusions are given in Sections
4 and 5, respectively.

2. Materials and Methods

The proposed pedestrian navigation system uses a map
matching algorithm with ZUPT-aided inertial navigation
systems to enhance the position accuracy. The zero velocity
update (ZUPT) method is used to decrease the accumulated
error for the inertial navigation system. Then, the map
matching method is used to improve the heading for the
navigation solution from the ZUPT-aided inertial navigation
system (INS). The proposed pedestrian navigation system is
shown in Figure 1.

2.1. Cascade Structure Algorithm. This study uses a nonre-
cursive Bayesian filter to combine indoor map information
with inertial sensor data. In order to make full use of the
map prior information and overcome the implementation
problems of particle filter (PF), this study proposes a Kal-
man filter (KF) with nonrecursive Bayesian filter cascaded
inertial navigation algorithm (the KF with nonrecursive
PF-cascaded INS) consisting of a two-layer structure, as
show in Figure 2.

In the lower filter, the zero velocity update algorithm is
used to correct the errors of inertial solution when the zero
velocity moment was detected by the adaptive zero velocity
detection algorithm. Therefore, the better INS solving results
were provided to the upper nonrecursive Bayesian filter. The
navigation results of the lower filter are applied to update the
nonlinear state of the upper filter. The map message is
adopted as an independent indicator to adjust the navigation
results of the lower filter, and the structure of the relation-
ship between the two layers of filters is illustrated in
Figure 2. The position, velocity, and attitude information
of pedestrians are selected to be the state vectors in the lower
filter. For the upper nonrecursive Bayesian filter, taking into
account the computer burden, the state vector has only two-
dimensional position information.

2.2. Lower Kalman Filter. In the lower filter, the indoor nav-
igation is a foot-mounted INS/ZUPT system, which consists
of attitude resolution, zero velocity detection, and zero
velocity update.

2.2.1. Attitude Resolution. To calculate the current position,
we first convert the 3D acceleration and 3D gyroscope data
from the sensor frame to the world frame, as shown in
Figure 3.

The input data of the pedestrian navigation system are
acceleration and angular velocity expressed in time series.
Firstly, the rotation matrix of the human body to the naviga-
tion coordinate system is calculated by the gyroscope data.
The role of the rotation matrix is to convert the sensor nav-
igation frame into the world navigation frame. The rotation
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matrix of the pedestrian navigation system is

Cn
b =

cos θ cos ψ sin γ sin θ cos ψ − cos γ sin ψ cos γ sin θ cos ψ + sin γ sin ψ

cos θ sin ψ sin γ sin θ sin ψ + cos γ cos cos γ sin θ sin ψ − sin γ cos ψ
−sin θ sin γ cos θ cos γ cos θ

2
664

3
775,

ð1Þ

where γ, θ, and ψ are the roll, pitch, and yaw, respectively.
While walking, the IMU mounted on the foot is con-

stantly changing its attitude with the movement of the foot,
so the rotation matrix of the system is constantly updated.
The update equation of the rotation matrix is

Cn
b tð Þ = Cn

b t − Δtð Þ ⋅ 2I + Ω½ � × Δt
2I − Ω½ � × Δt

, ð2Þ

and the bias-compensated gyro rate vector is

Ω½ � =
0 −ωz tð Þ ωy tð Þ

ωz tð Þ 0 −ωx tð Þ
−ωy tð Þ ωx tð Þ 0

2
664

3
775, ð3Þ
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Figure 1: Pedestrian navigation system.
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where Δt denotes IMU sample time and I denotes the unit
matrix.

Next, the gravitational force of the earth is removed to
obtain the acceleration of the navigation system.

vt = vt−1 + Cn
bat−1 − 0 0g½ �T

� �
Δt, ð4Þ

where vt denotes the velocity, a denotes acceleration, and g
is the earth’s gravitational acceleration.

Finally, the displacement can be obtained by integrating
the velocity.

pt = pt−1 + vt−1Δt: ð5Þ

The velocity and position errors at this point are large
due to the lack of any correction and calibration. Therefore,
this paper adopts the zero velocity update algorithm to cor-
rect the drift error of the pedestrian navigation system. The
zero velocity detection, which determines whether an IMU is
stationary, is the most critical part of the zero velocity
update algorithm.

2.2.2. Zero Velocity Detection. During a walking gait cycle,
the pedestrian’s foot will completely touch the ground; this
phase is the stationary phase, and the rest of the phases are
called moving phases, as shown in Figure 4.

Let the acceleration and the angular rate measurements
from the IMU be the vector.

yt =
yat

yωt

" #
: ð6Þ

Skog et al. proposed the zero velocity detection algo-
rithms based on the Likelihood Ratio Test (LRT) framework
[23, 25]. The goal of the zero velocity detector is to deter-
mine whether the IMU is moving or stationary, during a
time epoch consisting of t ∈N observation between the time

instants t and t +W − 1.

Zt ≜ ykf gt+N−1
k=t : ð7Þ

At the sampling example k, yk is the inertial
measurements.

The problem of detecting zero velocity intervals based on
the walking gait of pedestrians can be considered to be a
binary classification task.

H0 : IMU ismoving,
H1 : IMU is stationary:

ð8Þ

The stance hypothesis optimal detection (SHOE) detec-
tor is

L ztð Þ = exp −
1

2πσ2
að Þ 〠

k∈Ωn

yak − g
�yat
�yatk k

����
����
2

 !
⋅ exp −

1
2πσ2ωð Þ 〠

k∈Ωn

yωkk k2
 !

> γ,

ð9Þ

where σa and σω denote the measurement noise of accelera-
tion and gyroscope, respectively. And γ is the adaptive
threshold.

The adaptive threshold is given by

log γk = c1 + c2Δtk + c3ξk, ð10Þ

where c1 = log α, c2 = −θ, c3 = 0, and ξk = v̂Tk S
−1
k v̂k, where α

and θ are design parameters and the time since the last inci-
dence of zero velocity is Δtk, and where Sk is the velocity
error covariance and v̂k denotes the velocity estimate at sam-
pling instant k.

In the absence of an informative prior, the proposed
detection framework is less sensitive to parameter tuning
than a conventional detector with a fixed threshold, despite

1 2

Stationary Moving

3 4 5 6

Figure 4: Pedestrian gait cycle.
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the fact that it includes design parameters. While

log L ztð Þ > log γk, ð11Þ

the pedestrian is stationary; otherwise, they are in moving.

2.2.3. Zero Velocity Update. The zero velocity update algo-
rithm can effectively limit the effect of the integral cumula-
tive error of inertial navigation results. Firstly, the zero
velocity detection algorithm detects the zero velocity time
interval. Then, the zero velocity update algorithm based on
the extended Kalman filter corrects the position and velocity
error of the pedestrian navigation system during the zero
velocity interval.

The error state vector of the zero velocity update algo-
rithm based on the extended Kalman filter at time k is

δx = δφ, δp, δv½ �, ð12Þ

where δφ, δp, and δv denote the attitude error, position
error, and velocity error, respectively.

In the pedestrian inertial navigation system, the state
transfer equation is

xk = Fkxk−1 +wk−1, ð13Þ

where Fk is the state transfer matrix and wk is the process
noise vector.

During the stationary phase, the error state vector is
updated by the measured value zk = vk∣k−1 − ½0 0 0� updated
at the zero velocity phase; the expression of error state vector
is

xk∣k = xk∣k−1 + K zk −Hkxk∣k−1
� �

: ð14Þ

The Kalman gain is computed as

Kk = Pk∣k−1H
T HPk∣k−1H

T + R
� �−1

: ð15Þ

The covariance matrix of the system estimation error
state vector xk∣k is

x̂k∣k = Kk ⋅ vk∣k−1: ð16Þ

The attitude update is done by combining the pose error
from moment k − 1 to moment k with the predicted pose
matrix.

Cn
b k∣k =

2I + δφ½ �
2I − δφ½ � ⋅ C

n
b k∣k−1, ð17Þ

where ½δφ� denotes the skew-symmetric matrix of the atti-
tude error vector δφ.

The position and velocity are updated by the following
two equations:

vk∣k = vk∣k−1 − δxk 7 : 9ð Þ = vk∣k−1 − δvk,
pk∣k = pk∣k−1 − δxk 4 : 6ð Þ = pk∣k−1 − δvk:

ð18Þ

In this paper, a zero velocity update algorithm based on

Figure 5: Building floor plan and the generated rasterized map.

Table 1: This is the specification of the NGIMU.

Sensors Range Rate

Gyroscope 2000 deg/s 400Hz

Accelerometer 16 g 400Hz

Magnetometer 1300 μT 20Hz

Figure 6: The foot-mounted NGIMU with housing.
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the Kalman filter is used, which can effectively suppress the
integral cumulative error inherent to inertial sensors. How-
ever, the zero velocity update algorithm cannot correct the
heading. Therefore, this paper proposes a method based on
the cascade filter to further improve the accuracy of the nav-

igation system by correcting the heading error through a
map matching method with nonreductive Bayesian filter.

2.3. Upper Nonrecursive Bayesian Filter. The lower filter uses
ZUPT-aided INS to estimate the position of pedestrians. The

(a) Experimental real path
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Figure 7: The KF with nonrecursive PF-cascaded INS results for different velocity conditions.
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ZUPT-aided INS calculates the position of the pedestrian on
the two-dimensional plane at each step. The step detection
of pedestrian is calculated by the adaptive threshold zero
velocity detection method. The pedestrian is considered hav-
ing taken a step when the foot is detected by the zero velocity
detection algorithm to be at stationary state during the walk-
ing cycle. The state propagation of position is more applica-
ble to the upper filter. Thus, the state propagation equation
for particle filter is

Xk = pk =
xstep

ystep

" #
 step = 1, 2, 3⋯N , ð19Þ

where X ∈ R2 denotes the position of the pedestrian.
The particle filter-based map matching consists of three

steps. Firstly, step 1 is to generate the particles scattered
around the next possible step by equation (19). Secondly,
step 2 is the weighting of particles by considering the wall
boundaries in the measurement update. Finally, step 3 is
particle resampling, thus preventing particle degradation.
The nonrecursive Bayesian map matching algorithm is to
transform a plan to map into a location likelihood heat
map for multiple purposes. The desired rasterized map will
implement a completely different Bayesian map-filter
design, replacing steps 1-2 of the particle filter map match-
ing and breaking the recursive loop [29].

The score of the heat map drops to zero when the
boundary of the wall begins. These give rise to a computa-
tionally efficient filter design that does not require heavy
Monte Carlo simulations and explicit wall crossing checks
for each particle. So, the generated rasterized map implicitly
simulates the wall constraint. As shown in Figure 5, the blue
part is the score of the heat map down to zero, and the yel-
low part is used as a constant spatial prior for all pedestrian
position estimates. The rasterized map is denoted by pðXk
∣ RMÞ where RM stands for the rasterized map.

The time update of the prior probability density function
(pdf) generated at the current time is obtained through the
Chapman-Kolmogorov equation.

p Xk ∣ Zk−1ð Þ =
ð
p Xk ∣ Xk−1ð Þp Xk−1 ∣ Zk−1ð ÞdXk−1, ð20Þ

where pðXk−1 ∣ Zk−1Þ is the posterior pdf for X at the previ-
ous time step, and pðXk ∣ Xk−1Þ is the state transition proba-
bility density function. The likelihood term pðZk ∣ XkÞ is
used to acquire the posterior pdf of nonrecursive Bayesian

at the current time k as follows:

p Xk ∣ Zkð Þ∝ p Zk ∣ Xxð Þp Xk ∣ RMð Þ: ð21Þ

3. Experimental Results

The effectiveness and feasibility of the proposed algorithm
was tested through the conduct of ground experiments. In
this paper, we used the NGIMU from x-io Technologies
Limited as our inertial guidance sensor device with the spec-
ifications shown in Table 1. We used the NGIMU with hous-
ing, which measures 56 × 39 × 18mm, and it weighs 46 g. It
is fixed to the foot with a stretching strap, as shown in
Figure 6.

Our experimental site is a 2m wide indoor corridor, as
illustrated in Figure 7(a). We evaluated our system in differ-
ent walking velocity conditions. The experimenter installed
NGIMU on the foot as shown in Figure 6. The point of the
square blue in Figure 7(a) is the starting point, and the
experimenter walks a circle from the starting point along
the red arrow back to the starting point, and the distance
walked was approximately 215.94m. The average walking
velocity of the three experiments were 1.1m/s, 2.1m/s, and
3.1m/s. The KF with nonrecursive PF-cascaded INS results
at 1.1m/s, 2.1m/s, and 3.1m/s are shown in Figures 7(b)–
7(d), respectively. The red trajectories are KF with nonrecur-
sive PF-cascaded INS results, and the blue trajectories are
the ZUPT-aided INS results in Figures 7(b)–7(d).

All tests start and end at the same position. Therefore,
the position error which is evaluated by the difference
between the initial and final position estimates is an efficient
and concise method [32]. The position errors under different
speed conditions are shown in Table 2. The average position
errors of ZUPT-aided INS and KF with nonrecursive PF-
cascaded INS at 1.1m/s, 2.1m/s, and 3.1m/s are 4.47m
and 0.54m, respectively. Under different velocity conditions,
the position error of KF with nonrecursive PF-cascaded INS
is much smaller than that of ZUPT-aided INS.

The KF with nonrecursive PF-cascaded INS was tested
for different walking distances to further verify the stability
of this navigation system. The test 1 walking path is shown
in Figure 7(a), walking distance is 215.94m, and walking
average speed is 1.1m/s. The walking path of test 2 is one
more lap on the planned path of test 1, the walking distance
is about 431.88m, and the average speed of walking is
1.20m/s. The walking path of test 3 is two more laps on
the path of test 1, the walking distance is about 647.82m,
and the average speed of walking is 0.93m/s. The walking
path of test 4 is three more laps on the path of test 1, the
walking distance is about 867.76m, and the average speed
of walking is 0.93m/s. The simulation results of the four test
experiments are shown in Figures 8(a)–8(d).

The position error results for different distance condi-
tions are shown in Table 3. The average position error of
the four different distance experiments of ZUPT-aided INS
and KF with nonrecursive PF-cascaded INS are 4.57m and
0.53m, respectively. In different distance experiments,
ZUPT-aided INS and KF with nonrecursive PF-cascaded
INS significantly outperforms ZUPT-aided INS. In addition,

Table 2: Comparison of position errors.

Velocity (m/s) Movement
End-to-end error (m)

ZUPT-aided INS Cascade filter

1.1 Walk 3.91 0.66

2.1 Jogging 2.53 0.45

3.1 Run 6.99 0.51

Average error 4.47 0.54
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Figure 8: Continued.
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the mean position errors of the KF with nonrecursive PF-
cascaded INS could be controlled within 1m.

In order to evaluate the performance of the proposed
algorithm, we present the performance of complementary
filter [33], gradient descent algorithm [34], and extended
Kalman filtering [35] in Table 4. The position error results
using the four different methods are shown in Table 4. At
the walking distance of about 420m, the cascade filtering
algorithm results of walking trajectory showed the smallest
end-to-end (starting point to ending point) error compared
to the CF, GDA, and EKF algorithm results of the walking
trajectory. It can be concluded that the cascade filtering algo-
rithm can effectively decrease the end-to-end errors.

4. Discussion

The NGIMU was used to acquire IMU data in the experi-
ment part, and the given algorithm did not require anything
in particular for the MEMS sensor. When fusing indoor map
information with an inertial navigation system, the esti-
mated position accuracy is substantially improved because
the map information can strongly constrain the system’s
heading. In addition, the mean position errors of the KF
with nonrecursive PF-cascaded INS could be controlled
within 1m. As shown in Table 2, with the speed increase
of walking, the position error of the system using the adap-

tive threshold method is kept within 1m, which fully meets
the navigation design requirements. This system does not
need to conduct tedious threshold range determination
experiments, which simplifies the steps of the navigation
system.

The average position error of this system is 0.54m at
1.1m/s, 2.1m/s, and 3.1m/s motion speed, which can show
that this system can still maintain high accuracy navigation
under different motion speed conditions. In addition,
increasing the test distance, the average position error of this
system is 0.53m, and this system can still maintain a rela-
tively better navigation effect in the case of long walking dis-
tance. As shown in Table 4, compared with the results of the
CF, GDA, and EKF algorithms, the proposed algorithm in
this paper has the smallest position error. The proposed
algorithm implies continuous location of the pedestrian by
quantification of human lower limb movements. In addition,
the cascade filter-based inertial navigation system has a vari-
ety of commercial applications, such as security applications,
medical monitoring, and smart spaces.

5. Conclusions

This study proposes a completely noninfrastructure-based
and low-cost indoor navigation system that is both cheaper
and faster than existing methods. Only indoor map informa-
tion and NGIMU sensors are used in this algorithm. Since
just indoor map information and inertial guidance sensors
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Figure 8: The results of the KF with nonrecursive PF-cascaded INS for different distance conditions.

Table 3: Comparison of position errors.

Distance (m)
End-to-end error (m)

ZUPT-aided INS Cascade filter

215.94 3.91 0.66

431.88 1.19 0.59

647.82 6.19 0.62

867.76 7.01 0.27

Average error 4.57 0.53

Table 4: Position error results using four different methods.

Method Distance (m) End-to-end error (m) Error (%)

Cascade filter 431.88 1.19 0.27

CF 423.83 1.96 0.46

GDA 424.72 3.48 0.82

EKF 424.19 2.59 0.61
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are employed in this method, no presurvey, preinstallation,
or extra supporting sensors are required. Theory analysis
and experiment results show that the proposed KF with
nonrecursive PF-cascaded INS provides better performance
than the ZUPT-aided INS significantly and improves the
accessibility, applicability, and usability of the interior navi-
gation system for users.

Data Availability
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