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The health challenges brought by aging population and chronic noncommunicable diseases are increasingly severe. Scientific
physical exercise is of great significance to prevent the occurrence of chronic diseases and subhealth intervention and promote
health. However, improper or excessive exercise can cause injury. Research shows that the sports injury rate of people who
often exercise is as high as 85%. Aiming at the problem of low accuracy of single sensor gait analysis, a real-time gait detection
algorithm based on piezoelectric film and motion sensor is proposed. On this basis, a gait phase recognition method based on
fuzzy logic is proposed, which enhances the ability of gait space-time measurement. Experimental results show that the
proposed gait modeling method based on ground reaction force (GRF) signal can effectively recognize and quantify various
gait patterns. At the same time, the introduction of heterogeneous sensor data fusion technology can effectively make up for
the accuracy defects of single sensor measurement and improve the estimation accuracy of gait space-time measurement.

1. Introduction

In 2019, the World Health Organization (WHO) proposed
at the global health assembly that by 2030, the number of
people actively participating in sports activities in the world
will reach 100 million [1]. Scientific physical activity is one
of the most important methods to manage chronic noncom-
municable diseases and cope with the aging population.
Regular physical exercise is helpful to slow down and pre-
vent the occurrence of chronic diseases and is of great signif-
icance to the intervention of subhealth and the promotion of
human health. However, improper exercise can lead to
injury. Research shows that the sports injury rate of people
who often exercise is as high as 85%. Sports activity monitor-
ing provides individuals with health promotion awareness of
personal habits. It is very important to accurately track the
sports activities in people’s daily life.

Walking is one of the most common sports activities in
people’s daily life. Whether the gait is healthy or not and
the degree of health can reflect the health status of human

body to a certain extent, therefore, gait evaluation is of great
significance and has become a hot issue. The importance of
gait analysis has been fully elaborated in many literature,
and its application is also very wide, including pedestrian
navigation, exercise fitness guidance, pathological gait evalu-
ation, fall detection, exercise rehabilitation, age estimation
and gender classification [2], balance functions evaluation
[3], Parkinson diagnosis [4], and assessment of running
asymmetry [5]. Gait analysis also has broad application
prospects in emergency personnel search and rescue, blind
path guidance, and other aspects [6]. In the past, gait
analysis often relied on the experience of clinicians, and
the qualitative evaluation of gait was easily affected by sub-
jective factors. In recent years, large gait analysis systems
such as infrared spot catcher, dynamometer, and electromy-
ography have been used for quantitative analysis of human
gait [7] in order to quantify the factors controlling lower
limb function during walking. There are two gold standards
that are often used to quantify gait: (1) 3D motion capture
systems based on multicamera/infrared spot catcher [8],
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such as Vicon system and Qualisys system, which capture
the motion trajectory of human body markers, analyze and
calculate the three-dimensional space coordinates of
markers and obtain the motion parameters of human lower
limbs. (2) Instrumented gait [9], such as treadmill system
with pressure sensor and GAITRite pressure sensitive gait
system, is used to measure and analyze biomechanical sig-
nals generated during walking. These systems are large-scale,
high-cost, usually deployed in hospitals or professional gait
analysis laboratories, and need professional personnel to
operate. Long-time gait data recording is usually needed in
clinical environment. Experienced clinicians need to inter-
pret and evaluate gait performance in high-dimensional
and massive data, which brings great complexity to gait
analysis [10].

The rapid development of microelectromechanical sys-
tem (MEMS) has promoted the application of wearable
devices in personal health monitoring. Wearable health
monitoring devices are usually composed of multiple physi-
ological sensors and inertial sensors. These sensors are
deployed on the human body to realize continuous and
dynamic monitoring of the body status, and help people
track their health status during exercise and fitness, or better
monitor their personal health for medical rehabilitation [11].
The commonly used information in gait analysis include
kinematics information and dynamics information. When
designing wearable human activity measurement device,
physiological sensors such as inertial measurement unit
(IMU) and pressure sensor are usually used. IMU is usually
deployed on human lower limbs to obtain human kinematic
information, but the kinematic information of lower limbs is
usually not equivalent to that of whole body. In order to
obtain complete and accurate kinematic information, it is
necessary to wear multiple IMUs in different parts, such as
heel [12], waist [13], instep [14, 15], ankle [16–18], and
thigh and leg [18]. In Reference [19], the influence of the
position of inertial sensor on gait analysis is analyzed from
the perspective of accuracy and repeatability. It is found that
the performance of the algorithm depends on the position of
inertial sensor, and the closer IMU is to the ground, the bet-
ter performance can be obtained for gait event detection. In
Reference [20], a foot switch is used to obtain the contact
mode, but the binary signal generated by the foot switch
cannot capture the subtle difference caused by the transfer
of foot weight during walking. Most of the literature used
the signals of four pressure sensors to analyze gait events,
where the first sensor is located at the thumb, two sensors
are located at the forefoot (the first and fifth metatarsals),
and the other sensor is located at the heel [21, 22].

Although gait analysis algorithms have been widely
studied, as far as we know, there is little research on
real-time and accurate gait health evaluation using multi-
sensor information fusion technology. Therefore, this paper
designs and implements a gait evaluation system based on
pressure sensor and inertial measurement unit. Through
the collection and analysis of kinematic information and
dynamics information, the gait behavior is explained accu-
rately, which provides a richer application basis for future
research.

The rest of this paper is organized as follows. In Section
2, the system model and signal composition are described. In
Section 3, we propose the gait modeling method to realize
gait phase recognition. We propose a gait health evaluation
model in Section 4 using IMU-based gait detection, together
with the analyses of accuracy and gait health score. Finally,
the conclusions are drawn in Section 5.

2. Signal Acquisition with
Heterogeneous Sensors

In view of the limitation that most of the existing researches
use a single sensor for gait analysis, this paper designs a
small gait detection device, which can monitor the motion
state in real time and output the gait evaluation results. It
not only cooperatively uses multiple pressure sensors but
also uses a mixture of accelerometer and gyroscope for gait
analysis. In addition to the dynamic data information, it also
makes full use of the data collected by multiple sensors to
jointly identify the motion state.

As shown in Figure 1, the developed wearable gait
analysis system is composed of 8-way pressure sensor,
ADC, IMU, MCU, and wireless communication module.

The signal acquisition subsystem consists of inertial
measurement unit, pressure sensor, and ADC. In this paper,
the sampling frequency of inertial measurement unit and
pressure sensor is 50Hz. A ZNX-01 resistance flexible film
pressure sensor is used to collect the ground reaction force
signal, and ADC has a 12-bit resolution. The results show
that sole and heel are the main biomechanical regions during
walking. Therefore, the distribution of 8-way pressure sen-
sors is deployed as shown in Figure 2, where the pressure
sensors GRF1-GRF3 are located at the heel, the pressure
sensors GRF4-GRF7 are located at the phalanx, and the
pressure sensor GRF8 is located at the thumb.

MPU6050 module is used to collect the kinematic data of
human walking. The module is a 6-axis digital motion
processor (DMP), which can not only greatly reduce the
installation space but also connect with external magnetom-
eter. In order to track fast and slow motion accurately,
MPU6050 module integrates three-axis MEMS angular
velocity sensor (gyroscope) and three-axis MEMS acceler-
ometer. The sensing range of these inertial sensors can be
programmed. The analog-to-digital converter of three-axis
gyroscope and three-axis accelerometer in MPU6050 mod-
ule is 16 bits, which can collect the digital output data of
human kinematics.

The signal analysis subsystem includes gait phase recog-
nition module and gait cycle segmentation module. The
method of coordinate system rotation and attitude quater-
nion correction is used to improve the measurement accu-
racy. The wireless communication subsystem uses WiFi as
the wireless data transmission mode to transfer the collected
data.

3. Gait Modeling

3.1. Gait Parameters. Walking is a continuous and regular
periodic movement. According to medical standards, gait
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cycle is composed of stance stage and swing stage of a certain
lower limb (such as right limb). The stance stage refers to the
process when the feet touch the ground while walking, and
the swing stage refers to the process when the feet leave the
ground and move forward to land again. As shown in
Figure 3, according to Perry gait model [23], each gait cycle is
divided into eight phases, of which five phases belong to the
stance stage, namely, initial contact (IC), loading response
(LR), mid stance (MS), terminal stance (TS), and preswing
(PS). The other three phases belong to swing stage, which are
initial swing (IS), mid swing (MS), and terminal swing (TS).

The commonly used gait measurement methods are time
measurement and space measurement. Time measurement
parameters include gait cycle, cadence, velocity, percentage
of stance stage, and percentage of swing stage. The parame-
ter of space measurement is stride length. In the process of
walking, normal gait shows reasonable stride length and
cadence. Therefore, in gait health assessment, we should first
study the parameter range of normal gait and then use it to
detect abnormal gait. Gait parameters are defined as follows.

(1) Gait cycle: Gait cycle refers to the time interval
between two consecutive events of the same lower

limb, usually the time of two consecutive heel land-
ing, also known as stride time

(2) Cadence: Cadence refers to the number of steps per
unit time in the process of walking. The average
cadence of healthy people is about 95~125 steps/min

(3) Velocity: Velocity represents the displacement along
the walking direction per unit time. The average
velocity of children aged 1-7 is 0.64m/s-1.14m/s,
and that of normal adults is 1.2m/s-1.5m/s

(4) Stride length: It refers to the longitudinal linear dis-
placement between two adjacent footholds of the
same heel, which is equivalent to the sum of the
lengths of a pair of left and right pedals. The stride
length of normal adults is about 100-160 cm

For a particular lower limb, the duration of the stance
stage and swing stage of different individuals may be
completely different. We normalize them to gait cycles. The
stance stage accounts for about 60% of the whole gait cycle,
and the swing stage accounts for about 40% of the whole gait
cycle. In the process of walking, the time percentage of the
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Figure 1: System architecture.
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stance stage and swing stage of lower limbs is an indicator of
gait symmetry.

3.2. Gait Phase Recognition. The quantification of gait time
parameters requires accurate recognition of gait events.
The dynamic information of gait phase analysis mainly
refers to the ground reaction between the foot and the
ground. The embedded pressure sensor can easily detect
the ground reaction force generated in the process of move-
ment and directly reflect the overall gait behavior of human
body. A detailed description of each gait phase and its corre-
sponding pressure sensor status is as follows.

(1) Initial contact phase: The lower limbs begin to con-
tact the ground, and the GRF1~GRF3 pressure value
of heel position is nonzero

(2) Loading response stage: The lateral part of the foot of
the lower limb begins to contact the ground, and the
body center of gravity is transferred from the heel
to the whole foot. At this time, the pressure of
GRF4~GRF5 is not zero

(3) Mid stance phase: The inner side of the lower limb
begins to contact the ground, and the pressure value
of GRF6~GRF7 is not zero. Due to individual gait
differences, GRF8 may or may not have a nonzero
pressure value

(4) Terminal stance phase: The gravity center of
human body moves forward, and the heel of lower
limb no longer contacts with the ground; that is,
GRF1~GRF3 have zero pressure

(5) Preswing phase: It is the last phase of the stance
stage, the thumb and toe of the lower limb contact
the ground, and at this time, only GRF8 has nonzero
pressure

(6) Swing phase: The measured lower limbs do not
touch the ground, and no pressure signal is detected
by GRF1~GRF8

Gait cycle is characterized by gait phases. Accurate
detection of gait event/phase is of great significance for gait
analysis. In the process of gait phase detection, the transition
between adjacent gait phases is very subtle, and it is easy to
misjudge each gait phase by using threshold method. In this

paper, fuzzy logic algorithm is used to process the original
GRF signal to realize the smooth and continuous recognition
of gait phase. The gait phase recognition method based on
fuzzy reasoning is as follows.

Firstly, the input variables are fuzzed. The sigmoid mem-
bership function is used to fuzzify the input GRF signal of
each pressure sensor, as shown in Equation (1). According
to the value of pressure signal, each pressure value is divided
into L and S fuzzy values.

f x ; a, cð Þ = 1
1 + e−a x−cð Þ , ð1Þ

where x is the range of input variables; we use the voltage
collected by the piezoelectric sensor as the input; that is,
x ∈ ½0, 3:3�. The opening direction of the sigmoid function
in Equation (1) is determined by the parameter a. The
fuzzy value “L” is declared when a is positive and “S” is
declared when a is negative. The value “L” means that
the corresponding sensor is likely to contact the ground.
The value “S” means that the possibility of the sensor con-
tacting the ground is very small.

Then, the output variables are fuzzed. Each output
variable is fuzzified by trapezoidal membership function
and triangular membership function, and then, it is judged
as one of the six fuzzy values of IC, LR, MS, TS, PS, and
SW. The member functions are as follows.

f y ; a, b, c, dð Þ =max min y − a
b − a

, 1,
d − y
d − c

� �
, 0

� �
, ð2Þ

f y ; a, b, cð Þ =max min
y − a
b − a

, 1,
c − y
c − b

n o
, 0

n o
, ð3Þ

where y is the output variable. The shape of membership
function in Equation (2) is determined by parameters a, b,
c, and d. Parameters a and d correspond to the left and right
inflection points of the lower part of the trapezoid, and
parameters b and c correspond to the left and right inflection
points of the upper part of the trapezoid. In Equation (3),
parameters a, b, and c determine the shape of triangle mem-
bership function. The maximum value of the function is 1 at
point b and 0 at points a and c. Triangular membership
function is a special form of trapezoidal membership func-
tion. In this algorithm, trapezoidal membership function is
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Figure 3: Structure of a complete gait cycle.
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used for fuzzy sets IC and SW, and triangular membership
function is used for other fuzzy sets, as shown in Figure 4.

Next, we will establish the fuzzy inference rules by using
the change of pressure sensor signal and the landing position
information that may appear in each gait phase as fuzzy
rules. There are 8 output variables for 8-way pressure sen-
sors, and each variable has two possible values, so there are
totally 28 = 256 fuzzy inference rules can be constructed.
The formulation of fuzzy inference rules is the core content
of fuzzy logic reasoning, and its performance depends on
fuzzy inference rules to a great extent. We only use the rules
with the greatest contribution to distinguish the possible
phases and form the fuzzy inference rule table as shown in
Table 1.

The form of fuzzy inference rule is “if... Then”. For
example, rule #10 can be described as “(GRF1 is S) and
(GRF2 is S) and (GRF3 is S) and (GRF4 is S) and (GRF5 is
S) and (GRF6 is S) and (GRF7 is S) and (GRF8 is S), then

the gait phase is SW”. The expression of fuzzy inference
rules is complex, which is usually expressed by fuzzy infer-
ence rule matrix. For example, the rule vector corresponding
to rule #10 is [2 2 2 2 2 2 2 2 6 1 1].

Finally, the fuzzy logic output is obtained. The aver-
age maximum membership method is used to solve the
problem of multiple output maximum membership ele-
ments, and the corresponding fuzzy inference results are
obtained through defuzzification operation as the follow-
ing equation.

yo =
1
N
〠
N

i=1
max
y∈Y

μy yð Þ
� �

, ð4Þ

where N is the total number of elements with the same
maximum membership.
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Figure 4: Output membership function.

Table 1: Fuzzy inference table.

Inference rules
GRFs

Gait phase
GRF1 GRF2 GRF3 GRF4 GRF5 GRF6 GRF7 GRF8

1 L / / S S S S S IC

2 / L / S S S S S IC

3 / / L S S S S S IC

4 L L L L / S S S LR

5 L L L / L S S S LR

6 L L L L L L / / MS

7 L L L L L / L / MS

8 S / / L L L L / TS

9 S S S S S S S L PS

10 S S S S S S S S SW
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3.3. Gait Cycle Segmentation. Accurate detection of key gait
events is essential to the evaluation of gait. When we have
detected continuous and smooth gait phases, we will seg-
ment them into gait cycles. Because of the difference of gait
cycle composition among different people, the fixed thresh-
old method cannot get accurate results. In this paper, a per-
sonalized gait cycle segmentation algorithm is proposed,
which takes full account of the differences of individual gait
cycle composition and uses fuzzy logic inference to get accu-
rate gait cycle information.

The flow chart of the proposed gait cycle segmentation
algorithm is shown in Figure 5. We have found that plantar
pressure signal has obvious time-domain characteristics.
Therefore, we analyze the gait phase signal X = ½x1, x2,⋯,
xi, xi+1,⋯, xn� after fuzzy processing in time-domain, which
corresponds to a certain gait phase.

(1) Determine the starting point of gait phase

Accurate detection and marking of gait event transi-
tion from one gait phase to another is the premise of
accurate gait cycle segmentation. In this paper, real-

time gait phase output can be obtained according to
the collected pressure signal. Gait phase transition
can be declared when xi+1 − xi ≠ 0, and this position
can be regarded as the starting point of the following
gait phase. The starting point sequence of gait phase
is recorded as the following equation.

GaitPhaseSeq = y1, y2,⋯, yj,⋯, yk−1, yk
h i

: ð5Þ

(2) Obtain gait phase duration

In the starting point sequence of gait phase, the
duration of current gait phase is equal to the time
interval between adjacent elements, which can be
calculated as follows:

GaitPhaseDur = y2 − y1,⋯, yj − yj−1,⋯, yk − yk−1
h i

:

ð6Þ
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Calculate phase
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Gait cycle
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Figure 5: Flow chart of gait cycle segmentation.
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(3) Initial gait cycle segmentation

The initial gait cycle is segmented by using the
sequence of gait phase starting points obtained in
Step 1, and the composition and duration of each
gait cycle are obtained as follows.

(a) The gait cycle begins at the stance phase. There-
fore, the first detected gait phase that is different
from the swing stage behind the swing stage is
regarded as the beginning of the gait cycle. We
can get the starting point sequence of N + 1 gait
cycles

GaitCycleIniSeq = z1, z2,⋯, zN+1½ �: ð7Þ

(b) Each gait cycle consists of a phase sequence
between the starting points of two gait cycles,
and the duration of each gait cycle is represented
by GaitCycleDuri. The number of gait cycles is
N . The average duration of each gait cycle
Mean of GaitCycleDur can be obtained from
Equation (8)

Mean of GaitCycleDur =
∑NGaitCycleDuri

N
:

ð8Þ

(4) Due to the difference of individual gait structure,
subjects may show different gait cycle patterns. At
the same time, considering the possible abnormal
mutation of pressure sensor signal, we combine the
abnormal gait cycle with too small duration

(a) The gait cycles with duration less than Mean
of GaitCycleDur ∗ 0:75 are regarded as short
cycles

(b) When two consecutive short cycles appear, the
two consecutive short cycles are merged into
one value

(c) The starting point sequence of gait cycle, the
structure of gait cycle, and the duration of each
gait cycle are updated to output the final result
of gait cycle segmentation

3.4. Experimental Results and Analysis

3.4.1. Experiment Setup. Five subjects, aged 17-48 years old,
with a height of 170 cm-178 cm, were selected. The detailed
parameters of the subjects are shown in Table 2. During
the experiment, all subjects walk in a straight line indepen-
dently at a comfortable speed, and they can turn back and
forth at will. There is no limit to the distance of straight line
walking. Considering that the first step and the last step of
each walk may not be a complete gait cycle, we remove these
two incomplete gait cycles in the subsequent gait analysis.

3.4.2. Experimental Results and Performance Analysis. In
Figure 6, the traditional gait cycle segmentation algorithm
based on empirical formula is compared with the proposed
algorithm. The proposed algorithm identifies the key gait
event heel strike (HS) and key gait event toe off (TO) in
the gait cycle and divides each gait cycle into two phases.
In Figure 6, the red circle represents the key gait event HS,
and the red pentagon represents the key gait event TO.

The gait modeling algorithm based on ground response
signal is shown in Figure 7. As mentioned above, accurate
detection of the starting point of gait cycle is the key to accu-
rate recognition of gait cycle. In Figure 7, the red circle is the
starting point of each gait cycle. The gait phase sequence of
most gait cycles is the same as Perry gait model, i.e.,
IC>MS>PS> SW, but the duration of gait phase sequence
of each gait cycle is different. Some gait cycles show different
gait phase sequences from Perry gait model; for example,
some of them may lack a certain gait phase, and some of
them may have disorder gait phases. It can be seen from
Figure 7 that the proposed gait modeling algorithm does
not need to set the offset between each gait stage in advance.
The algorithm can not only detect gait phase accurately and
effectively but also recognize different types of gait cycle,
which shows that the algorithm has strong adaptability to
different groups of people, regardless of the age, gender,
height, and weight of the subjects.

Figure 8 shows the frequency histogram of 446 gait
cycles. The red dotted line indicates the threshold for identi-
fying short periods. The duration of each gait cycle may be
inconsistent. Regardless of the number of gait phases in each
gait cycle, if the duration of a gait cycle is less than 0.75 times
of the average duration, we regard it as a short cycle. It can
be seen from Figure 8 that the threshold adopted can effec-
tively identify the period with short duration and facilitate
the subsequent integration of continuous short periods. It

Table 2: Measurement data of different subjects.

Index Gender Age Height (cm) Weight (kg) BMI (kg/m2)

1 Male 17 178 72 22.72

2 Male 20 175 65 21.22

3 Male 28 177 68 21.71

4 Male 45 172 70 23.66

5 Male 48 170 75 25.95
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is worth mentioning that the algorithm proposed in this
paper has good robustness and has achieved good results
in the subsequent gait modeling.

Figures 9 and 10 show examples of two consecutive short
periods, wherein the purple solid line identifies the first short
period and the red solid line identifies the second short
period. In Figures 9 and 10, we can see that the duration
of some phases in the gait cycle is too short, which will lead
to the emergence of short cycles. Specifically, the first short
period in Figure 9 lacks PS phase, the duration of SW phase
is too short, and the second short period lacks IC phase and

MS phase. Although the first short cycle in Figure 10 con-
tains a complete gait phases, the duration of the IC phase,
PS phase, and SW phase is too short. The appearance of a
continuous short period is often accompanied by the abnor-
mal mutation point of swing phase, which is due to the error
caused by the high sensitivity of the pressure sensor in col-
lecting the ground reaction force signal. If there are contin-
uous short periods, no matter whether the number of
phases in the gait period is complete or not, we will combine
the continuous short periods to improve the accuracy of the
gait period recognition.
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4. Gait Health Assessment with Heterogeneous
Data Fusion

4.1. IMU-Based Gait Detection. The acceleration data mea-
sured by the three-axis accelerometer is mapped into the
corresponding reference coordinate system, and the velocity
value can be obtained by one-time integration. The stride
length can be obtained by integration of velocity; that is to
say, the stride length can be obtained by quadratic integral
of acceleration signal. In practical application, because of
the noise and drift of the sensor, the stride obtained by
directly integrating of velocity has a drift error. In the pro-
cess of space measurement, resetting the integral window

regularly can effectively alleviate the imprecision caused by
error integral.

Most sports, such as walking and running, have identifi-
able repetition periods. In the process of activity, a gait cycle
starts when the foot just touches the ground, and usually, the
heel touches the ground first, which will cause a large peak
acceleration and then vibration. In the stance stage, there is
only a small duration of time when the foot fully contacts
the ground. At this time, the foot and the ground are rela-
tively static and the velocity is almost zero. These short
periods are often referred to as the full standing phase and
occur before the foot enters the swing phase. ZVU algorithm
makes full use of the zero velocity information of the foot to
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Figure 8: Frequency histogram of gait cycle duration.
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correct the self-cumulative error by inputting the gait seg-
mentation results; that is, when in the mid stance phase,
the instantaneous speed is 0. ZVU algorithm is only suit-
able for the case of IMU on the foot, and its effectiveness
depends on the detection of the zero velocity moment.
The improved integration method is used to estimate the
space measurement of gait. The flow chart of the algo-
rithm is as follows.

(1) Step 1: Map the acceleration data measured by the
three-axis accelerometer to the world coordinate
system to obtain the acceleration value aWðtÞ in the
world coordinate system

aW tð Þ = q̂ tð Þ ⊗ ab tð Þ ⊗ q∧∗ tð Þ = CW
S tð Þ ⋅ aS tð Þ: ð9Þ

(2) Step 2: Eliminate the influence of gravity acceleration
to get the acceleration caused by motion

A tð Þ = ae tð Þ − G
!
: ð10Þ

(3) Step 3: Integrate the acceleration caused by motion
in the world coordinate system to obtain the instan-
taneous velocity in the process of motion

v tð Þ =
ðT2

T1

A tð Þdt, ð11Þ

where ½T1, T2� represents the sampling period.

(4) Step 4: After modeling the individual gait, when
full stance is detected, ZVU algorithm is used to
eliminate the instantaneous speed estimation error

and the stride estimation error is also eliminated.
Next, we describe the implementation of ZVU
algorithm

Because of the intrinsic measurement error of the
acceleration sensor, the acceleration data of each
movement stage in the gait cycle consists of two
parts:

aem tð Þ = aea tð Þ + ε, t ∈ 0, T½ �, ð12Þ

where aeaðtÞ is the acceleration value caused by the
real motion, ε is the drift error of the sensor, and T
is the duration of each motion stage. Assuming that
the drift error is constant in time 0 ~ T , it can be
regarded as a constant. Then, the speed of the foot
before entering the full stance phase can be calcu-
lated by the following formula:

vem tð Þ =
ðt
0
aem tð Þdτ =

ðt
0
aea tð Þ + εð Þdτ

=
ðt
0
aea tð Þdτ +

ðt
0
εdτ = vea tð Þ + εt:

ð13Þ

In Step 3, there is an error in the estimation of the
instantaneous step speed. veaðtÞ is the instantaneous
speed caused by actual motion, and εt is the speed
error caused by drift error integral. When the foot
enters the full stance stage of the following gait cycle,
that is to say, when the foot contacts the ground
completely once again, the instantaneous speed
caused by the actual motion should be 0. The differ-
ence between the actual instantaneous speed and the
nonzero vemðTÞ obtained by integration is used to
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Figure 10: Example #2 of continuous short period.
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correct the acceleration drift error, and the drift
error ε in a gait cycle can be estimated as follows:

ε =
vem Tð Þ
T

: ð14Þ

Then, the operation in Step 3 is used to integrate the
corrected real acceleration value to obtain the instan-
taneous walking speed.

(5) Step 5: Integrating the corrected instantaneous step
speed obtained in Step 4 once more to obtain the
corresponding estimated position

p tð Þ =
ðT2

T1

v tð Þdt: ð15Þ

4.2. Gait Health Evaluation Model. The purpose of gait
health evaluation is to establish a model that can identify
the gait health status of different groups of people. On this
basis, a quantitative evaluation model of gait health is con-
structed. Gait health evaluation is achieved by measuring
the symmetry and homogeneity of gait. Gait disorder can
affect the symmetry and homogeneity of gait. Symmetry
indicates the similarity between the pressure signal and iner-
tia signal measured by the left feet and right feet at each step,
and homogeneity indicates the time repeatability of the same
pressure mode and inertia mode between two adjacent steps
of the same lower limb. In this paper, the monopedal gait
analysis method is adopted, so the gait is evaluated by the
homogeneity of gait, and the degree of abnormal gait is indi-
cated by the range of departure from normal gait parame-
ters. The flow of gait health evaluation algorithm is shown
in Figure 11.

(1) Step 1: The GRF signal is used to model the individ-
ual gait. The gait phase sequence and duration of

each gait cycle are recorded, and the parameters of
gait cycle are obtained, including cadence, percent-
age of stance phase time, and percentage of swing
phase time

(2) Step 2: Considering the homogeneity of gait, the
individual gait is evaluated according to the phase
sequence and the duration of each phase in the gait
cycle. Compared with medical standard, IC, MS,
PS, and SW account for 12%, 38%, 12%, and 38%
of gait cycle, respectively. Taking the gait sequence
IC>MS>PS> SW proposed by Perry model as the
standard gait, the gait cycle that is different from
Perry model and whose gait phase duration obvi-
ously deviates from the medical standard is regarded
as abnormal gait cycle. Gait performance is
expressed as ratio of normal gait cycles to total gait
cycles, which can be expressed as follows

Gait evaluation = Normal gait cycles
Total gait cycles

: ð16Þ

(3) Step 3: According to the measured acceleration and
angular velocity, complementary filter is used to esti-
mate the foot direction represented by quaternion,
which is prepared for the spatial measurement and
estimation in the follow-up gait evaluation

(4) Step 4: Estimate the stride length of each gait cycle
and get the following average speed value

Average velocity =
∑Stride length
Walking time

: ð17Þ

4.3. Experimental Results and Analysis

4.3.1. Experiment Setup. After the introduction of inertial
measurement unit, in order to verify the adaptability of gait
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Gait segmentation
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Gait phase
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Figure 11: Flow chart of multisensor fusion gait health evaluation.
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analysis algorithm based on heterogeneous sensor data
fusion, two different cases are considered.

(1) Case 1: The subjects walk freely until they reach a
fixed location, and the walking distance is fixed at
0.6m

(2) Case 2: The subjects walk in a straight line at their
comfortable speed, they may turn back and forth
freely, and the straight line walking distance is not
limited

4.3.2. Experimental Results and Performance Analysis.
Figure 12 shows the deviation between the actual stride
length and the single stride length measured by the proposed
algorithm. The gait cycle starts from the starting of stance
phase and ends at the beginning of the next gait cycle. The
length of gray line segment in the graph indicates the degree
of deviation, and it can be found that the deviation between
them is less than 4.7%. Although there is no special research
in the long-term experiment, the algorithm has no obvious
error accumulation in the 5-minute walking process. This
is due to the introduction of ZVU algorithm in the spatial
metric estimation and accurate zero speed detection, which
can effectively suppress the error accumulation.

Table 3 shows the gait evaluation results of each subject
walking during 1 minute. We can see that the accuracy of the
proposed algorithm is almost 100%, proving that it can be
used for the subsequent time-space parameter analysis for

gait. The accuracy of cadence is also relatively high, close
to 100%. The average velocity and cadence of the experi-
mental subjects are low, and the number of abnormal gait
cycles is also at a low level. This is because most of the
subjects choose a slower walking speed during the test. Gait
health score is defined as the proportion of normal gait
cycles to the total number of gait cycles multiplied by 100.

5. Conclusion

This paper presents a gait detection algorithm based on mul-
tisensor information fusion technology. The pressure sensor
is used to collect the human body dynamics information,
and the inertial measurement unit is used to collect the
human body kinematics information to detect the temporal
and spatial parameters of gait. Aiming at the problem that
the traditional threshold-based gait phase recognition algo-
rithm cannot distinguish the subtle changes between gait
phases, a gait phase recognition algorithm based on fuzzy
logic reasoning is adopted to realize the smooth and contin-
uous recognition of gait phases. In order to overcome the
attitude calculation error caused by inertial module mea-
surement error and noise, quaternion correction and com-
plementary filtering are used to correct the measurement
accuracy and combined with zero speed update technology
to suppress the accumulation of inertial module measure-
ment error. The experimental data show that the gait evalu-
ation algorithm based on heterogeneous sensor data fusion

Table 3: Gait assessment results.

Subjects Actual step number
Gait cycle

segmentation result
Accuracy (%)

Cadence
(steps/min)

Average
velocity (m/s)

Abnormal gait
cycle number

Gait health
score (points)

1 148 148 100 111 1.21 7 95

2 136 136 100 102 1.05 6 96

3 120 120 100 90 0.98 6 95

4 132 132 100 99 0.94 11 92

5 120 120 100 90 0.83 9 93

0 20 40 60 80 100
0.57

0.58

0.59

0.60

0.61

0.62

Figure 12: Single-step error analysis results.
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can significantly improve the accuracy of gait spatiotemporal
parameters and provide support for gait health evaluation.
In the future, we will study more applications based on gait
detection parameters, such as quantitative detection of
energy consumption, fall prediction, and sports injury risk
early warning.
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