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A flexible tactile sensor array with 6 × 6 N-type sensitive elements made of conductive rubber is presented in this paper. The
property and principle of the tactile sensor are analyzed in detail. Based on the piezoresistivity of conductive rubber, this paper
takes full advantage of the nonlinear approximation ability of the radial basis function neural network (RBFNN) method to
approach the high-dimensional mapping relation between the resistance values of the N-type sensitive element and the three-
dimensional (3D) force and to accomplish the accurate prediction of the magnitude of 3D force loaded on the sensor. In the
prediction process, the k-means algorithm and recursive least square (RLS) method are used to optimize the RBFNN, and the k
-fold cross-validation method is conducted to build the training set and testing set to improve the prediction precision of the 3D
force. The optimized RBFNN with different spreads is used to verify its influence on the performance of 3D force prediction,
and the results indicate that the spread value plays a very important role in the prediction process. Then, sliding window
technology is introduced to build the RBFNN model. Experimental results show that setting the size of the sliding window
appropriately can effectively reduce the prediction error of the 3D force exerted on the sensor and improve the performance of
the RBFNN predictor, which means that the sliding window technology is very feasible and valid in 3D force prediction for the
flexible tactile sensor. All of the results indicate that the optimized RBFNN with high robustness can be well applied to the 3D
force prediction research of the flexible tactile sensor.

1. Introduction

With the rapid development of intelligent robot technology,
researchers are eager to endow robots with a similar tactile
perception of human skin to improve the robot’s ability of
man-machine interaction. Making quick response and cor-
rect decision according to the change of the outside world
is an important challenge for the tactile sensor of intelligent
robots [1]. Therefore, the research of flexible tactile sensors
has become one of the hot topics in the intelligent robot skin
field. The flexible tactile sensor refers to the sensor that not
only has the characteristics similar to human skin but also
can cover the robots’ or other objects’ surface, acting as elec-
tronic skin, sensing and measuring multidimensional tactile
information. The flexible tactile sensor with high flexibility,

sensitivity, extensibility, and ability of perceiving multidi-
mensional tactile signals plays an irreplaceable role in the
study of intelligent robots.

The flexible tactile sensor is mainly developed based on
the principle of capacitance [2–5], piezoelectric effect [6–9],
and piezoresistive effect [10, 11]. In order to make the tactile
sensor similar to human skin, more and more researchers are
dedicating to the research of flexible tactile sensors with dif-
ferent functions and different materials. Massari et al. [12]
presented the model based on numerical FEM for the
development and calibration of a soft tactile sensor able
to solve both the magnitude and the position of an applied
normal load on its surface, which is successfully validated
through experimental results. Schwartz et al. [13] reported
the fabrication of flexible pressure-sensitive organic thin-
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film transistors, which demonstrated that their sensors can
be used for noninvasive, high-fidelity, continuous radial
artery pulse wave monitoring, which may lead to the use of
flexible pressure sensors in mobile health monitoring. Asad-
nia et al. [14] presented a highly stretchable, self-powered,
and ultrasensitive strain sensor based on piezoelectric PVDF
nanofibers. Lee et al. [15] illustrated a flexible capacitive tac-
tile sensor array with the capability of measuring both the
normal and shear force distributions using PDMS as a base
material, which is realized in an 8 × 8 sensor array, and each
unit responds to normal and shear stresses. Based on a 3 × 3
sparse flexible tactile sensor array, Liu et al. [16] realized the
detection of arbitrary contact force loaded on the sparse tac-
tile sensor by utilizing the inverse solution method and the
diffusion effect of the elastomer cover. Mittendorer et al.
[17] proposed a novel approach to realize whole-body tactile
interactions with self-organizing, multimodal artificial skin
on a robot. Cirillo et al. [18] exploited the perception data
provided by a tactile sensor to obtain normal and tangential
components of the contact force and proposed an algorithm
to extract useful information from tactile raw data.

Due to the particularity of the sensor structure and
manufacturing process, the research on flexible tactile sen-
sors concentrates on material development, structure design,
and sensor array size. As to the 3D force detection of flexible
tactile sensors, it is difficult to predict and recognize the 3D
force from different contact spots. There inevitably exist
errors in the process of tactile perception and 3D force detec-
tion of the flexible tactile sensor. Therefore, precise detection
and prediction of contact force are particularly important in
the research of flexible tactile sensors.

In this paper, a flexible tactile sensor array based on the
conductive rubber with piezoresistivity is studied. Its princi-
ple and mathematical model are analyzed in detail, the rela-
tionship between the resistance vector and the 3D force
vector is approximated, and it realizes the accurate prediction
of multiple 3D forces exerted on the sensor by the radial basis
function neural network (RBFNN) intelligent algorithm.
This paper is organized as follows. Section 2 introduces the
property, the structure, and the principle of the flexible tactile
sensor. Section 3 demonstrates the prediction process of 3D
forces based on the RBFNN from different aspects and per-
spectives. Section 4 presents the conclusion.

2. Property and Principle of the Flexible
Tactile Sensor

2.1. Characteristics of Conductive Rubber. In this paper, the
conductive rubber is used as the main material of the sensi-
tive element for the flexible tactile sensor, which is mainly
composed of the GD-401 silicon rubber that is evenly filled
by the CB3100 carbon black conductive particle with a vol-
ume fraction of 28%. The resistivity of the carbon black is 8
× 10−3 Ω · cm. Young’s modulus, Poisson’s ratio, bulk modu-
lus, and shear modulus of the conductive rubber are 6.1MPa,
0.49, 101.67MPa, and 2.05MPa, respectively. The conductive
rubber not only has the flexibility of rubber but also has great
conductivity. When it is subjected to the external force, it
would be deformed at that moment, and the relative concen-

tration of the conductive particles inside the conductive
rubber would be changed accordingly, which will lead to
the change of resistivity. When pressure is loaded, the gaps
among conductive particles become smaller and the concen-
tration increased, which generates a low resistivity. In the
case of no load exerted on the conductive rubber, there are
larger gaps among the conductive particles and the concen-
tration of conductive particles decreased, which makes a high
resistivity. That phenomenon is called piezoresistivity. The
conductive rubber is very sensitive to tactile force and stress,
and the corresponding deformation of the conductive rubber
is closely related to the stress [19]. In view of its excellent
properties, conductive rubber has been widely used in the
research of flexible tactile sensors [19, 20]. Based on the char-
acteristics of conductive rubber, the 3D force of the flexible
tactile sensor is precisely predicted by the RBFNN method
in this paper.

2.2. Model of the Sensor. In order to develop the sensing abil-
ity of the flexible tactile sensor and the prediction accuracy
of 3D force, this paper carries out a comprehensive study
on the model of the flexible tactile sensor array which con-
tains 36 N-type sensitive elements as shown in Figure 1.
The N-type sensitive element is very sensitive to the tactile
force and stress, and it is composed of three conductive col-
umns (labeled “1,” “2,” and “3”) which are made of the con-
ductive rubber. It can decompose 3D force into three
components and transmit the force components to the three
conductive columns.

The sensor array model shown in Figure 1 is mainly com-
posed of force-sensitive material. It includes three parts: the
sensing array is composed of 36 N-type tactile force-
sensitive elements made of the conductive rubber; the frame
of the array is made of flexible insulating GD-401 silicon rub-
ber, and the interspaces among the N-type sensitive elements
are filled with the silicon rubber; and the wires connect to the
external circuit, and the N-type sensitive elements are con-
nected by the wires. The resistance of the three conductive
columns of every sensitive element could be obtained by
detecting the resistances between the upper wire and the cor-
responding lower wire. For example, the resistance of con-
ductive column “3” of the N-type sensitive element located
at the top right corner in Figure 1 can be gained by detecting
the upper wire labeled “8” and the lower wire labeled “9.” The
initial length of the conductive columns labeled “1,” “2,” and
“3” are

ffiffiffi
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cm, 1 cm, and

ffiffiffi
2

p
cm. The angles between col-

umns “1” and “2” and between columns “2” and “3” are both
45°. The cross-sectional area of each conductive column is
4mm2. The size of the 6 × 6 sensitive element array shown
in Figure 1 is 12 cm × 12 cm × 1 cm.

When the load is applied on the sensor, the resistances of
the corresponding conductive columns would be changed
subtly. As the lower surface is usually attached or fixed on
the robot or other objects, it is supposed that the electrodes
on the lower surface have no displacement. In view of the
above, the prototype of the flexible tactile sensor based on
the conductive rubber is produced. The model of the tactile
sensor is drawn on SolidWorks 2014 (SolidWorks Inc., Wal-
tham, USA). The 3D printing technology is conducted to
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print the mold for the 6 × 6 sensor array model, and the 36
N-type force-sensitive elements made by the conductive rub-
ber are placed into the corresponding holes of the mold, as
shown in Figure 2 [11]. After that, the insulating GD-401 sil-
icon rubber filler is poured into the gaps among the sensitive
elements, and it is important to notice that the electrodes
should not be covered by the insulating rubber. Then, the
upper wires and the lower wires are arranged according to
the distribution as in Figure 1. Meanwhile, the wires are
sealed in the insulating rubber. Finally, the entity of the flex-
ible tactile sensor based on the conductive rubber and the sil-
icon rubber is generated, as shown in Figure 3.

2.3. Theoretical Analysis. It is on the assumption that the sen-
sitive element is a continuous, isotropic, and nonhysteretic
elastomer [21], and the volume of the conductive column
remains unchanged when it is subjected to a suitable force.
The resistance values of the conductive columns satisfy the
following rules:

Ri = ρ
li
S
= ρ

l2i
Vi

, i = x, y, z, ð1Þ

li =
ffiffiffiffiffiffiffiffiffiffiffi
Ri∙Vi

ρ

s
, i = x, y, z, ð2Þ

Δli = li′− li
�� �� =

ffiffiffiffiffi
Vi

ρ

s
∙

ffiffiffiffi
Ri′

q
−

ffiffiffiffi
Ri

p����
����, i = x, y, z, ð3Þ

where Rx, Ry, and Rz represent the resistance of the corre-

sponding conductive column labeled “3,” “1,” and “2”; Rx′,
Ry′, and Rz′ represent the resistance of the conductive column
labeled “3,” “1,” and “2” when the force is loaded on the sen-
sitive element; lx, ly, and lz represent the original length of the
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Figure 1: Model of the flexible tactile sensor array. “1,” “2,” and “3” denote the three conductive columns of the N-type sensitive element; “4”
and “5” denote the electrodes on the upper surfaces of the conductive columns; “6” and “7” denote the electrodes on the lower surfaces of the
conductive columns; “8” and “9” denote the upper wires and the lower wires that connect the electrodes. Each upper wire is perpendicular to
the lower wires.

Figure 2: 3D printed mold with 6 × 6 sensitive elements.

Figure 3: Prototype of the flexible tactile sensor.
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corresponding conductive column labeled “3,” “1,” and “2”;
lx′, ly′, and lz′ represent the length of the conductive column
labeled “3,” “1,” and “2” when the force is loaded; Δlx, Δly,
and Δlz represent the change in length of the conductive col-
umn labeled “3,” “1,” and “2”; ρ is the resistivity; Vx, Vy, and
Vz represent the volume of the corresponding conductive
column labeled “3,” “1,” and “2”; S represents the cross-
sectional area of the conductive column.

As an elastomer, the conductive column satisfies the
general Hooke’s law and the relationship between stress
and strain is linear.

σ = E∙ε = E∙
Δli
li

= Fi

S
, i = x, y, z, ð4Þ

where σ, ε, and E denote stress, strain, and Young’s modulus,
respectively.

Combining expressions (3) and (4), it could be gained as
follows:

Δli =
Fi∙li
E∙S

, i = x, y, z: ð5Þ

Then, the approximate relation between the 3D force and
the resistance of the conductive column could be computed
as

Fi =
E∙S
li
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It is generalized that

Fi = f k Ri′
� �

= f k ΔRið Þ = gk Δlið Þ, i = x, y, z ; k = 1, 2, 3,

ð7Þ

where f k is the function that shows the relation between Ri′
and Fi, and gk is the function that shows the relation between
Δli and Fi.

The flexible tactile sensor realizes the decomposition of
three-dimensional information, avoids the direct interfer-
ence between sensitive elements, reduces the complexity of
the sensor, and accelerates the pace of real-time prediction
of 3D force loaded on the sensor.

As the length of the conductive column is very short,
the magnitude of deformation is also small, which does
not exceed 20% of its own length. It can be considered
that Δli ≅ Δi ði = x, y, zÞ, where Δi represents the displace-
ment of the electrode along the i-direction. If Δli changed
under pressure, then the value of Ri would be changed
correspondingly, and the force Fi loaded on the sensor
can be solved by detecting the corresponding resistance
signal Ri′.

When the 3D force is conducted to the sensor, it can be
decomposed into three components by the three conductive
columns. On the basis of the status equation (7), the force
components could be figured out. The analysis diagram of
the sensitive element under force is shown in Figure 4.

The decomposition of the 3D force for the flexible sensor
is as follows:

Fx = f1 F2 cos φ + F3 cos φ − F1 sin θð Þ,
Fy = f2 F2 sin φ − F3 sin φð Þ,
Fz = f3 F1 cos φ + F2 cos φ + F3 cos θð Þ:

ð8Þ

Fx and Fy represent the shear force components along
the x-axis and y-axis. Fz represents the normal force compo-
nent along the z-axis. F1, F2, and F3 are the external forces
exerted on the sensor. φ denotes the angle between the
projections of F2 or F3 on the x-O-y plane and the x-axis,
and θ is the angle between Fj (j = 1, 2, 3) and z-axis.

With positions and coordinates of the upper electrodes
on the sensitive elements obtained, the deformation status
of the flexible tactile sensor with stress could be acquired
accurately. The stress applied on the surface of the sensor
could be exactly gained by the spatial positions and deforma-
tion of several discrete points.

The potential theory [22] had solved the problem of how
to obtain the deformation of the elastomer by loading 3D
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(a) Force analysis diagram of F1
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(b) Force analysis diagram of F2 and F3

Figure 4: Force analysis diagram.
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forces on the elastic semispace. That is also applicable to the
flexible tactile sensor studied in this paper. The potential the-
ory [22] indicates that the displacement of the point far from
the loading region is reduced by 1/ρ. ρ is the distance
between the point on the loading region and the point inside
the elastomer. That means the points with a large distance
from the loading region almost have no elastic displacement.
As the displacements have been found, the stresses are calcu-
lated from the corresponding strains by Hooke’s law.

According to the principle of superposition [23], it
implies that the mathematical relation between the 3D force
loaded on and the deformation of the elastomer can be line-
arly superimposed. It provides a novel idea to solve the 3D
force-deformation problem. In practice, the normal force
and tangential force could be studied, respectively, and the
deformation of the elastomer caused by the 3D force could
be obtained by synthesizing the relevant conclusions accord-
ing to the superposition principle.

The above denotes that with the 3D force components
exerted on, the displacement along the i-direction (i = x, y, z
) can be gained. According to the superposition theory [23],
the tangential displacement and the normal displacement
from a point of the elastomer are the integration of the dis-
placement generated by each force loading at that point. In
view of the principles above, this paper focuses on predicting
the multiple 3D force loaded on the sensor with high preci-
sion and approaching the high-dimensional mapping
between the resistance vector and the 3D force vector based
on the optimized RBFNN.

3. Prediction of 3D Force Based on the RBFNN

Based on the piezoresistive effect of conductive rubber, this
paper takes full advantage of the approximation ability of
the RBFNN method to accomplish the accurate prediction
of the magnitude of 3D force for the flexible tactile sensor
and approach the high-dimensional mapping relation
between the resistance values of the N-type sensitive element
and the 3D force.

3.1. The RBFNNMethod. The RBFNN is widely concerned by
researchers because of its simple structure and great general-
ization ability. It had been proved that RBFNN can approxi-
mate any nonlinear function with arbitrary precision [24,
25]. RBFNN is a three-layer forward network, as shown in
Figure 5, and each layer is composed of neuron nodes. The
first layer is the input layer which consists of the original sig-
nal nodes. The second layer is the hidden layer (it is also
called radial basis layer) whose activation function is a locally
distributed nonnegative and nonlinear function, and the
function is radially symmetric and gradually attenuated
according to the center point. The third layer is the output
layer; the linear weighted sum of the output of the hidden
layer neurons constitutes the output of the RBF network.

The input layer of RBFNN is composed of m neuron
nodes. In general, the number of neuron nodes in the hidden
layer is equal to the number of training samples. The hidden
layer adopts the radial basis function as the activation func-
tion; then, the corresponding output of the neuron nodes in
the hidden layer is computed in (9). In this paper, the Gauss-
ian function is taken as the radial basis function.

φj Xð Þ = φ X − Xj

�� ���� ��� 	
= exp −

1
2σ2j

X − Xj

�� ���� �� !
,  j = 1, 2,⋯,N ,

ð9Þ

where vector X is the input layer signal,Xj is the center of the
radial basis function (Gaussian function), σj represents the
spread width of the Gaussian function of the center Xj, N is
the number of hidden layer nodes, and φð∙Þ is the activation
function of the hidden layer. In this paper, m is 36, and N is
2700 which is the number of the training samples.

Each neuron node in the input layer is directly connected
to all the neuron nodes in the hidden layer, and every node in
the hidden layer is connected to all the neuron nodes in the
output layer by the weights, respectively. The RBFNN could
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Figure 5: The structure of RBFNN.
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accomplish the global approximation of the objective
function and could accurately fit the training data.

The activation function of the output layer is linear, and
the output is shown in (10)

F Xið Þ = 〠
N

j=1
ωjφ Xi − Xj



 

� 	
= di, i, j = 1, 2,N , ð10Þ

where ωj is the weight between the j-th neuron of the hidden
layer and the neuron of the output layer, Xi is the input sig-
nal/vector of the input layer, Xj is the center of the radial
basis function, and di is the expected output according to
the input signal Xi.

Let ∅ = fφðkXi − XjkÞgNi,j=1, w = ½ω1, ω2,⋯, ωN �T , and

d = ½d1, d2,⋯, dN �T . w and d represent the weight coeffi-
cient vector and the expected output, respectively. Then,
equation (10) could be substituted as follow:

∅w = d: ð11Þ

If each Xi (i = 1, 2,N) is different and ∅ is reversible,
then w can be figured out by (12)

w =∅−1d: ð12Þ

The Gaussian function satisfies the Micchelli theorem.
According to the Micchelli theorem, all the input vectors
are different, which ensures that the matrix ∅ is reversible.
It indicates that the weight vector w could be correctly
solved.

Two of the key problems in building the RBFNN model
are how to set the center for the Gaussian function of the
hidden layer and how to figure out the weights between the
hidden layer and the output layer. In the experiment, the k
-means clustering algorithm and recursive least square
(RLS) method are used to optimize RBFNN and solve the
two problems, respectively.

In this paper, the RBFNN is used as a predictor to predict
the magnitude of 3D force applied on the flexible tactile sen-
sor. As the relation between the input layer and the hidden
layer is nonlinear and the relation between the hidden layer
and the output layer is linear, in the prediction process, the
Gaussian function and linear function are used as the activa-
tion function of the hidden layer and the output layer, sepa-
rately. The input vector of the RBFNN is an m-dimensional
vector that consisted of resistances of the conductive col-
umns, and the output vector is an n-dimensional vector that
consists of force components loaded on the sensor. The train-
ing samples and testing samples for the 3D force prediction
are constructed by the k-fold cross-validation method.

3.2. Prediction of 3D Force with Different Spreads. When the
external force is applied on the upper surface of the flexible
tactile sensor, the N-type sensitive elements in the array
would be deformed, and the resistance values of the conduc-
tive columns would be changed accordingly. The resistance
can be obtained by scanning the circuit. Due to the special

model of the sensitive element, the 3D force could be decom-
posed into three components, which are the normal force Fz
and the tangential forces Fx and Fy . The RBFNN is
constructed to predict the 3D forces received by the sensor
array, and the relationship between the resistance vector
and the force vector is decomposed and approached.

In the experiment, 3000 samples are collected; each sam-
ple includes the 36-dimensional resistance vector and the
corresponding 36-dimensional force vector. In terms of the
normal force Fz , the input layer of the RBFNN is composed
of the 36-dimensional resistance vector Rz = ½R1

z ,⋯, Ri
z ,⋯,

R36
z �, where Rz ∈ ½16 kΩ, 25 kΩ�. Ri

z represents the column
resistance labeled “2” of the i-th sensitive element in the sen-
sor array. Correspondingly, the output layer of the RBFNN is
composed of the 36-dimensional force vector Fz = ½F1

z ,⋯,
Fi
z ,⋯, F36

z �, where Fi
z ∈ ½0N, 4:8N�. Fi

z represents the normal
force applied to the i-th sensitive element. According to the
tangential forces Fx and Fy, the input layer is composed of

the 36-dimensional resistance vectors Rx = ½R1
x ,⋯, Ri

x,⋯,
R36
x � and Ry = ½R1

y ,⋯, Ri
y,⋯, R36

y �, respectively, where Ri
x, Ri

y

∈ ½32 kΩ, 50 kΩ�. Ri
x and R

i
y represent the column resistances

labeled “3” and “1” of the i-th sensitive element in the sensor
array, respectively. The output layer of the RBFNN is com-
posed of the 36-dimensional force vectors Fx = ½F1

x,⋯, Fi
x,

⋯, F36
x � and Fy = ½F1

y ,⋯, Fi
y,⋯, F36

y �, respectively, where Fi
x,

Fi
y ∈ ½0N, 4:8N�. Fi

x and Fi
y represent the tangential forces

applied to the i-th sensitive element.
In the initial dataset, the magnitude of resistance is much

wider than that of 3D force, which would impact the predic-
tion accuracy of force and reduce the approximation capabil-
ity of the RBFNN predictor. So, the input values would be
normalized, and the min-max normalization formula shown
in (13) is used to transform the magnitude of resistance into
½16, 25� or ½32, 50�, correspondingly.

v′ = v −min
max −min newmax − newminð Þ + newmin, ð13Þ

where v is the initial value, and min and max are the lower
bound and upper bound of the initial values, respectively.
The new_ max and new_ min are the new lower bound and
new upper bound, respectively.

In the process of constructing the RBFNN predictor, the
k-fold cross-validation method is conducted to build the
training set and testing set. 3000 samples are divided into
10 groups, which means that each group has 300 samples.
Each time, 9 groups are selected as the training set and the
one left is taken as the testing set, and that process is repeated
10 times. The prediction accuracy of 3D force is the average
result of the k-fold cross-validation method based on the
RBFNN. Meanwhile, the k-means algorithm and RLS
method are used to optimize the RBFNN. The RBFNN is
trained by using the training set to approximate the relation-
ship between the resistance of the sensitive element and the
force applied on the sensor array. Then, the RBFNN predic-
tor model is constructed. After that, the RBFNN model is
used to predict the force of the testing set, and the prediction
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error of the 3D force is measured by the average value of the
10 times prediction results based on the k-fold cross-
validation method.

During the experiment, the RBFNN model is built with
different spread values. The spread value is very important
for the RBFNN. The larger the spread of the radial basis func-
tion is, the smoother the fitting of the function would be, but
a large spread value means that a very large number of neu-
rons are needed to adapt to the rapid changes of the function.
If the spread is too small, it means that many neurons are
needed to adapt to the slow change of the function. If the
spread is not set properly, it would lead to poor network per-
formance. In this paper, the Gaussian function is used as the
activation function of the hidden layer. The RBFNN based on
the k-fold cross-validation method is constructed with differ-
ent spread values (from 1 to 10) to verify its influence on the
performance of 3D force prediction, and the prediction
results of Fx, Fy , and Fz for the flexible tactile sensor based
on the RBFNN are shown in Table 1. The results in Table 1
are the mean relative errors between the actual force compo-
nents exerted on the sensor and the force components pre-
dicted by the RBFNN model. The results indicate that the
RBFNN can precisely approximate the high-dimensional
nonlinear mapping between the resistance and the 3D force,
and it has strong robustness and antinoise capability.

EFi =
∑s∗36

t=1 Fit
′ − Fit

� �
/Fit

��� ���
s ∗ 36ð Þ , i = x, y, z ; t = 1, 2,… s ∗ 36:

ð14Þ

In (14), s is the amount of testing samples of the sen-
sor array , EFi denotes the mean relative prediction error
of force component Fi (i = x, y, z) for 300 (s = 300) testing
samples. Fit

represents force component Fi (i = x, y, z)
applied on the sensor of the ((t-1) mod 36+1)-th sensitive
element of the ((t-1)/36+1)-th testing sample, and Fit

′ repre-
sents the prediction results of Fit

based on the RBFNN.
It can be seen from Table 1 that, with the increase of the

spread value, the prediction error of the 3D force component
presents a significant downward trend firstly. In particular,
when the spread value is 7, the optimal mean relative predic-
tion errors of the 3D forces are obtained, which are EFz =
1:82%, EFx = 2:62%, and EFy = 3:44%. After that, the predic-
tion errors tend to rise up with the increase of the spread
value. It indicates that spread plays an important role in the
RBFNN, and its value is not the larger the better. The spread
value should be properly set to gain the best result, and in this
experiment, 7 is the optimal spread value.

The results in Table 1 reflect that the RBFNN model has
great prediction ability and performance in approaching the
high-dimensional nonlinear mapping relationship between
the resistance vector and the force vector. The RBFNN con-
structed in this paper can be well applied to the 3D force pre-
diction research of the flexible tactile sensor.

In order to show the results exactly, the prediction results
of 180 force components, including 5 testing samples each

consisting of 36 components Fi (i = x, y, z), are randomly
extracted from the testing set. The prediction results of Fx,
Fy, and Fz based on RBFNN with spread = 7 are shown in
Figures 6–8, respectively. In Figures 6–8, the blue circle
represents the force component Fi (i = x, y, z) along the i
-direction predicted by the RBFNN, the red star represents
the actual force Fi (i = x, y, z) along the i-direction applied
on the sensitive element, and the black circle represents the
absolute error between actual force Fi and corresponding
predicted Fi (i = x, y, z). The mean relative prediction errors
of Fx, Fy, and Fz in Figures 6–8 for the 180 force components
are 3.40%, 4.61%, and 1.96%, and the corresponding stan-
dard deviations of the relative errors of Fx, Fy , and Fz are
0.2247, 0.0901, and 0.1862, respectively.

As shown in Figures 6–8, when spread = 7, the absolute
prediction errors of 3D force components based on the
RBFNN are very small, which can meet the practical appli-
cation requirements. In particular, in Figure 8, the predic-
tion results of Fz are almost equal to the actual Fz , which
means that the normal force Fz could be well sensed by
the sensitive elements with high precision. And by the spe-
cial structure of the sensitive element, there exists a weak
correlation between Fz and other force components. As there
exists strong coupling relation between Fx and Fy, their pre-
diction results shown in Figures 6 and 7 are slightly worse
than those of Fz . The absolute prediction errors of Fx, Fy,
and Fz in Figures 6–8 for the 180 force components are
shown in Figure 9.

The minimum absolute error, maximum absolute error,
mean absolute error, and standard deviation of the absolute
errors for the 180 force components Fi (i = x, y, z) are shown
in Table 2. Table 2 shows that the method proposed in the
paper is suitable for the 3D force prediction, especially for
the normal force.

3.3. Prediction of 3D Force Based on Sliding Window
Technology. It is found that when the external force is loaded
on a sensitive element, other sensitive elements around it
would be affected by its impact and get deformed. The

Table 1: Prediction results of force components with different
spreads.

Spread
Prediction error of 3D force components
EFx EFy EFz

1 6.34% 7.29% 4.73%

2 4.29% 5.37% 3.62%

3 3.87% 4.76% 4.48%

4 3.76% 5.09% 3.51%

5 3.97% 4.65% 3.01%

6 3.06% 3.94% 2.35%

7 2.62% 3.44% 1.82%

8 2.95% 3.02% 2.57%

9 3.64% 3.67% 3.21%

10 3.87% 4.35% 3.16%

Average error 3.84% 4.56% 3.25%
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experiments found that only the sensitive element within
1 cm~2 cm distance around the force point could be signifi-
cantly affected. If the sensitive element is far from the force
point, it is hardly affected by its influence.

When a sensitive element senses the force loaded, the
resistances of its three conductive columns could also be
affected by the deformation status of its neighbor sensitive
elements. In order to verify how the feature information of
adjacent sensitive elements impact the target sensitive ele-
ment, “sliding window” technology is introduced when con-
structing the input layer of the RBF network. The sliding
window consists of the characteristic information of sensitive
elements close to the target sensitive element and the infor-
mation of the target element itself, which form the input layer
vector together for the RBFNN. In the experiment, resistance
is used as the characteristic information. Resistance values
from 2, 4, and 6 sensitive elements closest to the target sensi-
tive element are extracted to build the input layer vector,
respectively. Therefore, the sliding window sizes of the input
vectors are 3, 5, and 7, respectively, as it includes 3, 5, and 7
sensitive elements’ resistance information, and each sensitive
element consists of 3 columns. Correspondingly, the input
layer vector of the new RBFNN is the resistance with 36 × 3
× 3 dimensions, 36 × 5 × 3 dimensions, and 36 × 7 × 3
dimensions, separately, and the corresponding output layer
is a 3D force vector with 36 × 3 dimensions.

During the training procedure of RBFNN, the sliding
window slides along the sensitive element, and each predic-
tion is conducted for the 3D force sensed by the sensitive ele-

ment at the center of the sliding window. In the experiment,
sliding windows of sizes 3, 5, and 7 are used to construct
input vectors of the RBFNN, respectively, and to verify how
the sliding window size influences the prediction results. As
described in Section 3.2, 7 is the optimal spread value for
the RBFNN prediction model; the prediction results of 3D
force components based on different sliding windows with
spread = 7 of the RBFNN are shown in Table 3. Table 3
shows the relative prediction errors of Fx, Fy, and Fz loaded
on the flexible tactile sensor, respectively. The testing samples
used in Table 3 are the same as in Table 1.

As can be seen from Table 3, when the sliding window
size is 3 and 5, the performance of the RBFNN predictor is
significantly improved and the prediction error is reduced
in comparison with the results in Table 1. The prediction
errors of Fx, Fy , and Fz are significantly lower than those
shown in Table 1 without the sliding window method, which
means the characteristic information of sensitive elements
close to the target element is properly extracted. That is very
helpful and useful to improve the prediction accuracy and
reduce the prediction error of the 3D force. The best predic-
tion results for Fx , Fy, and Fz are gained with the sliding win-
dow size of 5, and the RBFNN reaches its best performance.
However, as the sliding window continues to increase, the
prediction error tends to increase and the accuracy tends to
decrease. In the experiment, when the window size further
increased, the information of the sensitive element which is
far away from the target sensitive element is extracted. At
that point, the correlation between the distant sensitive units
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Figure 6: Prediction results of Fx (the mean relative prediction error is 3.4%).
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Figure 7: Prediction results of Fy (the mean relative prediction error is 4.61%).
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and the target sensitive unit becomes weak, and their charac-
teristic information would interfere with each other, so it
would reduce the prediction accuracy of the target sensitive
element. Experimental results show that setting the size of
the sliding window appropriately can effectively reduce the
prediction error of 3D force, improve the approximation per-

formance of RBFNN, and make the flexible tactile sensor
more practical and feasible. The best prediction results for
3D force from Tables 1 and 3 are compared in Table 4.

In Table 4, all the prediction results are conducted by the
RBFNN model whose spread is 7. In the second line of
Table 4, the prediction results based on sliding window tech-
nology are much better than those in the last line without
using the sliding window method. It means that sliding win-
dow technology is very valid in 3D force prediction for the
tactile sensor and plays an important role in it.

4. Conclusions

In this paper, the property and structure of the flexible tactile
sensor are described, and the detecting principle of the sensor
is analyzed. Based on the piezoresistive effect of the conduc-
tive rubber, the optimized RBFNNs have been used to
achieve the accurate prediction of multiple 3D forces loaded
on the surface of the flexible tactile sensor from different
aspects. The k-means and RLS algorithms are used to
optimize the RBFNN predictor. The optimized RBFNN con-
structed with different spreads and based on the sliding win-
dow technology has gained great results, decreased the
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Figure 9: Absolute prediction errors of Fx , Fy , and Fz .

Table 2: Absolute error of Fi (i = x, y, z) force components.

Minimum
absolute
error (N)

Maximum
absolute
error (N)

Mean
absolute
error (N)

Standard
deviation of
the absolute
error (N)

Fx 1:07e − 4 0.0449 0.0203 0.0171

Fy 7:45e − 4 0.2292 0.0510 0.0393

Fz 1:71e − 5 0.0449 0.0108 0.0085

All of the prediction results including absolute errors and relative errors
prove that the optimal RBFNN model could be well exerted on 3D force
prediction for the flexible tactile sensor and improve the prediction results.

Table 3: Prediction results of 3D force based on different sliding
windows.

EFx EFy EFz

Sliding window of size 3 2.53% 3.05% 1.83%

Sliding window of size 5 2.13% 2.71% 1.36%

Sliding window of size 7 2.76% 3.62% 1.84%

EFi denotes the mean relative prediction error of force component Fi
(i = x, y, z) for 300 testing samples.

Table 4: Comparison of prediction results.

Prediction error EFx EFy EFz

With sliding windows (Win 5) 2.13% 2.71% 1.36%

Without sliding windows 2.62% 3.44% 1.82%

Win 5 means the size of the sliding window is 5.
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prediction error of 3D force, and improved the prediction
ability of the RBFNN model. All the results indicate that
the RBFNNmethod can be efficiently applied to the 3D force
prediction research of the flexible tactile sensor. For future
work, we will focus on improving the properties of force-
sensitive materials and the structure of sensitive elements
and developing other machine learning algorithms to realize
real-time prediction of 3D force for the tactile sensor so that
it can accomplish better results under different environments
and could be used as real robot skin.
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