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Localization is the primary problem of mobile robot navigation. Monte Carlo localization based on particle filter has better accuracy
and is easier to implement, but there is also the problem of particle degradation. In this paper, the iterative extended Kalman filter is
optimized by the Levenberg-Marquardt optimization method. An improved particle filter algorithm based on the upon optimized
iterative Kalman filter is proposed, and the importance probability density function of the particle filter is generated by the
maximum posterior probability estimation of the improved iterative Kalman filter. Simulation results of the improved particle
filter algorithm show that the algorithm can approximate the state posterior probability distribution more closely with fewer
sampled particles under the premise of ensuring sufficient state estimation accuracy. Meanwhile, the computation is reduced
and the real-time performance is enhanced. Finally, the algorithm is validated on the indoor mobile service robot. The
experimental results show that the localization algorithm’s accuracy meets requirement for real-time localizing of the restaurant
service robot.

1. Introduction

Localization is the primary problem of mobile robot naviga-
tion. Accurate, fast. and stable localization is the premise for
mobile robot to perform navigation tasks correctly [1]. The
global visual localization uses the global camera to collect
the image information of the environment where the mobile
robot is located. Through the computer vision algorithm, the
pose of the mobile robot in the environment is obtained to
realize the localization of the mobile robot [2]. In the process
of global localizing by ceiling camera, the implementation of
the localizing algorithm does not depend on the mobile
robot’s own processor but can run on the upper computer.
Meanwhile, localization multiple robots in the same space
only requires a set of ceiling cameras, so it is cheaper [3]. This
paper studies the localization method of mobile service
robots for food delivery in restaurants. Multiple food delivery
robots work simultaneously in restaurants and the working
environment is relatively fixed, so it is very suitable for global
visual localization using a ceiling camera.

Common global localization methods for service robots
include Kalman filtering localization method [4], Markov
localization method [5], and Monte Carlo localization based
on particle filter algorithm (MCL) [6]. Kalman filtering local-
ization algorithm used the recursive method to estimate the
state of the linear dynamic system with Gaussian noise [7].
However, in the practical application environment, the
observation equation is generally nonlinear, so it is necessary
to extend the application of Kalman filter through model lin-
earization; thus, an extended Kalman filter (EKF) is gener-
ated to solve the state estimation problem in some
nonlinear environments [8]. The EKF localization algorithm
is simple in structure and has certain precision, so it has been
widely used. Due to model errors and noise statistical errors
caused by linearization of nonlinear systems, EKF is faced
with problems such as filter divergence and insufficient esti-
mation accuracy [9]. Iterative extended Kalman filtering
(IEKF) algorithm introduces the iterative filtering theory into
the extended Kalman filtering method, updates the linearized
observation equation by iterative calculation, compensates
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the truncation error caused by system linearization effec-
tively, and makes full use of observation information to
approximate the optimal estimate of state parameters [10].
IEKF localization method approximates the predictive value
of robot state by using an iterative sequence, sacrificing a cer-
tain amount of computing time, so as to obtain a good per-
formance of robot state estimation [11].

By representing the possible distribution of robot pose
with grid points in the state space, Markov localization can
realize the global localization of mobile robot by constantly
updating the probability distribution of state space points
[12]. Compared with EKF localization, Markov localization
has better robustness, while EKF localization has better local-
ization accuracy [12]. However, due to the need to calculate
the reliability of all grids repeatedly, Markov localization con-
sumes a lot of time, which leads to the poor real-time perfor-
mance, and it is not conducive to practical application [13].

Monte Carlo localization is an extension of Markov
method, and the basic principle of this method is to use par-
ticle filter (PF) to track the probability distribution of the
robot’s possible pose. Monte Carlo localization greatly
reduces memory consumption and makes effective use of
robot resources. It has better localization accuracy and is eas-
ier to implement. Montemerlo et al. proposed a fast simulta-
neous localization and mapping (SLAM) algorithm based on
Rao-Blackwellized particle filter in 2003 [14]. However, when
the environmental observation noise of mobile robots is low
(i.e., the environmental observation sensor is too accurate,
such as the laser sensor), particle set degradation is easy to
occur, which makes the SLAM algorithm diverge [15]. It is
a simple and widely used method of selecting the state trans-
fer probability density function with prior property as the
importance probability density function to solve the phe-
nomenon of particle degradation [15]. Montemerlo et al.
proposed the Fast SLAM2.0 algorithm, which uses EKF to
integrate the current robot’s environmental observation
information into the proposal distribution’s design of the
particle filter, so that the particles are concentrated in the
high observation likelihood region [16]. Fast SLAM 2.0 can
create a better importance density at the cost of introducing
inaccuracies due to linearization, as well as making a Gauss-
ian assumption on the form of the posterior density. Ullah
et al. designs importance density function by using unscented
Kalman filter and proposes an unscented particle Filter (PF-
UKF) algorithm. It works well at the cost of large computa-
tion burden and when the state estimation error covariance
is close to the process noise covariance [17]. The proposal
distribution selected by the above algorithm does not contain
the latest observation data, which also may result in the per-
formance degradation of the algorithm. The iterated
extended Kalman filter can make efficient use of the latest
observation and improve the performance of particle filter.
Wu et al. use the IEKF to generate proposal distribution in
particle filtering framework, and an iterative extended Kal-
man particle filter localization algorithm (PF-IEKF) is pro-
posed [18]. When the nonlinear system satisfies the
condition of local linearization, the IEKF iterative updating
sequence is equivalent to the Gauss-Newton (G-N) iterative
estimation [19]. However, the G-N method has some prob-

lems in practical application, such as convergence and preci-
sion of calculation results. In order to improve the
convergence and precision of the G-N algorithm, the
Levenberg-Marquardt (LM) optimization method is usually
used to optimize the IEKF iterative sequence to improve
the convergence and precision of IEKF iterative sequence
[20]. Li et al. proposed a robot vision positioning method
based on iterative Kalman particle filter. Experimental results
show that the accuracy and real-time performance of robot
mobile navigation can meet the requirements [21].

Inspired by the Gauss-Newton optimization algorithm,
this paper improves iterative extended Kalman filtering using
the Levenberg-Marquardt optimization method to improve
the convergence and calculation accuracy of IEKF iterative
sequence. The maximum posterior probability estimation of
improved IEFK is used to generate the importance probabil-
ity density function of particle filter, and an improved itera-
tive extended Kalman particle filter (PF-UIEKF)
localization algorithm is proposed. Then, the effectiveness
of the improved particle filter algorithm is verified by simula-
tion. At last, it is applied to the global visual localization on
the restaurant service robot and verified by experiment.

2. Modeling of the Indoor Service Robot

2.1. Hardware of the Robot. The research object of this paper
is the restaurant service robot, whose task is to pick up
cooked dishes and send them to the designated table autono-
mously. Therefore, the restaurant service robot must have
good autonomous mobility and can move freely in any direc-
tion in the restaurant environment through a motion mech-
anism. At the same time, in order to make the restaurant
service robot take the place of a human to complete the task
of picking up and delivering dishes independently, the ser-
vice robot must also be configured with corresponding
manipulating mechanism.

As shown in Figure 1, the restaurant service robot is com-
posed of three main parts: the robot arm, the head, and the
motion mechanism. The robot motion mechanism adopts
the differential drive with two driving wheels and is also
equipped with two universal wheels which play a supporting
role. Two robotic arms are installed on the left and right sides
of the robot torso. Each robotic arm has three degrees of free-
dom to complete the operation of grasping the dish. To
achieve the global localization of the service robot, a global
camera is installed on the ceiling of the restaurant. The global
vision controller receives video signals from the ceiling global
camera over a wireless network. The vision processing algo-
rithm is used to identify and measure the pose of the camera
relative to the color mark installed at the top of the service
robot head. At last, the global localization algorithm is run
to determine the robot’s coordinates in the global coordinate
system.

2.2. Kinematic Model of the Robot. In order to analyze the
kinematic model of the service robot, the following assump-
tions are made. The two driving wheels are rigid bodies with
the same size and no deformation. The line of the two wheels’
axis is perpendicular to the front and rear motion direction of
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the platform. The wheel face of the driving wheel is perpen-
dicular to the ground and maintains point contact. The drive
wheel only does pure rolling and will not produce axial
movement. The influence of the drive wheel thickness on
the movement of the moving platform is ignored.

Based on the above assumptions, as shown in Figure 2,
the pose of the restaurant service robot can be expressed as
M = ðXM , YM , θÞT , where ðXM , YMÞ is the projection coordi-
nate of the central point M of the driving wheel axis in the
motion plane, and θ is the course angle of the robot. Suppose
that the radius of the two driving wheels is r, the axial dis-
tance is d, and the rotational angular velocity of left and right
wheel is ωL and ωR, respectively, then the localization for-
mula of the robot based on the kinematics model can be
obtained as follows:

Xi+1 = Xi +
r
2 cos θi

ðti+1
ti

ωL tð Þ + ωR tð Þð Þdt,

Yi+1 = Yi +
r
2 sin θi

ðti+1
ti

ωL tð Þ + ωR tð Þð Þdt,

θi+1 = θi +
r
d

ðti+1
ti

ωR tð Þ − ωL tð Þð Þdt:

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

By discretizing Equation (1) and adding the model noise
of the system, the state equation of the restaurant service
robot can be obtained as follows:

x kð Þ =

X k − 1ð Þ + Tr cos θ k − 1ð Þð Þ ωR kð Þ + ωL kð Þð Þ
2

Y k − 1ð Þ + Tr sin θ k − 1ð Þð Þ ωR kð Þ + ωL kð Þð Þ
2

θ k − 1ð Þ + Tr ωR kð Þ − ωL kð Þð Þ
d

2
66666664

3
77777775
+w k − 1ð Þ:

ð2Þ

In Equation (2), xðkÞ = ðXðkÞ, YðkÞ, θðkÞÞT :wðkÞ is the
model error, which is the Gaussian white noise with zero
mean value. T is the sampling period.

2.3. Localization of the Robot through the Global Ceiling
Camera. As shown in Figure 3, the global coordinate sys-
tem (GCS), robot coordinate system (RCS), and camera
coordinate system (CCS) are established for the service
robot firstly.

In Figure 4, ð0, 0Þ denotes the origin of the camera
coordinate system, HC denotes the height of the ceiling
camera relative to the floor; HR denotes the height of
the robot; ðXRC, YRCÞ is the coordinates of the robot in
CCS; ðXHC, YHCÞ is color mark’s coordinates in CCS.
According to the geometric relationship, the following
equation can be obtained:

a
a + b

= HR
HC

, b
a + b

= YRC
YHC

, b
a + b

= XRC
XHC

: ð3Þ

Figure 1: Structure diagram of the service robot.
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Then, the following results can be calculated as,

XRC =
HC −HR

HC
× XHC,

YRC =
HC −HR

HC
× YHC:

8>>><
>>>:

ð4Þ

From Equation (4), it is obvious that the coordinates
of the robot in CCS ðXRC, YRCÞ is only dependent on
ðXHC, YHCÞ, which is the color mark’s coordinates in
CCS. To get the (XHC, YHC), the image of the monocu-
lar camera mounted on the ceiling is acquired and
transmitted to the robot global vision controller through
the wireless network. The image is firstly processed to
remove the image distortion. Then, the color segmenta-
tion method is used to locate the robot in the image
and distinguish the color mark on the head in the
hue-saturation-value (HSV) color space. After distin-
guishing and extracting the color mark, the coordinates
of the color mark in CCS can be obtained [22].

At last, the coordinates of the robot in GCS can be solved
according to coordinate transformation [22], and the coordi-

nates of the robot in GCS can be calculated as

X ′

Y ′

" #
= T

XRC

XRC

" #
=

XRC cos θ + YRC sin θ +m cos θ + n sin θ

−XRC sin θ + YRC cos θ −m sin θ + n cos θ

" #
:

ð5Þ

In Equation (5), θ is the rotation angle of the camera
coordinate system relative to the global coordinate system;
m and n are the offset distances of the camera coordinate sys-
tem relative to the global coordinate system. In order to
determine the current pose of the robot, the current course
angle of the service robot is also required. Gyroscope is
installed in the robot, and the initial course angle of the ser-
vice robot is obtained according to the gyroscope firstly. In
order to overcome the influence of gyroscope cumulative
error on the course angle when the robot moves for a long
time or a long distance, it is necessary to correct the course
angle using global vision periodically.

If the global coordinates of the service robot at two con-
secutive moments are obtained by the global visual localiza-
tion method, and they are ðXt−1, Yt−1Þ and ðXt , YtÞ, then
the current course angle of the robot is

θt = arctan Xt − Xt−1
Yt − Yt−1

: ð6Þ

By combining Equations (5) and (6), the observation
equation of service robot based on global vision after discre-
tization can be obtained as follows:

y kð Þ =

X kð Þ +mð Þ cos θ kð Þð Þ + Y kð Þ + nð Þ sin θ kð Þð Þ
− X kð Þ +mð Þ sin θ kð Þð Þ + Y kð Þ + nð Þ cos θ kð Þð Þ

arctan X kð Þ − X k − 1ð Þ
Y kð Þ − Y k − 1ð Þ

� �
2
66664

3
77775 + v kð Þ:

ð7Þ

In Equation (7), yðkÞ = ðXRCðkÞ, YRC ðkÞ, θRCðkÞÞT , and

M

X

Y

d
1

B
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𝛽

Figure 2: The diagram of the two-wheeled differential driven robot.
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Figure 3: Establishment of the robot coordinate system.
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Figure 4: The globe vision camera model of the robot.
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vðk) is the observed noise of the global ceiling camera of the
robot system.

3. Improved Iterative Extended Kalman Particle
Filter Localization Algorithm

3.1. Improved Iterative Extended Kalman Filtering. The robot
state Equation (2) and observation Equation (7) above can be
simplified as

xk = f xk−1, ukð Þ +wk yk = h xk, ukð Þ + vk: ð8Þ

In Equation (8), f ð∗Þ and h ð∗Þ are the state transfer
function and observation function of the robot system,
respectively. xk and yk are the state value and observed value
of the system at time k, respectively. wk and vk are the state
noise and observation noise of the system, and their covari-
ances are Q and R, respectively. uk is the known input. When
EKF performs nonlinear transformation, it uses Taylor series
expansion and ignores higher-order terms, which will intro-
duce truncation error and make the performance of state
estimation worse. In order to reduce nonlinear error and
improve the performance of nonlinear filtering, IEKF algo-
rithm introduces the iterative filtering theory into the EKF
algorithm. In the state update stage of IEKF, multistep itera-
tion is adopted, and the observation equation is linearized for
many times. The whole filtering process is repeated to
achieve the optimal state estimation finally [23].

The main steps of IEKF algorithm are as follows:

(1) State value prediction. Suppose the estimated state
value at time k − 1 is x̂k−1∣k−1, and the known input
state uk and the system state equation are used to
obtain the estimated state value x̂k−1∣k−1 at time k.
Then, the Jacobian matrix Fk−1 of the system state
equation and the error covariance matrix Pk∣k−1 of
the system state are calculated, respectively, to com-
plete the state prediction process

(2) Observation value acquisition. The state estimation
value x̂k∣k−1 at time k and the system observation
equation were used to obtain the predicted observa-
tion value ŷk∣k−1 at time k

(3) Updating the predicted value iteratively using the
observation value. Assuming that there are N itera-
tions, the Jacobian matrix Hi

k and the filtered gain
matrix Ki

k of the system observation equation at the
ith iteration are calculated, respectively. Then use
Hi

k and Ki
k to update the error covariance matrix.

The difference value yk − yik of the observed variable
is calculated and the status is updated

It can be seen that if the updated x̂k∣k−1 after observation
is taken as the initial value of iteration and the observation
equation is linearized again, the obtained state estimation
value will be more accurate. The IEKF algorithm is formed
by carrying out this iterative process several times.

Bell and Cathey analyzed the relationship between the
iterative sequence of IEKF and the nonlinear least squares
Gauss-Newton method. When the nonlinear system satisfies
the condition of local linearization, the iterative update
sequence of iteratively extended Kalman filter is equivalent
to Gauss-Newton iterative estimation [19]. Due to the intro-
duction of errors such as linearization, the system’s state
space equation may not be completely consistent with the
actual observed data, and solutions using the Gauss-
Newton method usually do not yield stable results. It also
cannot guarantee the convergence of the state observation
updated estimation results, and the estimated value of the
covariance matrix is lower than the true value, thus affecting
the effective use of the observation information.

A modified Levenberg-Marquardt method can correct
the original iterative sequence by introducing a damping fac-
tor, which improves the convergence of the algorithm and
the accuracy of the calculation results [24]. Therefore, in this
paper, the Levenberg-Marquardt method is used to adjust the
covariance matrix in the IEKF to ensure the convergence of
the estimated error. The core of this method is that the
damping factor λ is used to modify the prediction error
covariance matrix during each iteration, that is, to adjust
the error covariance matrix as follows:

~Pk/k−1 = I − Pk/k−1 Pk/k−1 + λ−1I
� �−1h i

Pk/k−1: ð9Þ

Then, an iterative observation update is performed with a
modified ~Pk/k−1. The implementation steps of the improved
IEKF algorithm based on the Levenberg-Marquardt optimi-
zation method are as follows:

(1) Initial value setting. The calculation formula of the
initial value is

k = 0, x̂0 = E x0ð Þ, P0 = E x̂0 − x0ð Þ x∧0 − x0ð ÞT
h i

, ð10Þ

where x̂0 is the estimated value of initial state and P0 is
the initial state error covariance matrix

(2) Prediction of state. Based on the estimated state value
at time K − 1 and known input uk, the predicted state
value x̂k/k−1, Jacobian matrix Fk−1, and error covari-
ance matrix Pk∣k−1 of the system at time K are calcu-
lated as follows:

x̂k/k−1 = f x̂k−1/k−1, ukð Þ,

Fk−1 =
∂f
∂x

x̂k−1/k−1, ukð Þ,

Pk∣k−1 = Fk−1Pk−1/k−1F
T
k−1 +Q

8>>>><
>>>>:

ð11Þ

(3) Obtain observation information. Based on x̂k/k−1 and
the observation equation of the system, the predicted
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observation value of the system can be calculated as
follows:

ŷk/k−1 = h x̂k/k−1, ukð Þ ð12Þ

(4) Iterative updates of status. Assume that N iterations
are performed. For the ith iteration ð1 ≤ i ≤NÞ, the
following calculation is performed successively

The Jacobian matrix of the system state is calculated as

Fi
k−1 =

∂f
∂x

x̂k−1/k−1
i, uk

� �
: ð13Þ

The predicted state and error covariance matrix of the
system are calculated as

x̂k/k−1
i = f x̂k−1/k−1

i, uk
� �

,

Pk/k−1
i = Fi

k−1Pk−1/k−1F
iT
k−1 +Q:

(
ð14Þ

The modified error covariance matrix is optimized using
the Levenberg-Marquardt method

~Pk/k−1
i = I − Pk/k−1

i Pk/k−1
i + λ−1I

� �−1h i
Pk/k−1

i: ð15Þ

The Jacobian matrix of the observation equation is calcu-
lated as

Hi
k =

∂h
∂x

x̂k/k
i, uk

� �
: ð16Þ

The filter gain matrix is calculated as

Ki
k = ~P

i
k/k−1H

i
k Hi

k
~P
i
k/k−1 Hi

k

� �T + R
h i−1

: ð17Þ

The updated error covariance matrix is,

Pi
k/k = I − Ki

kH
i
k

� �
~P
i
k/k−1: ð18Þ

The predicted value of the observed value of the system is

ŷik = h x̂k/k−1
i, uk

� �
: ð19Þ

The system status estimated value is updated as

x̂k/k
i = x̂k/k−1

i + Ki
k yk − ŷik
� �

: ð20Þ

When the number of iterations reaches the set maximum
number of iterations N or the error between two consecutive
iterations is less than the set minimum error value, the itera-
tion process is stopped. The iteration result is taken as the
status update value at time k,

x̂k/k = x̂k/k
i, Pk/k = Pk/k

i: ð21Þ

In the above equation, “^” represents the estimated state.
The subscript k/k − 1 represents the prior estimate. The sub-
script k/k is the posterior estimate.

3.2. Improved Iterative Extended Kalman Particle Filter
Algorithm. Compared with the iteratively extended Kalman
particle filter algorithm, the difference of the improved parti-
cle filter algorithm proposed in this paper is that, the impor-
tance probability density function of particle filter is
generated by iterative Kalman filter based on L-M optimiza-
tion. The importance probability density function reduces
the linearization error of system. It is more consistent with
the actual posterior probability distribution of the state vari-
able. The implementation steps of the improved iteratively
extended Kalman particle filter algorithm (PF-UIEKF) are
as follows:

(1) Initializing the particle set. The initial state and prior
probability density pðx0Þ of the robot were sampled
Ns times, and Ns particle points were obtained

(2) For k = 1, 2,⋯⋯N , N is the number of samples

For i = 1, 2,⋯⋯Ns,

(i) Calculating the Jacobian matrix Fi
k of the state equa-

tion using Equation (13)

(ii) The improved IEKF algorithm is used to update the
particle set using Equation (14)

For j = 1, 2,⋯⋯ c

(a) The Jacobian matrix Hi
kj
of the observation equation

of the system is calculated using Equation (16)

(b) The state covariance Pi
kj
is updated by Equation (18)

(c) Equation (17) is used to update the state gain Ki
kj

(d) The state estimation x∧kj
i is updated according to

Equation (20)

End for

(iii) Construct the importance probability density
function

(iv)

xik ∼ q xik x
i
k−1, yk

��� �
=N x̂ikc , P

i
kc

	 

ð22Þ

In Equation (22), qðxikjxik−1, ykÞ is importance sampling
density function.

(v) Ns times of sampling are conducted to generate state
prediction particle set

(vi) Calculating the particle weight ωi
k of the sample set

using the following equation
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ωi
k ∝ ωi

k−1
p yk ∣ x

i
k

� �
p xik ∣ x

i
k−1

� �
q xik ∣ x

i
k−1, yk

� � ð23Þ

In equation (23), pðyk ∣ xikÞ is the likelihood function of
the observed value yk.

End for

(3) The sample point weight is normalized as

ωi
k =

ωi
k

∑N
j=1ω

j
k

ð24Þ

(4) To represent the degree of particle degradation, the
effective particle set index Neff in particle filter is
introduced [25]

Neff =
1

∑N
i=1 ωi

k

� �2 ð25Þ

Preset a threshold value N th, and N th = αNð0 < α < 1Þ. If
Neff >N th, step 6 is entered, otherwise step 5 is entered.

(5) Sequence importance resampling. Polynomial resam-
pling is performed on the original particle set. Parti-
cles with larger sample weights are propagated,
while particles with smaller sample weights are elim-

inated, and a new set of particles is obtained

Ŝt = x̂1t , x̂2t ,⋯, x̂Ns
t

n o
ð26Þ

The sample weights of the new particle set are reallocated,
ωi
k = 1/Ns. At last, step 7 is entered.

(6) The state estimation value of the system at time k is
output according to the particle
setSt = fx1t , x2t ,⋯, xNs

t g
(7) Make k = k + 1 and go to step 2, end for

3.3. Global Vision Localization Based on PF-UIEKF
Algorithm. In order to reduce the navigation cost of mobile
service robot in restaurant environment, the robot global
localization is realized based on the restaurant environment
image collected by the global ceiling camera in this paper.
The localization method based on global vision has been
introduced in Section 2.3 in detail, and it can realize the
global localization of the robot theoretically. However, due
to the influence of noise in the restaurant environment, the
measured value of global vision often contains large non-
Gaussian noise. It seriously affects the localization accuracy
and fails to meet the mobile navigation requirements. Here,
a robot global visual localization algorithm based on PF-
UIEKF is proposed.

According to Equations (2) and (7), the robot system’s
state model and observation model is obtained. Equations

PF-IEKF update the particle

Time update 
equation

Normalized 
weights

Sequential important 
resampling

Yes

No

Iterative
measurement

update

Importance
function

The 
particle
estimate

value

Initialization

Figure 5: The improved iterative extended Kalman particle filter localization algorithm.
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(17), (18), and (20) are used to obtain the state estimation
and covariance iterative update equation of the robot’s posi-
tion using IEKF based on L-M optimization. Then, the
importance probability density function is generated by
using the maximum posterior probability estimation of the

obtained robot state, and the improved particle filter algo-
rithm is used to obtain more accurate global coordinates of
the robot. Figure 5 shows the implementation steps of the
global visual localization algorithm of the restaurant service
robot based on the PF-UIEKF.

4. Algorithm Verification and Experiment

4.1. Simulation and Analysis. To verify the effect of the
improved iterative extended Kalman particle filter algorithm,
the following standard nonlinear system model is adopted in
simulation experiments, and the standard nonlinear system
state equation is

xk+1 = 1 + sin ωπkð Þ + ϕ1xk + νk: ð27Þ

0 10 20 504030 60
Time

-2

0

2

4

6

8

10

12

14

16

D
at

a

Filter estimates (posterior means) vs. True state

Noisy observations
True x 
PF estimate

PF-EKF estimate
PF-IEKF estimate
PF-UIEKF estimate

Figure 6: Posterior means estimated by four different nonlinear filtering algorithms.

Table 1: RMSE and execution time of different algorithms (20
particles).

Algorithm
RMSE

Execution time (s)
Mean Variance

PF 0.81561 0.032085 0.69404

PF-EKF 0.39339 0.026261 0.70998

PF-IEKF 0.15723 0.011912 0.71868

PF-UIEKF 0.012276 1.1699e-005 0.77623

Table 2: RMSE and execution time of different algorithms (50
particles).

Algorithm
RMSE

Execution time (s)
Mean Variance

PF 0.65681 0.036178 0.70529

PF-EKF 0.29122 0.010215 0.83844

PF-IEKF 0.030893 0.0028203 1.1196

PF-UIEKF 0.0063566 2:5751e − 006 1.6613

Table 3: RMSE and execution time of different algorithms (200
particles).

Algorithm
RMSE

Execution time (s)
Mean Variance

PF 0.45981 0.057805 0.79223

PF-EKF 0.28979 0.016474 2.6039

PF-IEKF 0.0062112 1:5201e − 006 3.5898

PF-UIEKF 0.0051136 2:3769e − 006 6.0593

8 Journal of Sensors



And its observation equation is

zk =
ϕ2x

2
k + nk, t ≤ 30,

ϕ3xk − 2 + nk, t > 30:

(
ð28Þ

The system process noise vk obeys the gamma distri-
bution, and vk ∼ ζαð3, 2Þ. The observed noise obeys Gauss-
ian distribution and nk ∼Nð0, 0:00001Þ. The following are
given parameters in a nonlinear system model: ω = 0:04,
Φ1 = 0 :5, Φ2 = 0:2, and Φ3 = 0:5. The number of particles
used in the simulation experiment is N = 20, and the
observation time is T = 60 s. The polynomial resampling
method is used to resample the particle set. State variables
were initialized again before each simulation experiment,
and 100 independent simulation experiments were
repeated. The output of the algorithm is the mean value
of the particle set, and then, the state estimation of the
nonlinear system can be expressed as

�xk =
1
N
〠
N

i=1
xik: ð29Þ

In order to explain the state estimation performance of the
PF-UIEKF algorithm more intuitively, simulation experi-
ments of various particle filtering algorithms such as standard
particle filter (PF), extended Kalman particle Filter (PF-EKF),
and iterative extended Kalman particle filter (PF-IEKF) were
also carried out for this nonlinear model, and the performance
of state estimation was compared and analyzed. Figure 6
shows posterior means estimated by four different nonlinear
filtering algorithms (PF, PF-EKF, PF-IEKF, and PF-UIEKF)
in an independent experiment.

In this paper, the root mean square error (RMSE) of state
estimation value is used to reflect the state estimation accu-
racy of each particle filter algorithm, and its value can be cal-
culated from the following formula.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
N

k=1
�xk − xkð Þ2

vuut : ð30Þ

Table 1 summarizes the state estimation performance
data for each particle filter. The mean and variance of the
RMSE of state estimation value of each particle filter algo-
rithm are given, and the execution time of each algorithm is
also given. It can be clearly seen from Table 1 that the state
estimation accuracy using the PF-UIEKF algorithm is the
best. Although PF-UIEKF particle filter algorithm has a lon-
ger execution time than others, the difference is not
significant.

In order to analyze the state estimation performance of
the improved particle filter algorithm furtherly, the number
of particles used in the simulation experiment was increased
to 50 and 200. Other parameters remain the same. 100 inde-
pendent simulation experiments were performed on all par-
ticle filter algorithms again, and initialization was required
before each simulation experiment. Tables 2 and 3 summa-

rize the state estimation performance data for each particle
filter when the number of particles is 50 and 200.

As can be seen from Table 2, when the number of particles
rises from 20 to 50, the state estimation performance of each
particle filter is greatly improved with the increase of the num-
ber of particles. The state estimation accuracy using the PF-
UIEKF algorithm is also the best. However, the increase in
the number of particles also led to the increase in the execution
time of the PF-UIEKF algorithm, which reached 1.6613 s. As
can be seen fromTable 3, with the number of particles increas-
ing to 200, the state estimation performance of each particle
filter is still improved. However, the performance improve-
ment of PF-UIEKF is not obvious compared with other parti-
cle filtering algorithms. At this time, PF-IEKF nearly has the
same state estimation accuracy, mean, and variance of the
RMSE of state estimation value as the PF-UIEKF particle filter.
The estimation accuracy of these two particle filtering algo-
rithms is the best and far better than that of other filtering
algorithms. However, at this time, the execution time of the
PF-UIEKF algorithm is greatly increased, which is nearly twice
that of the PF-IEKF algorithm.

Compared with Table 1–3, PF-UIEKF can still get more
accurate state estimation under the condition of fewer particles
(N = 20), and its estimation performance is much better than
that of PF-IEKF algorithm when N = 50. Moreover, the execu-
tion time of the PF-UIEKF algorithm is shorter than that of PF-
IEKF when N = 50. The improved particle filter algorithm can
approach the posterior probability distribution of the state more
closely with fewer sampled particles under the premise of ensur-
ing sufficient state estimation accuracy, which reduces the com-
putation and enhances the real-time performance.

4.2. Experiments. In this paper, the following localization
experiment is designed: the robot starting from the global
coordinate ð150,150Þ, moving in a counterclockwise

Figure 7: Global vision image processing.

Table 4: The used parameters in this experiment.

Height Width XHC, YHCð Þ HC HR

576 768 (356.5, 72.67) 350 150
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direction for one turn, and finally returning to the vicinity of
the starting point. During the movement of the robot, the
localization algorithm based on PF-UIEKF proposed in the
paper is used to carry out on-line for real-time localization
of the robot.

Firstly, the global image in Figure 7 is obtained after
correcting the original image acquired by the global ceiling
camera. The upper left corner of Figure 7 is the origin of
the coordinate system CCS, and the origin of the coordi-
nate system GCS is located in the upper right corner of
the carpet area in Figure 7. According to the color charac-
teristics of the service robot, an appropriate threshold is
set in the HSV color space of the image by using the color
segmentation method to detect the robot region in the
image and the color mark above the robot head [22]. After
localizing the position of the color mark of the robot’s
head in the global image, the global coordinates of the ser-
vice robot can be calculated according to the method in
Section 2.3. Since the height of the global camera and
the robot are both unchanged and known in advance
(Table 4 lists the given parameters required for the global
visual localization).

The current coordinates of the robot are updated
every 100ms, and the results were recorded. In order to
display the experimental effect more intuitively, 55 sample
points of the actual motion trajectory were extracted at
certain intervals, and the robot localization results and
the actual coordinate positions were displayed in
Figure 8.

The experimental results show that the maximum locali-
zation error of the robot is 4.8 cm. The mean localization
error was 3.74 cm. That is, the localization accuracy of the
proposed global visual localizing algorithm based on PF-
UIEKF can be kept within 5 cm, which fully meets the
requirements of mobile navigation and localization of the
restaurant service robots.

5. Conclusions

According to the global localization requirement of indoor
restaurant service robot which is driven by two differential
wheels, the kinematics model of the service robot and the
localization model through the global ceiling camera are
established in this paper firstly. Then, the iterative extended
Kalman filter is optimized and modified by the Levenberg-
Marquardt optimization method. A particle filter algorithm
based on an improved iterative Kalman filter is proposed,
and the importance probability density function of the parti-
cle filter is generated by the maximum posterior probability
estimation of the improved iterative Kalman filter. A typical
nonlinear system model is used to simulate the improved
particle filter algorithm. The simulation results show that
the particle filter algorithm can obtain higher estimation
accuracy and improve the real-time performance of state
estimation by using fewer particles. Finally, a method of
global localization of indoor restaurant service robot based
on improved iterative extended Kalman particle filter algo-
rithm and global visual localization is proposed and verified
by experiments. The experimental results show that the local-
izing accuracy of the proposed global localizing algorithm
can be kept within 5 cm, which meets the requirements of
mobile navigation and localizing of restaurant service robots.
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