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Sensing and predicting occupancy in buildings is an important task that can lead to significant improvements in both energy
efficiency and occupant comfort. Rich data streams are now available that allow for machine learning-based algorithm
implementation of direct and indirect occupancy estimation. We evaluate ensemble models, namely, random forests, on data
collected from an 8 × 8 PIR matrix thermopile sensor with the dual goal of predicting individual cell temperature values and
subsequently detecting the occupancy status. Evaluation of the method is based on a real case study deployed in an IT Hub in
Bucharest, for which we have collected over three weeks of ground data, analyzed, and used it in order to predict occupancy in
a room. Results show a 2–4% mean absolute percentage error for the temperature prediction and >99% accuracy for a three-
class model to detect human presence. The resulting outputs can be used by predictive building control models to optimize the
commands to various subsystems. By separating the specific deployment from the system architecture and data structure, the
application can be easily translated to other usage profiles and built environment entities. As compared to vision-based
systems, our solution preserves privacy with improved performance when compared to single PIR or indirect estimation.

1. Introduction

Economic and environmental constraints are placing
increased emphasis on intelligent building energy manage-
ment systems (BEMS) in accordance to new regulations.
One of the main functions of such an intelligent system is
to become occupant-aware in order to condition internal
space in proportion to current and foreseen usage levels.
Beyond the practical need of reducing energy consumption,
occupant comfort has to be assured as part of quality of ser-
vice agreements and health considerations. One salient
example has been observed in the importance of tempera-
ture in cognitive performance [1], especially for children.
This can be also extended to insuring proper levels of carbon
dioxide through energy conscious ventilation with heat
recovery. Knowing the number of occupants in a class, tem-
perature, ventilation, and air conditioning could be automat-
ically adjusted to suit the needs of occupants. Privacy and
occupant identification have been largely debated subjects

in many experiments and solutions, since prediction of
occupancy behavior should be achieved without invading
privacy and especially without making possible face or body
recognition. This makes computer vision-based solution
using video footage from security cameras improper for
use in an occupancy detection system. Modern commercial
buildings possess hundreds or even thousands of sensors
integrated in a common system called building management
system (BMS). Existing buildings might not have this infra-
structure and even so; challenges arise when deploying dif-
ferent sensing generations and make them to communicate
within the same system as well as installation costs that
might overpass the cost of the hardware sensor nodes [2].
A wireless energy solution for occupancy sensing might
prove feasible in many scenarios. Despite the many opportu-
nities in modern buildings to use the rich data streams pro-
vided by modern networked instrumentation, rooms are still
conditioned based on maximum number of persons using
bipositional control algorithms, so the consumption of the
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heating, ventilation, and air conditioning (HVAC) system
provides room for improvement using an advanced solution
for occupancy sensing and prediction.

Although Europe is the third largest energy consumer
[3], after China and US, the topic of building energy con-
sumption has gained awareness in Europe more and more
due to continuously increasing level of urbanization and
industrial developments. In Europe, buildings are responsi-
ble for 40% of energy consumption [4], with 38% of them
being older than 50 years and inefficient. Therefore, existing
buildings have the potential to save energy by renovation
and deployment of sensing infrastructure to transform them
into smart spaces. The situation is similar in the USA with
the potential for energy savings by means of new sensor
and control device integration in building energy manage-
ment highlighted by various technical reports [5], including
the need for occupancy detection and estimation in build-
ings with multiple thermal zones and variable usage pat-
terns. In this study, the adoption of occupancy sensors for
energy management is estimated at 50% for large commer-
cial buildings and below 10% for smaller commercial build-
ings across all categories: renter-occupied, owner-occupied,
or a combination thereof. Large buildings are considered to
have a usable area of over 50000 sqft.

Facing the context of energy poverty as described in [3],
with Romania on the top of the list for the level of energy pov-
erty, we consider a stringent need to improve the way we
administrate the energy maintaining thermal comfort. In this
context, we place our research as a meaningful demonstration
of how to incorporate nonintrusive sensing to estimate fore-
casted occupancy, with a less exploited scenario as location:
a hub for IT activities in an old building. The research pro-
poses to address this topic for a case deployed in a lab where
children perform robotic and IT activities, more precisely, on
a door case, to estimate the room occupancy by finding the
total number of events detected on the door level and then
allocate them to an estimated occupancy level. We do not
aim to control an entire building but to present promising
results with high accuracy to predict occupancy in rooms used
by students. These results could be obtained in other build-
ings located in different places, by using very simple and
low cost hardware. We encourage the application of the algo-
rithm to other domains where time series data is collected.

The contributions of this paper are argued to be the
following:

(1) We designed and deployed an infrared monitoring
system in an IT Hub from Bucharest, with the aim
of learning from historical data and predict the tem-
perature of it, to exploit and transform it into usable
occupancy metrics

(2) We have evaluated the performance of the infrared
sensing grid, used in our previous deployments,
and from our best knowledge, the drawback from
the hardware is not presented in other studies

(3) Discussion of scenario implemented using the sys-
tem in a laboratory where young students are taking
classes of programming and robotics. We discuss

how our methods and solution could be exploited
for their benefits, especially for spaces dedicated to
cognitive activities

(4) Occupancy prediction using machine learning algo-
rithm in a two-stage pipeline: Random Forest algo-
rithm, for temperature value forecast, and Random
Forest classification for presence counting

The direct innovation of the work lays in the integration
of a noninvasive occupancy detection sensor with robust
machine learning algorithms (RF) for two-stage prediction
and detection of occupancy in a realistic environment.

The rest of the article is organised as follows: in Section
2, we provide a comprehensive summary of relevant work
using Random Forest techniques. We dedicate Section 3 to
explaining the setup and the objectives. We treat the topic
of data analysis in Section 4 touching the phases of collec-
tion, structure and storage, cleaning, and pattern discovery.
The following, Section 4, illustrates the Random Forest
model with the insights for occupancy prediction. The paper
concludes with remarks sketching ongoing directions for
continuing the research.

2. State of the Art

Recent studies show that schedules that include occupancy
patterns in buildings could reduce the reheat energy con-
sumption up to 38%, keeping the indoor thermal comfort
[6]. The literature presents the deployment of ambient sen-
sors to estimate occupancy in commercial and residential
buildings, often cases when thermal infrared sensors are
combined with other sensing devices or mobile phones.
Video cameras as sensing infrastructure for managing occu-
pancy in such situations are considered privacy breaching
devices given technological advancements, data protection
regulations such as GDPR and machine learning algorithm
performance increase. A taxonomy on this topic emphasiz-
ing very frequent used sensing platforms and methods for
detecting human presence and counting it is presented in
Table 1.

From a review of the models of occupancy detection,
considering the deployment period, space, and reported
accuracy, some key points were identified: many contribu-
tions highlighted classification using Random Forests (RF)
to achieve high accuracy for occupancy detection when it
was used, comparing with other algorithms [13], and multi-
ple parameters from different type of sensors do not neces-
sarily play a crucial role for a better accuracy. In Table 1,
we present only some of the most relevant works in the
domain, selecting them by the influence on the community
and relevance of experiments, as well as novelty and recent
publication.

We did investigations or the usage of the Random For-
est algorithm in related works such as in [19], where it is
used for predicting the parking lot occupancy. The study
treats data from complex systems from business analytics
perspective. The data came from sensors of the parking
lot from the most sustainable building in the world, which
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is in Amsterdam. Data from approximatively 1.5 years is
considered with half an hour distance between samples.
From several data prediction instruments, the authors chose
the Random Forest model which returned the best results
for prediction with 0.5 h in advance, having an error of
2.3 cars. Although a very rigorous implementation of pre-
diction has been performed, the data reported poor quality
as the authors employed some data imputation, and
approximation of occupancy was used, so a distance from
the ground truth interfered.

For more general time series regression and classification
tasks, the authors of [20] apply Random Forests for real time
price forecasting of energy in New York electricity market.
Three models were tested, namely Random Forest, artificial
neural networks (ANN) and classical autoregressive moving
average (ARMA), and results have shown that the Random
Forest has the highest accuracy, denoted by the smallest
MAPE value. The use case is isolated from potential important
factors on price evolution such as real time climatic and eco-
nomic data. Including these factors too, the authors could
check if these are important in the forecast. Random Forest
has been proved to give the best results for classification in
terms of efficiency and accuracy, for occupancy detection
[16]. On the other hand, the drawback of running time aspect
of the algorithm is not a concern in our application and type of
situation, because we do not have a large number of features.

Data-driven building models are described in [21] which
can be suitable to incorporate occupancy models as con-
straints to the optimization problem. A significant body of
experimental data is provided by [22] allowing off-line train-
ing of quality occupancy models. Estimation of occupancy
is extensively evaluated in [18] based on direct and indi-
rect measurements modelled through Bayesian networks.
Beyond direct presence detectors, occupancy is inferred using

CO2 concentration, acoustic levels, power, and water con-
sumption. In [17], a more capable PIR sensor array is used
which provides 24 × 72 temperature resolution, i.e., 768 data
points. This enables further analysis beyond basic occupancy
detection towards activity recognition which can also be used
to quantify subjective perceptions of thermal comfort.

Recent works also discuss the role of occupancy-based
demand response in direct connection to the role of smart
buildings as dispatchable consumers in future smart grids
and microgrids [23]. Grid connected microgrids are seen as
enablers of reliable demand management schemes together
with human-in-the-loop optimization [24]. Automating
occupant-building interaction for self-tuning thermal control
is discussed by [25] on a model-based simulated scenario of a
real building using the EnergyPlus environment.

The current contribution builds upon previously pub-
lished results concerning lab-scale experiments using the
Panasonic Grid-Eye sensor for occupancy detection [26],
testing of various machine learning algorithms for simulated
data [27, 28], and infrastructure for data processing pipeline
in occupancy sensing and prediction [29]. The progress is
supported by improved experimental evaluation in a realistic
scenario of daily usage profiles. The main limitation of the
current state-of-the-art that we intend to overcome is of
dense experimental evaluation of occupancy detection and
prediction systems with limited ground-truth data and non-
invasive characteristics and minimal hardware related and
installation costs.

3. Infrastructure and
Experimental Deployment

The experimental system, composed of a Panasonic Grid-
Eye development kit and an associated Raspberry Pi wireless

Table 1: Taxonomy of sensing platforms and occupancy methods for space management.

Sensor type Occupancy method
Experiment
duration

Location type Algorithm Source

PIR Presence prediction 50 hours Several offices Infinite hidden Markov model [7]

CO2 sensors + others: light,
PIR, acoustic

Occupancy detection 7 days 1 cubicle Decision trees [8]

Wi-Fi Occupancy counting 1 week 2 lecture rooms Newton Interp. + NN model [9]

Distributed plug load power
strip sensors

Occupancy detection 2 weeks 3 rooms
Bayesian inference, graphical

lasso, influence model
[10]

PC23D stereo cameras Occupancy counting 15 days 4 rooms PLCount [11]

PIR + infrared sensor Occupancy counting 3 weeks 10 building areas KNN [12]

Temperature, humidity, light, CO2
and digital camera temperature,
motion sensor, RFID tags

Occupancy detection 1 month 1 office
Random Forest, GBM, LDA,

CART
[13]

Occupancy prediction 61 days 5 homes Mean of k nearest past days [14]

CO2 sensors Occupancy counting 4 months
2 rooms office and

theatre
Seasonal trend decomposition [15]

Wi-Fi Occupancy detection n/a 1 conference room Random Forests [16]

24 × 72 PIR matrix
Occupancy detection
activity recognition

n/a Laboratory Fuzzy background removal [17]

PIR, CO2, power water, noise Occupancy prediction n/a
Office apartment
multizone house

Bayesian networks [18]
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gateway, has been deployed for three weeks in an IT Hub
where young students are taking classes of programming
and robotics. We found this scenario very appealing since
we have previously deployed our equipment in the univer-
sity laboratory [26] where adults are using the spaces, but
this one is from another perspective since the young stu-
dents have different behavior: they are faster when they enter
in the room, they are walking in groups of two often, and
they have a much smaller height than adults; this means a
larger distance to the sensing grid places on the top of the
doorcase.

Data is recorded with a frequency of 1 Hertz, in frames
of 64 values of temperature in degrees Celsius, correspond-
ing to the 64 cells of the sensing grid. Knowing all values
from a frame, we could identify warm bodies passing
through the door by identifying blobs over a static back-
ground temperature. This leads to finding the time when
the room is used. The room we have monitored is in an
old residential building in Bucharest, without a building
management system (BMS) to enhance the scheduling. We
were interested in predicting occupancy, considering that
the class is running with the same number of students
almost every time. The algorithm considers the last 2 dates
for each timestamp and is continuously learning each time
when it is running. This assumption is made since the room
is small and the students are numerous; so good ventilation
and proper temperature would be an important condition
for small children in the act of learning.

We have run the experiment for between 15/05/2018
and 6/06/2018, logging data in text files, comma separated
values, with timestamp, which then were transferred to a
base-station—a Raspberry Pi model 3 B, via Bluetooth wire-
less communication, and stored in a local database. The text
file log is easily manipulated and imported in any type of
database or can be converted to other formats as well such
as JSON or XML for automatic processing libraries. The
raw and processed datasets are available from the authors,
and they will published in a dedicated online repository.

The Grid-Eye evaluation kit (AMG 8834 EIK) which we
have used [30] is illustrated in Figure 1. A comprehensive
diagram of the physical deployment and associated working
flow is illustrated in Figure 2. In the right side of this figure,
is a conceptual view of the physical deployment. On the
doorcase top part, the sensing grid is placed, and it senses
the temperature at one frame per second, on a field of view
(FOV) angle of 60 degrees. Every frame contains 64 temper-
ature values which define a background and potential higher
values, clustered, which are assigned to a human person
detection, in case these satisfy the conditions to be classified
as an occupant in the building. This data is transmitted via
Bluetooth to the base-station to which we could connect
via Wi-Fi to the backend IT system and integration with
the control equipment. For the purpose of our study, the
use of a readily available development kit accelerated the
experimentation without having to handle low-level com-
munication and integration aspects. Future versions of the
system would see the sensing unit directly integrated with
the host development platform (Raspberry Pi). Lower cost
platforms such as Arduino have limited computational

resources to handle the rich data stream captured and
streamed by the temperature sensor matrix. Such embedded
system development also opens up the potential for on-line
inference of temperature and associated occupancy detec-
tion values using efficient edge-based models and technolo-
gies [31].

We have used the board in the standalone mode, with-
out integrating it with Arduino. The infrared image data is
sent through the external interface I2C to the onboard
microcontroller and then sent to the Raspberry Pi via Blue-
tooth module, PAN1740, short range. The infrared sensors
are packaged in 8mm × 11:6mm × 4:3mm SMD can type.
The Grid-Eye evaluation kit is made to communicate also
with the smartphone. The temperature measurement range
of the infrared array sensor is between -20 and +100 degrees
Celsius, with good accuracy and up to 10 fps rate. Our sam-
pling takes places at 1 fps.

4. Data Preprocessing and Analysis

The logical flow to go through data processing for finding
forecasted values is data ingestion, outlier/anomaly identifi-
cation, data preparation for machine learning model, model
training, prediction phase, prediction metrics, and interpre-
tation of results in a visual manner. The main steps of the
data pipeline are graphically presented in Figure 3.

One example for the anomaly detection, in the first
phase, we have noticed that there was a spike in the last week
of data collection which could have been caused at the Grid-
Eye sensor level.

To deal with this spike as shown in Figure 4, average
value per frame for the 64 temperature values recorded, we
simply removed the anomalous value since it was an isolated
case. If there would have been numerous such abnormal
values, then an average value could have been an option to
replace the wrong values. Temperature values were in the
same range, and so we did not need to perform data scaling
nor season cyclicity. However, after a very fine data value
analysis on each grid cell granularity, we found that one of
the 64 sensors of the grid failed on reporting the correct tem-
perature several times. We classified this as a hardware issue,
because this situation we identified only on the same sensor
each time. The number of wrong values (0 degrees Celsius)
is considerably small (less than 50 times), and we have
replaced it with the average value for the frame when that par-
ticular 0 was recorded. Sometimes performing an average
could hide different issues on data, as we had on our data set

Figure 1: Panasonic Grid-Eye development kit used for the
experimental data collection.

4 Journal of Sensors



for one sensor. For the case presented here for one class of the
students, we had 38 cases of value 0 in the first week and 29
cases in second and in the third week also, out of 4446 records.

For the Random Forest algorithm predicting the next
temperature values, we have chosen to input 3 measure-
ments: the actual value for each cell indicating the tempera-
ture in °C, the corresponding value for each cell of the

sensing grid from the same time, but one week before, and
the corresponding value for each cell of the sensing grid
for the same time, but from 2 weeks before. Training set
consisted in 75% of the total 4446 values, representing the
time for one class, approximately 1.2 hours. The purpose is
to predict the temperature for each cell of the grid, for the
last week, based on the values from the previous 2 weeks.
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Figure 2: Physical deployment of the occupancy sensing system.
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To evaluate the forecast error, we use the mean absolute
percentage error very common for time series, expressed as:

MAPE = 1
N
〠
N

k=1

Ak − Fk

Ak

����
����, ð1Þ

with Ak is the actual measured values and Fk is the predic-
tions. We have assured that there were no zeros values in
our data set, to use this evaluation.

5. Model Development and
Experimental Results

Analyzing the literature and previously experimenting with
other algorithms such as linear regression and Markov
model chains, we found that Random Forest (RF) model
promises fruitful results. Random Forest is an algorithm
used for both regression and classification tasks. RF is more
computationally expensive than basic methods (e.g., simple
regression trees, k-NN); however, for our study, computa-
tional cost does not affect the timeliness of the results as
we operate in offline mode for training, while providing
improved results and robustness. Data is randomly selected
from the training sets to train multiple decision trees which
thus forming a “forest.” Decision trees split rules are built by
using an attribute selection indicator. In our case, we used
Gini index for criterion to evaluate splits in dataset. The

aim is to have a split with a low value of this index, where
p is the probability for each class.

Gini = 1 − 〠
i=1

c

p2i : ð2Þ

Training dataset

Sample 1 Sample 2

Decision tree 2Decision tree 1 Decision tree n

Prediction

Sample n...

...

Vote

Figure 5: Random Forest prediction.
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Figure 6: Visual representation of the forecasted values for the first
sensor.
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The model of Random Forest is related to the one of k-
NN, and it is based on the bagging (model averaging)
approach for random samples to avoid overfitting and reduce
variance. Let X be the training set, and Y be the set of
responses with X = x1,⋯, xn and, respectively, Y = y1; ;⋯, yn

. The values for unseen samples x′ are predicted by averaging
the predictions from all the individual regression trees on x′.
So, for b = 1; ;⋯B, it samples with replacement Xb and Yb
and trains the regression tree tb on Xb and Yb. The prediction
is expressed as:
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t̂ = 1
B∑B

b=1 tB x′
� � : ð3Þ

Due to the fact that there are several trees participating on
prediction on which vote is done for the predicted values, e.g.,
shown in Figure 5, Random Forest is considered a robust and
highly accurate method. The challenge here is to find an opti-
mal number of trees such that they could ensure good results
and handle the time-consuming process due to the vote pro-
cess. We chose n = 1000 trees to participate on the voting pro-
cess, after trying with different options. The accuracy is
influenced only on the second decimal by the number of trees,
but the time to perform the algorithm is proportional increas-
ing with the number of trees. Grid search or random search
methods can improve the robustness of the approach with
regard to hyperparameter tuning.

The first trained model is tasked to predicting individual
temperature values in the 8 × 8 thermal sensor matrix. In
Figure 6, a sample of the predicted values achieved for the
first sensor of the grid is illustrated for approximately 16
minutes. Similar behavior was observed for each sensor.

Applying Random Forest for data corresponding to each
cell of the grid, we have predicted the values with an average
accuracy of 97.46%. The performance for each cell is repre-
sented in Figure 5:

In Figure 7, we could observe that the accuracy value of
the forecast plays in the range of 97.1 and 98.1%. The accu-
racy is calculated as the difference between 100 and the
MAPE value defined in equation (1). The first cell in the grid
corresponds to the highest obtained value. Data coming
from this first sensor is more accurate than data coming
from the cell on the last row of the grid, being exposed to
a further view at the event happening, so also some external
perturbation could have been interfered. Having a forecast
for the temperature from the sensor grid, we could identify
the number of persons which cross the horizon view of the
grid finding the number of occupants. For a visual represen-
tation, we present in Figure 8 how a detected person looks

Result: Person detection
NumberTrees = n
% E.g. 1000 for our reference case for i=1:ndo

Split dataset into training and test sets
Choose n random records from training set
Predict the category to which the new record

belongs
end
Assign the new record to a category based on majority
vote;

Algorithm 1: Detection algorithm for human presence identification.
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Figure 9: Feature importance for detection algorithm.

Table 2: Analysis of feature importance and the number of trees in
the Random Forest.

Number of trees
Feature importance

No. active pixels Size of largest blob No. blobs

10 0.35 0.18 0.46

50 0.44 0.15 0.33

100 0.48 0.14 0.36

500 0.43 0.16 0.4

1000 0.43 0.16 0.39
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like in the Grid-Eye sensor imaging. The side color bar
shows the value of temperature in Celsius degrees.

Starting with the image from Figure 8, we implemented
the second model based on Random Forests to find the
number of students which crossed through the door in the
considered time for a length of a class. Dividing by 2,
according to entrance and exit actions, we could estimate
the occupancy degree. This occupancy degree could then
be used in real time by the owners or facility personnel to
be incorporated in HVAC schedules. The classification pro-
cess focuses on three occupancy detection classes: 0, no per-
son detected; 1, one person detected; and 2, two persons
detected in the frame. This corresponds to the physical
space limitation for persons passing through the doorcase
while neglecting edge cases of more than 3 persons at the
same time in the frame.

Our approach to detect the human presence using Ran-
dom Forest algorithm is described by the algorithm in
Algorithm 1.

We have considered as dataset for this phase the set with
processed features obtained from the raw temperature
values: active pixels, number of blobs, and the size of the
largest blob, as in [12]. After performing another step to find
the importance of each feature in the classification process,
Figure 9, we only used the number of active pixels and the
number of blobs.

In fact, we have tested the algorithm considering differ-
ent number of trees in the forest, and for each test, the
importance has a different weight, but the highest ones have
been achieved by the first and third features. There is a rela-
tion of inverse proportionality between the number of trees
and the importance of the first feature and number of active
pixels, as is presented in Table 2.

Based on this analysis, we have used the feature extrac-
tion step described in Algorithm 2, to prepare the raw data
for the Random Forest algorithm presented in Table 2.

The value of 25 degrees Celsius, used for defining the
active cell background, was found after analyzing the dataset

collected during our three weeks use case. Considering the
air conditioning and the night temperature values as well
as the heating during the occupancy time over the day, this
value of 25 degrees Celsius was appreciated to be reasonable
for defining an event as human presence temperature. As an
alternative, moving average background subtraction can be
implemented for more robust performance in varying con-
ditions. Having the input feature dataset containing the
number of active pixels and the number of blobs, the
ground truth labelling for the human presence count is per-
formed manually.

For the human detection phase, we have chosen the Gini
index as in the prediction phase, and for a better under-
standing of the principle of how this algorithm works, we
illustrate the graph for a single tree on a small dataset of
29 samples—number of observations in the root node in
Figure 10. In this visualization, we kept the 3 feature vectors,
and the output of it is a class: 0, 1, and 2, for no presence
detected, one person, and, respectively, two persons. Gini
impurity for one node of 0 value is perfect because there is
no chance for a randomly selected sample to be incorrectly
labeled. The row with “value” represents the number of sam-
ples in each class.

Tested on our medium length period dataset for one
class of IT with the children, our algorithm has used manu-
ally labeled records, which led to >99% accuracy, due to the
single data type source, but also to the simple classification
type problem. An extended experiment should be deployed
including several rooms for a longer period. We state that
our solution is very practical due to the small cost of the
hardware around 90 Euros, which if wisely used could return
a promising profit in terms of energy saved. Even more, if a
PIR sensor would be added, to activate the system only when
a movement happened, the precision of event detection will
be more reliable, reducing the number of spurious detec-
tions. Switching to a system that uses only the Grid-Eye sen-
sor, not a kit board from Panasonic as it is presented in this
paper, the costs will be cut at half, but a more demanding

Result: Extract number of blobs
threshold=25;
% Static or dynamic value based on moving average
Find active cells;
for i=1:64 do

Reshape 8x8 matrix as a frame;
ifTemperature > thresholdthen

Cell = active;
else

Cell = inactive
end

end
ifExists a cluster of minimum 3 active cellsthen

Blob found;
Increase counter value

end
Read counter value;

Algorithm 2: Feature extraction from raw data.
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embedded system design will be needed to integrate with a
board to power the sensing grid using batteries; in addition,
another testing period will be necessary.

A closer model to the ground truth could be built by
enriching the data collection process with the incorporation
of other sources. For instance, for an IT class, by monitoring
the power up time of the systems, we could obtain informa-
tion about the number of users that could lead to a degree of
occupancy as in [32]. Occupancy information can be inte-
grated into a model predictive higher level system for HVAC
control [33].

6. Conclusions

This paper exposed a system tested in a space where occu-
pants are elementary school students, with the aim to predict
occupancy in a space with possibility to increase comfort
and efficiently manage the energy. The study has been con-
ducted in Bucharest in early summer, which offered promis-
ing results. We have presented the lessons learnt and
findings regarding the hardware, data analysis, and algo-
rithm tuning. So, for a three-week period, we have cleaned
data collected from an infrared sensing matrix and applied
Random Forest method for temperature time series forecast
but also for occupancy counting, obtaining interesting
results in terms of accuracy. We discussed also data prepara-
tion steps, so that the prediction and classification tech-
niques could be transferred to other situations and applied
for some different datasets. The importance of this paper is
emphasized in the context of finding approaches and frame-

works to reduce energy consumption in old buildings as
these ones have showed a poor energy efficiency due to lack
of sensing infrastructure, age, and construction materials.
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