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The adjustment times of the attitude alignment are fluctuated due to the fluctuation of the contact force signal caused by the
disturbing moments in the compliant peg-in-hole assembly. However, these fluctuations are difficult to accurately measure or
definition as a result of many uncertain factors in the working environment. It is worth noting that gravitational disturbing
moments and inertia moments significantly impact these fluctuations, in which the changes of the peg concerning the mass and
the length have a crucial influence on them. In this paper, a visual grasping strategy based on deep reinforcement learning is
proposed for peg-in-hole assembly. Firstly, the disturbing moments of assembly are analyzed to investigate the factors for the
fluctuation of assembly time. Then, this research designs a visual grasping strategy, which establishes a mapping relationship
between the grasping position and the assembly time to improve the assembly efficiency. Finally, a robotic system for the
assembly was built in V-REP to verify the effectiveness of the proposed method, and the robot can complete the training
independently without human intervention and manual labeling in the grasping training process. The simulated results show
that this method can improve assembly efficiency by 13.83%. And, when the mass and the length of the peg change, the
proposed method is still effective for the improvement of assembly efficiency.

1. Introduction

The application and development of robots in the industrial
field have been developed by leaps and bounds in the past
two decades [1–9]; thus, they are gradually integrated into
people’s daily live. Robots are used to replace humans for
completing work in many scenes. The traditional control
methods of the robot are the patterns of hard coding in a
structural environment. These methods limit robotics’ adapt-
ability and manufacturing flexibility, which increases the
labor cost and reduces the suitable range of robotic applica-
tion situations. Moreover, the traditional robot control
methods have a huge gap with human intelligence when
sensing the environment or learning some skills. Therefore,
it becomes the main development direction in the field of

robot control that robots were trained to learn skills. The
ways of perceiving the environment of humans are gradually
implemented on robots through bionic means, such as visual
sensors and force sensors [10–15]. The motion accuracy of
robotic control has surpassed humans, such as speed, dis-
tance, and angle. Nevertheless, robotic intelligence has not
yet met the demands of humans in the work of learning skills.
In order to enable robots to acquire new knowledge or skills
autonomously, researchers use the methods of machine
learning to continuously improve robotic performance by
training. Ultimately, robots can imitate or realize the learning
behavior of humans [16–21].

The grasping function is the most basic manipulating
function of robots in industry and daily life, and it is also
the foundation of many complex manipulating actions [22–
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26]. The assembly task is a complex robotic task, which often
requires the grasping function. Therefore, researchers have
been conducted much research in the field of grasping in
recent years. The feature algorithm of deep learning based
on multimodal group regularization has been able to do not
rely on the hand design of features in the task of RGB-D
image detection for robot grasping [27]. And it got better
performance than the previous hand design of the features.
The eye-hand coordination system with deep learning can
perform real-time servo compensation, which does not
depend on camera calibration and robot posture [28]. The
deep learning method can solve the problem of grasping pre-
diction well and has been able to be designed without relying
on artificial features, which has greatly reduced the cost of
learning. However, deep learning methods often require a
large number of data sets to complete the analysis, and the
results after training are very dependent on the quality of
the data sets. This limits its range of application to a certain
extent. Deep learning has good analysis and perception skills,
but it lacks decision-making skills. This also limits the usage
scenarios of grasping strategies based on deep learning. Deep
learning needs an expensive cost to build a large number of
data sets in practice, and even difficult to achieve it. There-
fore, it is a good solution to use the trial and error method
based on reinforcement learning to make the robot collect
data sets autonomously. Therefore, the grasping method
based on reinforcement learning has been widely studied.
For example, the viewpoint optimization strategy based on
reinforcement learning uses active vision to optimize the
visual sensor viewpoint [29], which can make the grasping
decisions with some information missing through the trial
and error of reinforcement learning without relying on mul-
tiangle image acquisition. And this method relaxes the
assumption of the sensor viewpoint and improves the grasp-
ing success rate. In addition, the hierarchical strategy of rein-
forcement learning can automatically learn multiple grasping
strategies to solve the limitation of a single grasping type for
the robot system [30]. Low-level strategies learn how to grasp
specific locations with specific grasping types, and high-level
strategies learn how to choose grasping types and locations.
This strategy can generate a grasping strategy from a given
grasping position. Although reinforcement learning has good
decision-making ability, it is limited to discrete action space
due to the limitation of computing power, which limits its
application range and makes it difficult to deal with the prob-
lems related to continuous action space. But many practical
problems are working in continuous action space. Hence,
scholars have carried out numerous studies with regard to
deep reinforcement learning, which combines the perception
ability of deep learning and the decision-making ability of
reinforcement learning [31, 32]. And it achieves direct con-
trol from the original input to output through the end-to-
end learning method. Subsequently, researchers proposed
many grasping methods based on deep reinforcement
learning. The visual grasping method based on deep rein-
forcement learning can output the predicted reward of all
possible actions in the current state just by inputting the
observation image and, then, choose the optimal action
[33, 34]. The robot is entirely self-supervised to improve

the success rate for grasps by trial and error. Besides, in
the real environment, the visual grasping method based
on deep reinforcement learning does not need fine-tuning
to successfully grasp previously seen objects, and even it
can successfully grasp previously unseen semicompliant
objects [35]. Therefore, deep reinforcement learning is
more suitable to deal with the grasping problem for assem-
bly in continuous action space.

The task of peg-in-hole is a classic assembly task. It is one
of the basics for many complex assembly tasks [36]. In recent
years, the research of the peg-in-hole assembly has also made
many novel methods. For example, the automatic alignment
method based on force/torque establishes a three-point con-
tact model, which analyzes the autonomous correction before
insertion through force analysis and geometric analysis [37].
In addition, the screw insertion method in the peg-in-hole
assembly reduces the axial friction force by rotating shaft
compensation and improves the collision contact of the peg
and the hole during assembly [38]. Moreover, the compliance
control method without force feedback can analyze the cur-
rent contact state between the hole and the peg, which
overcomes the unavoidable positional uncertainty in the
identification process [39]. And the peg-in-hole assembly
can be completed without relying on expensive force sen-
sors or remote compliance machinery. Additionally, the
assembly strategy of the variable compliance center has
designed an elastic displacement device [40]. This method
combines the advantages of active compliance and passive
compliance without force/torque sensors, which simplifies
the control system. This method can well solve alignment
errors. The traditional control method in the peg-in-hole
assembly has obtained many research results, but the tradi-
tional control method is limited to the specific working
environment. Traditional assembly robots require a great
number of parameters to be deployed before work. There-
fore, the research of peg-in-hole assembly in a nonstructural
environment is still a challenge. However, the method of
intelligent assembly robots based on deep reinforcement
learning can greatly reduce the work of related manual
parameters deployment [41]. It uses the robot’s sensor to per-
ceive the environment and then analyzes the system state.
This method can obtain better control accuracy and robust-
ness. Furthermore, an assembly training method with deep
reinforcement learning has been designed to dispose of the
uncertainty in the complicated assembly process of circuit
breakers [42]. It enables the robot to autonomously learn
the skill of orientation and pose adjustments in the assembly
training. This method has obtained a high assembly success
rate.

The core work of the peg-in-hole is to align the peg with
the hole, namely, adjusting the attitude and position of the
peg. The assembly alignment efficiencies are affected by
many uncertain factors in the real environment during the
alignment adjustment. In order to solve this problem, this
article has conducted the following research:

(1) To analyze the relationship between the grasping
position and the adjustment time of the assembly
alignment
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(2) To investigate the impact of assembly efficiency when
the length and mass of the peg have changed

(3) To verify the effectiveness of the proposed method in
improving assembly efficiency

The remainder of this paper is organized as follows: in the
Section 2, the working principle of the device is introduced,
and the relationship between grasping position and assembly
efficiency is analyzed. The Section 3 puts forward the visual
grasping strategy and explains the details of the assembly.
The simulation results and analysis results are presented in
Section 4. The last section introduces the conclusion of this
paper and the future work.

2. Working Principles and Analyses

2.1. Working Principles and Analyses of Assembly. Peg-in-
hole is divided into search phase, alignment phase, and inser-
tion phase. Firstly, the job of the search phase is to find the
location of the hole. And then, the alignment phase is to
adjust the assembly attitude of the peg to align with the hole.
Finally, the insertion phase is to insert the peg into the hole to
complete the assembly tasks. It is often assumed, at the early
research for peg-in-hole assembly, that the peg and the hole
can be well aligned before insertion. In fact, the peg may
not be well aligned with the hole, which needs to adjust the
position and attitude of the peg to complete the alignment
with the hole. The assembly time is also prolonged as the
number of adjustments increases to reduce the assembly
efficiency.

There is often an inclination angle between the peg and
the hole during the assembly alignment phase early. This
inclination angle is a key parameter of the assembly align-
ment, as shown in Figure 1. It is still possible to complete
the assembly when there is an inclination angle between the
peg and the hole if the assembly work has an assembled clear-
ance. This inclination angle is the maximum inclination
angle δ allowed by the assembly. The formula of the maxi-
mum inclination angle δ for assembly is described as follows:

δ = arctan ζ

K
, ð1Þ

where ζ is the peg-in-hole assembled clearance and K is the
assembly insertion distance.

There are three contact states during the assembly of peg-
in-hole, as illustrated in Figure 2. The robot moves the peg
near the plane of the hole so that the bottom of the peg is
in contact with the top of the hole. This contact state is
defined as plane contact, as shown in Figure 2(a). The robot
uses a spiral force to sweep the surface of the part to search-
ing the hole. The peg will incline if the center of the peg is
close enough to the center of the hole. The contact state
becomes a two-point contact at this time, as illustrated in
Figure 2(b). The peg slides along the edge of the hole while
maintaining two-point contact. When the center of the peg
approaches the center of the hole to a certain range, the con-
tact state changes to a three-point contact, as shown in

Figure 2(c). The peg needs to adjust attitude for alignment
by this time.

The insertion action cannot be completed if the inclina-
tion angle is greater than the maximum inclination angle δ.
That is to say, the insertion distance K is zero by this time.
The training target of the robots is that the inclined angle
can be faster adjusted to zero or less than the maximum incli-
nation angle δ to insert the peg into the hole. This reduces the
difficulty of assembly alignment but increases the difficulty of
precise definition of the assembly model. The peg completes
the alignment of adjusting attitude when the inclination
angle ψ of the current alignment is adjusted to be lower than
the maximum inclination angle δ or zero. The peg is then
inserted into the hole to complete the assembly task. Thus,
the alignment adjustment time is one of the important indi-
cators that affect assembly efficiency.

The downward assembly force will be generated when the
robot tries to insert the peg into the hole in the two-point
contact state, which will generate a corresponding reaction
force at the contact point. The direction of the sum of reac-
tion forces Fsum always points to the center of the hole, as
shown in Figure 3(a). The current inclination angle ψy is
the angle between the line connecting the two contact points
A and B and the y-axis. The peg will spontaneously slide
toward the center of the hole under the action of the sum
of the reaction force if the friction at the contact point is
ignored. This spontaneous sliding is due to natural attraction,
which is also the core control principle of the compliance-
based robotic peg-in-hole. The robot with this ability can deal
with the uncertainty of the hole position. Fr and Fz are the
projections of the assembly force on the xy-plane and the
z-axis, and Fz is consistent with the direction of gravity
as illustrated in Figure 3(b). The assembly force of the
peg is greater than the static friction force at the contact
point if Fr and the resultant of reaction force Fsum are in
the same direction. Thus, the peg and the hole generate
relative sliding to each other, and then, the peg slides into

K

K

Grasp object (peg)

𝛿

𝛿

𝛿

Assembly object (hole)
𝜁

𝜁

Figure 1: The schematic diagram of the assembly attitude angle.
The red central line is the central line of the peg and the green
central line is the hole’s central line.
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the hole. They cancel each other out if the direction of Fr
and Fsum are opposite. The assembly force is less than the
static friction force of the contact point at this time, and
the peg and the hole will not slide relative to each other.
It may cause the peg to miss the alignment position or slip
out of the hole. The fluctuation of the disturbance moment
will cause the assembly force to fluctuate suddenly, which
makes the peg unable to complete the alignment. The robot
then needs to readjust the alignment, which increases
assembly time and reduces assembly efficiency. When the
peg is attracted into the center of the hole, it can be
inserted into the hole if the current inclination angle ψx is
zero. Otherwise, the contact state changes to the state of
three-point contact. The turning moment M is required
to adjust the current inclination angle ψx to insert the peg
into the hole, as shown in Figure 3(c). The peg is inserted

into the hole to complete the assembly after fulfilling the
alignment adjustment.

2.2. Analyses of Disturbance for Assembly. This research is
focused on the grasping position to impact the efficiency of
assembly alignment, thereby improving assembly efficiency.
Therefore, the search phase and the insertion phase are not
researched and discussed deeply. Different grasping positions
produce different alignment times for the same current incli-
nation angle ψ, as shown in Figure 4. Different motion trajec-
tories and disturbing moments will be produced by the
different grasping positions, which produce the difference
in assembly time. Among these disturbing moments, the
effects of gravitational disturbing moments and inertia
moments are particularly significant for assembly, which will
also emerge the fluctuation when the robot adjusts the peg to

(a)

A

B

(b)

A
B

C

(c)

Figure 2: Schematic diagram of contact state. (a) Plane contact. (b)Two-point contact. (c) Three-point contact.
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Figure 3: Schematic diagram of contact force. (a) Top view of two-point contact. (b) Side view of two-point contact. (c) Side view of three-
point contact.
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align the hole. In addition, it will be affected by the fluctua-
tion of the disturbing moments that the robot adjusts the
position and attitude of the peg. The signal fluctuations
caused by disturbing moments will raise the difficulty of
assembly alignment, which increases the adjustment time
and reduces the efficiency of assembly work. Two special
grasping positions are worth noting to reduce the influence
of disturbing moments:

(1) The grasping position is the point where the center of
mass and the center of rotation coincide, which can
produce the smallest disturbing moments of gravity
during the adjusting alignment. But there are still
the inertia moments

(2) The grasping position is not only to coincide with the
center of mass and the center of rotation but also to
coincide with the inertial axis and the rotating axis,
which produces minimum gravitational disturbing
moments and inertia moments

The formula of gravitational disturbing moment MG is
shown as follows:

MG =mg lj j sin β, ð2Þ

where m is the mass of the peg, g is the gravitational acceler-
ation, l is the distance from the rotation axis to the force func-
tional point, and β is the angle between the gravity moment
and the vector (i.e., β = 90° − δ).

The formula of the inertia couples MI generated by the
moment of inertia J is described as follows:

MI = J
d2β
dt2

= 1
2mr2

d2β
dt2

, ð3Þ

where r is the vertical distance between the center of mass
and the rotating axis and d2β/dt2 is the angular acceleration.

It can be seen from the above formula that the mass of the
peg and the operating distance have an important influence
on the gravitational disturbing moments and inertia
moments. The position of the center of mass becomes uncer-
tain due to the manufacturing error of the peg in the same

manufacturing batch. In addition, there are different coinci-
dence degrees between the inertial axis and the rotating axis
because of the different grasping positions. And the align-
ment process of adjusting attitude will move disparate dis-
tances and motion trajectories even when the peg has the
same inclination angle. These factors have aggravated the
uncertainty of the adjustment time. Therefore, selecting a
suitable grasping position in the process of assembly can
effectively reduce the fluctuation of the disturbing moments
on the alignment adjustment, which is mainly caused by
changes in mass, volume, and operating distance. The tradi-
tional control method for the robot cannot handle these
complex and changeable assembly tasks. Hence, we hope to
train the robot through the training method of deep rein-
forcement learning so that the robot can autonomously deal
with these assembly tasks in an unstructured environment.
Robots often need multiple times to adjust attitude in the
alignment stage. The compliant control needs to constantly
judge the current attitude based on the contact force. Some
uncertain factors cause the fluctuation of the signal of contact
force, which increases the difficulty of alignment. In particu-
lar, the gravitational disturbing moments and the inertia
moments have a prominent influence on this fluctuation,
which will lead to a prolonged time for alignment adjustment
and ultimately reduce assembly efficiency. Therefore, the cost
of time on the alignment stage can be reduced if the robot can
reduce the fluctuation of the disturbing moments. Finally, the
improvement of assembly efficiency is realized. Traditional
control methods cannot handle these uncertain fluctuations
of disturbing moments. However, artificial calibration of
mechanical parameters or grasping positions is not only
cumbersome, but also has certain errors, or even impossible
to achieve. This difficulty can be avoided through trial and
error learning based on deep reinforcement learning, which
does not require artificial labels and prior knowledge of
mechanical parameters. When the grasping position is
restricted to a certain area with the proposed method, which
is considered to improve assembly efficiency if the trained
robot expends less assembly time than the untrained robot.

3. Assembly System with Deep
Reinforcement Learning

The assembly task of peg-in-hole is divided into two branch
tasks: grasping task and assembly task. Therefore, the robot
is equipped with the grasping module and assembly module.
The grasping task refers to the robot grasping the assembly
peg before performing assembly. The assembly task is
divided into three stages: searching, alignment, and insertion.
This research proposes a visual grasping strategy to boost
assembly efficiency by improving its grasping strategy based
on the analysis in Section 2.2.

3.1. Grasping Module with Visual Grasping Strategy. The
decision-making process of the grasping module is regarded
as a Markov decision-making process. The grasping work-
flow is transformed into an interactive process that can be
expressed in probabilistic form through the Markov decision
process. Firstly, the robot observes the environmental state st

𝜓′

𝜓′′

𝜓

Figure 4: The schematic diagram of different gripping positions for
adjustment alignment.
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at time t and selects the performing action at from the avail-
able action set AðsÞ through the strategy πðstÞ. And then the
environmental state changes from st to st+1, meanwhile, the
reward Rðst , st+1Þ is obtained. The state-action-reward chain
in the grasping decision-making process can be expressed
as follows:

s0, a0, R1, s1, a1,⋯,Rt−1, st−1, at−1, Rt , stf g: ð4Þ

The reward Rðst , st+1Þ is composed of the grasping reward
rGt+1 and the assembly reward rAMt+1. The robot obtains a
grasping reward rGt+1 = 0:3 after successfully grasping the
peg each time. The grasping network will also obtain an
assembly reward rAMt+1 = 0:7 if the assembly time is less than
the threshold. The reward Rðst , st+1Þ is described as follows:

R st , atð Þ = Rt = rGt+1 + rAMt+1: ð5Þ

The training purpose of deep reinforcement learning is to
obtain the optimal strategy π∗, which can maximize the total
reward Gt :

Gt = Rt + γRt+1 + γ2Rt+2 + γ3Rt+3+⋯,

Gt = 〠
∞

t=0
γtRt = 〠

∞

k=0
γtrt+k+1:

ð6Þ

The target of improving assembly efficiency is fulfilled if
the robot can maximize the total reward Gt by establishing
the mapping relationship between the grasping position
and the assembly time. Therefore, the robot trained a greedy
deterministic policy πðstÞ using off-policy Q-learning, which
chooses action at by maximizing the action-value function
Qπðst , atÞ:

Qπ st , atð Þ = Eπ Rt ∣ st = s, at = a½ �: ð7Þ

The optimal action-value function is expressed as fol-
lows:

Q∗ st , atð Þ =max
π

Qπ st , atð Þ = R st , atð Þ + γ max
a∈A sð Þ

Qπ st+1, at+1ð Þ,

ð8Þ

where γ is the future discount, which is set to a constant γ
= 0:5.

The optimal strategy π∗, which was obtained by training,
can select the optimal action a∗t with the highest Q value
from the set of available action AðsÞ in the current state st .
The formula of optimal strategy π∗ is as follows:

π∗ stð Þ = a∗t = argmax
a∈A sð Þ

Q∗ st , atð Þ: ð9Þ

The fully convolutional networks based on DQN and
DenseNet are used to build the network of grasping
decision-making in this paper. The networks take the height-
map describing the observing environmental state st as input,
which outputs a dense pixel-wise map of Q values with the

same size and resolution as the input. Any pixel point in
the image has a Q value, which predicts the future reward
of performing the grasping action at at the spatial position.
To begin with, the agent observes the information of the
environment to get the visual data, and then, it is reprojected
onto the orthographic RGB-D heightmap. Whereafter, the
color channel (RGB) and the clone depth channel (DDD)
of the heightmap are input to two parallel 121-layer Dense-
Nets to process the image features. And then, the image after
channel-wise concatenation is sent to 3 additional 1 × 1 con-
volutional layers interleaved with ReLU activation functions
and BatchNorm. Finally, the pixel-level probability map with
Q value is obtained after bilinearly upsampled processing,
and it is the same as the input image resolution by 224 ×
224. The robot will choose the performing action with the
highest Q value based on this probability map. The grasping
strategy has two fully convolutional neural networks with the
same structure: target network and evaluation network. They
have the same network architecture and initial network
parameters. Firstly, the target network selects the action at
with the highest Q value according to the strategy πðstÞ.
Afterward, the evaluation network will evaluate this action.
And two networks output Qtar and Qeva, respectively. The
evaluation network updates the network parameters θi in
real-time through the backpropagation operation according
to the reward Rðst , atÞ. But the target network only performs
forward propagation operations, and it updates the network
parameters θi ′ of the target network by copying the parame-
ters θi of the evaluation network after completing a batch of
iterative training, that is, θi ′ ⟵ θi. The robot is considered
to have completed training when the difference ΔQ in the
predicted Q value between the target network and the evalu-
ation network is less than the threshold through continuous
iteration. ΔQ is described as follows:

ΔQ = Qtar −Qevaj j: ð10Þ

The evaluation network uses the Huber loss function L i
as follows:

L i =
0:5 × Qtar

θi ′ −Qeva
θi

� �2
, for Qtar −Qevaj j < 1

Qtar
θi ′ −Qeva

θi
� �

− 0:5
���

���, otherwise:

8><
>:

ð11Þ

3.2. Compliance-Based Assembly Module. The assembly mod-
ule is based on compliant behavior control, which completes
the peg-in-hole assembly by analyzing the contact state
between the peg and hole to generate compliance behavior.
The assembly module divides the assembly work into three
stages: hole-searching stage, alignment stage, and insertion
stage. The robot moves the peg to the surface of the hole after
successfully grasping the peg. And the contact between the
peg and the hole results in a plane contact state of the peg.
The robot enters the hole-finding stage at the time. In order
to simulate the uncertainty of the hole position during work,
the initial position of the hole is randomly placed within a
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small range, which is equal to the area of the hole. Afterward,
the robot searches holes on the surface through rubbing
motion with the trajectory of Archimedes spiral. The peg
will be inclined if the peg is close enough to the hole. And
then, the contact state will change to two-point contact. Sub-
sequently, the peg slides along the edge of the hole. There
will be a three-point contact state when the peg is close
enough to the center of the hole but still has an inclination
angle. The alignment of the peg and the hole is completed
by using the wiggling motion to adjust the error of the
inclining angle. Finally, the assembly task is finished after
performing the insertion action. The proposed method and
baseline both use the same assembly module to ensure the
fairness of the comparison in the assembly efficiency test.
However, the grasp module of the baseline method is not
equipped with an assembly reward rAM. The effectiveness
of the proposed method was proved if adding the assembly
reward rAM for alignment in robot training can improve
assembly efficiency. The process of peg-in-hole assembly is
shown in Figure 5.

4. Simulation Results and Analyses

4.1. Training of Visual Grasping Strategy. The assembly sys-
tem established in the simulation software V-REP, which
uses a UR5 robotic arm with an RG2 gripper, as shown in
Figure 6. And it is also equipped with the RGB-D vision sen-
sor, force sensor, and position sensor. The length of the peg is
100mm, and its weight is 0.55 kg. The diameter is ϕ30mm,
and the assembly clearance is 1mm. The peg and the hole
have not chamfered. The CPU of the simulation workstation
is Intel(R) Xeon(R) Gold 5222 at 3.80GHz, the GPU is NVI-
DIA GeForce RTX 3090, and it is equipped with 128GB of
RAM. The robot uses trial and error in training to explore
the law of the difference in assembly alignment efficiency
caused by different grasping positions. The method of
stochastic gradient descent with momentum is used for the
training of the grasping networks. The learning rate is a con-
stant at 10−4, and the momentum is set as 0.9. The explora-
tion strategy is a deterministic ε-greedy, and its initial value
is set as 0.5 and then annealed overtraining to 0.1.

Predict grasping position

Attitude estimation

Correction planning

Perform 
correcting 

action

Path planning

Perform 
assembly 

action

Success

Failure 

Success

Success

Failure 

Grasping reward

Correction reward

Assembly reward
Failure 

Collecting image 
information

Perform
grasping

action

Perform 
correcting 

action

Perform 
assembly

action

Stop

Figure 5: Flowchart of peg-in-hole procedure.
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The first 1000 times of grasping training are to randomly
select the grasping position. The purpose of random selection
is to allow the robot to explore the impacts on the assembly
efficiency for different grasping positions. The robot will
choose the grasping position with the highest Q value in the
remaining times of 4000 training. The heat maps of the
grasping decision-making are shown in Figure 7. The red
area represents the grasping position with a higher predicted
Q value. The area where the untrained robot chooses the
grasping position is spread over the whole peg, as illustrated
in Figure 7(a). The robot will obtain the assembly reward rAM

when the assembly time is less than the threshold. The selec-
tion area of the grasping position will gradually shrink as the
number of training increases, as shown in Figure 7(b). The
grasping position is restricted to a specific area smaller than
the previously selected area by establishing the mapping rela-
tionship between the grasping position and the adjusting
time of alignment.

4.2. Simulation Test for Assembly Efficiency. The simulation
tests have the purposes to prove the following two problems:

(1) To verify whether the proposed grasping strategy can
help robots improve assembly efficiency

(2) To test whether this strategy is still effective when
qualities, lengths, and mechanical parameters of the
peg have changed

The proposed method is a visual grasping strategy (VGS)
for the peg-in-hole task. The robot used baseline and VGS to
conduct 1000 peg-in-hole assembly simulation tests, respec-
tively, to compare the difference in assembly efficiency. The
total assembly time of the baseline method is about 38.46
hours, while the total assembly time of VGS is only about
33.14 hours, which improves the assembly efficiency by
13.83%. VGS compares the distribution of the assembly time
with baseline, as shown in Figure 8. In the test, the shortest

(a) (b)

Figure 7: Heat maps of grasping decision-making. (a) Selection area of untrained grasping position. (b) Selection area of trained grasping
position.

UR5 robot arm

Visual sensor

RG2 gripper

Assembly object: Hole
Grasping object: Peg

Figure 6: Schematic diagram of simulation system.
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assembly time for baseline and VGS methods is both 106 sec-
onds. But the longest time of baseline is 157 seconds, and
VGS is 135 seconds. Baseline takes 19 seconds of the average
assembly time more than VGS. It can be seen that the robot
using VGS has a relatively shorter assembly time. The results
of the simulation prove that our method can effectively
improve assembly efficiency.

The change in the diameter of the peg causes a change in
its mass, and these changes have certain effects on the assem-
bly alignment. It is very cumbersome to manually calculate

and mark changes in mechanical parameters caused by these
changes. The mass of the peg is additionally reduced or
increased by 15% based on initial mass to imitate the random
changes of the mass in the actual conditions. The robot,
respectively, using baseline and VGS conducts 1000 assembly
tests for the different mass of the peg, as shown in Figure 9. It
can be shown that VGS can still improve the assembly effi-
ciency by 12.13% when the diameter and mass of the peg
make some changes. In this simulation result, the standard
deviation of the baseline is 5.1756, and the standard deviation
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Figure 8: Comparison chart of assembly time.
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of VGS is 3.0133. It can be seen that VGS has better stability
for assembly efficiency.

Subsequently, the length of the peg is changed between
85% and 115% based on the original length of the peg. Not
only has its mass been changed but also its mechanical
parameters have been changed when the length of the peg
changes. The robot, respectively, using baseline and VGS
conducts 1000 assembly tests for the different length and
mass of the peg, as shown in Figure 10. The result shows that
VGS can also improve the assembly efficiency by 10.92%,
even if the length and mass of the peg have certain changes.
When the length and mass have changed, the standard devi-
ations of baseline and VGS are 6.2242 and 3.8508, respec-
tively. Obviously, VGS has a smaller fluctuation of the
assembly time, and the assembly efficiency is more stable.

5. Conclusions and Future Work

In this paper, a visual grasping strategy based on deep rein-
forcement learning is proposed, which can improve assembly
efficiency. The fluctuation of the contact force signal caused
by the disturbing moments in compliance-based assembly
is analyzed, and the visual grasping strategy introduces the
assembly reward to reduce the fluctuation. In V-REP, the
simulations of peg-in-hole are carried out, it can be obtained
from simulation results that the grasping area is restricted at
a special area less than the previous area, and the trained
robot spends less assembly time than the untrained robot.
Furthermore, the proposed method improves the assembly
efficiency by 13.83% compared to baseline.

The proposed visual grasping strategy can also effectively
improve the assembly efficiency when the size and mechani-
cal parameters of the peg have changed, which provides some
guidance in peg-in-hole assembly. Future research work will
focus on extending the proposed strategy to different assem-
bly parts to complete more complex tasks. At the same time,
finding effective ways to improve the efficiency of training
samples, assisting agents to obtain better assembly capabili-
ties, and realizing multiagent collaborative assembly are also
future research work.

Data Availability

The data used to support this study are available at https://
github.com/Bensonwyz/A-Grasping-Strategy-for-
Improving-Assembly-Efficiency-based-on-Deep-
Reinforcement-Learning.
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