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Climate change has increasingly been considered responsible for irregular weather patterns leading to many environmental hazards
and catastrophes. Coping with these conditions and providing effective solutions require monitoring and collecting data of various
hydrological parameters and events in high spatial and temporal resolutions, which is generally limited by the cost and energy
requirements of the monitoring devices. In this work, we push the limit of the current low-cost data acquisition capabilities by
developing the HydroMon3: a hydrological monitoring platform that collects, stores, and transmits high temporal resolution data
reliably and accurately, and capable of interfacing different types of sensors. The modular design is driven by utilizing the recent
burst in commercially available IoT-related electronics modules to minimize the cost and maximize flexibility, while applying
various hardware and software techniques to ensure reliability and energy performance. Stream stage and tipping bucket
monitoring units based on the HydroMon3 platform were deployed to more than 20 locations in two different watersheds, and
their performance over a 6-month season was evaluated. Collected data for a number of storms provided important insights for
linking hydrological events and showed substantial variability in the monitored parameters both spatially and temporally, which
were compared with local data records and confirmed that conventional hydrological data acquisition methods are under
representative of the actual events. Field-proven results demonstrate the units’ ability to maintain autonomous operation from
several months for the stream stage monitors to years for the rainfall gauges using of-the-shelf AA batteries.

1. Introduction

One of the established impacts of climate change is irregular,
more intense precipitation patterns and ambient temperature
fluctuations. This has a significant impact on the occurrence
of flash floods and droughts [1]. Apart from the catastrophic
loss in lives, floods account for extreme economic losses, and
it has been reported that in Europe alone, the cost of damage
was more than $500 billion between 1980 and 2015 [2]. In
semiarid regions, Jordan as an example, flash floods pose a
very serious threat to lives and property [3, 4], several unfor-
tunate events in which lives were lost were witnessed in Petra
and near the Dead Sea.

Optimal water monitoring and management are neces-
sary. Hydrological monitoring is critical for water resources

management and flood risk mitigation studies, it can be
achieved through a series of sensors and data loggers, and
these can be used for several applications, examples of which
are precipitation monitoring systems, solar radiation [5], soil
moisture monitoring [6], flood monitoring [1, 7, 8], and
monitoring of aquatic environments [9]. Input from all these
sensor systems will help better analyze existing conditions
and make better decisions. Classical data loggers and SCADA
systems can be very expensive and provide limited options for
customization and integration with other systems. Data is
either stored locally or transmitted through cables, which adds
high installation costs and limits the possible commissioning
area [1]. Some wireless solutions exist, and they are very
expensive and provides even less system flexibility. Complete,
widespread sensor networks can be cost prohibitive, thus
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arising the need for developing low-cost, low-energy, autono-
mous wireless systems.

In the past decade, major interest was put in the develop-
ment of wireless sensor networks and the Internet of Things
(IoT) [10]; in the water resources field, they are envisioned to
transform water resources management by allowing for real-
time monitoring and control [11]. Wireless sensor networks
(WSN) provide a very promising solution for environmental
monitoring applications, where many spatially scattered mea-
surement points of interest exist, and long-term data acquisi-
tion is needed.

Several studies addressed hydrological monitoring and
flood warning systems. Abdullahi et al. [8] designed a flood
monitoring system that integrates both flow and water level
sensors and uses two class neural networks to predict flood
status. The system was laboratory based and used an
ESP8266-based NodeMCU board to transmit data over WiFi
to a cloud server. Nuhu et al. [12] designed a laboratory-
based water level measurement system and focused on
enhancing the energy efficiency of data transmission using
the XM1000 module—which is a radio frequency module
based on the Texas Instruments CC2420 chip—by utilizing
the Internet Protocol Version 6 over Low Power Wireless Per-
sonal Area Network (6loWPAN) technology. The application
compares current water level with a predetermined threat level
and alerts relevant entities via email when a flood is eminent.
The work of Nuhu et al. [12] is based on an emulation in
which the results look promising.

Kruger et al. [13] developed a system for river stage moni-
toring designed to be bridge mounted, each unit is equipped
with an ultrasonic sensor, a GPS receiver, and a solar panel
for power supply. Data is transmitted through cellular
networks. Stage data is frequently measured and transmitted
to be available over the internet. Bartos et al. [11] developed
an end-to-end system demonstrating an autonomous water
system, with a focus on urban storm water management. The
authors comment that technology is no longer a limitation for
achieving autonomous water systems; rather, it is the proprie-
tary nature of the equipment, thus their high cost, which is
limiting their widespread usability; in addition, there is a lack
of proven case studies where these smart water management
systems can be used and, lastly, the lack of the end-to-end solu-
tion capable of supporting water resource management applica-
tions. To that end, they developed their system of open source
software, hardware, and cloud computing services; the devel-
oped systems were tested in two locations: one addressing flash
flood problems, whereby a set of sensors were deployed to mea-
sure stream stages, in addition to a wide array of other meteoro-
logical and soil moisture measurements. The other location was
for monitoring and management of a small watershed storm
water system, in which valves and gates were automatically
controlled by the system, thereby optimizing water usage,
enhancing residence time within detention basins, and improv-
ing overall water quality.

Perez et al. [1] summarized some of the criteria that need
to be achieved these sensor systems; for example, power
usage needs to be optimized for deployment in remote loca-
tions, they also need to be reliable and be able to withstand
harsh weather conditions, and in addition, the systems must

be able to accommodate several sensor types and allow for
long-range communication. Flood monitoring has been done
using various techniques, ranging from image processing
utilizing the widely used surveillance cameras [14, 15], to
the use of ultrasonic sensors [13], to the deployment of
mobile sensors that submit GPS location signal to measure
flow velocity [16].

Previous work has demonstrated promising results and
developed a number of successful prototypes. However, the
number of field-operational units is still limited, with only a
few cases demonstrated in literature. Moreover, cost and
energy efficiency have room to be improved and optimized,
which is essential to maximize the benefits of such devices.

In this work, a complete hydrological monitoring platform,
named HydroMon3, was designed, built, deployed, and evalu-
ated. Following a modular design concept, the cost and part
count of the platform were significantly reduced and greatly
increased the flexibility of the design. Several hardware and
software techniques were utilized to push the envelope on the
energy efficiency, achieving an autonomous operation of
several months to years using of-the-shelf AA batteries.
Software-based probabilistic filtering algorithms were opti-
mized to achieve accurate results with minimal energy con-
sumption. More than 20 devices were deployed in two
hydrological catchments in Jordan, one is the Zarqa Main
catchment discharging to the Dead Sea with an approximate
area of 270km2, and the other is in Petra with an approximate
area of 80km2. Both locations are prone to occasional thunder-
storms and consequently flash floods. All streams in the two
watersheds are ephemeral, and thus, water will flow only in case
of rain. The deployed units mainly monitor precipitation rate
and stream stages, while providing other data like ambient tem-
perature and humidity. The data is logged locally and transmit-
ted over the GSM network to the MathWorks® Thingspeak™
cloud service where it can be stored, viewed, and analyzed.

In the following sections, the design and challenges in
achieving good accuracy, reliability, and energy efficiency will
be discussed, followed by evaluation of the field performance
and demonstration of the end results.

2. Materials and Methods

2.1. Main Platform Hardware Description. The concept of the
platform presented in this work relies on taking advantage of
the wide range of readily available electronics and modules to
build a low-cost, flexible, and easy-to-reproduce platform,
enabling us to acquire high-resolution hydrological data both
temporally and spatially.

The HydroMon3 is a low-cost, low-energy, wireless plat-
form, designed using a modular design concept to accommo-
date different hydrological sensors for maximum flexibility.
The device serves as a platform to receive data from the
sensors, process it, store it, and transmit it. The main plat-
form consists of a microcontroller, a real-time clock (RTC),
a local storage unit, and a GSM module. Depending on the
objective of the system, multiple sensor combinations could
be connected to the main platform. A block diagram of the
main platform components is shown in Figure 1.
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The main platform was designed following a modular
design concept to maximize flexibility and prioritized the
use of commercially available modules to lower cost, increase
availability, and speed up production. Naturally, in order to
achieve very high energy efficiency, some hardware modifica-
tions were applied to the modules, and the power manage-
ment circuit was custom designed.

The microcontroller unit (MCU) is the functional brain of
the platform, managing and processing data, controlling other
modules, and making decisions. An Atmega328P mounted on
an “Arduino Pro Mini” board is used because of its suitable
performance and memory, several communication types
available (Serial, SPI, I2C), wide voltage operating range,
low-energy capabilities, and low cost. While the Atmega328P
features a number of timers, the use of a dedicated RTC is
more accurate and provides better code efficiency within the
MCU. Furthermore, the Atmega328P timers turn off during
some levels of deep sleep to save energy, and keeping them
on all the time uses substantially more energy than the dedi-
cated RTC. Therefore, the performance of the MCU and the
overall energy efficiency are better using the dedicated RTC.
A ZS-042 module based on the DS3231 RTC provided good
accuracy, internal temperature compensation, and low cost.
The RTC module is connected to the MCU through the I2C
connection port.

A SIM800l GSM module was used to transmit data using
GPRS over a 2G network. Compared to higher bandwidth
options like WiFi, 3G, and 4G networks, 2G GSM networks
have the widest coverage area, which is particularly important
in the remote areas where the device is deployed; in addition,
considering the small size of data packs transmitted, the
relatively low bandwidth of the 2G network will not be a
concern. The GSM module is controlled by the MCU using
AT commands through a serial connection port. Machine to
Machine (M2M) SIM cards provide low-cost access to the net-
work and are suitable for mass deployment of the devices.

In addition to transmitting the data, a local storage is
used as a backup in case of any issues in the transmission

process. A microSD card storage module was used as the
storage media allows for easy data extraction and replace-
ment. The module used is based on the SN74LVC125A
quadruple bus buffer gate IC, which is connected the MCU
via the SPI connection port.

The HymdroMon3 platform was fitted with a custom
designed power management circuit to achieve three targets,
provide suitable voltage level, stable current, and low energy
losses. A block diagram of the power management circuit is
shown in Figure 2.

A low quiescent current DC/DC converter provides 5 volts
to run the MCU, which in turn controls a series of power
switches to turn on and off different modules and sensors as
needed to minimize energy consumption. The GSM module
is powered by a separate secondary power circuit because of
the big difference of its power requirements in comparison
to the other parts of the circuits. The GSM module requires
4.1 V and draws short current pulses of up to 3 amperes. A
separate DC/DC converter is used to provide the required
voltage, and a combination of buffering circuits before and
after the converter provides the high-energy pulses required
with minimal disturbance to the input voltage, to achieve high
stability in the transmission process.

The buffering and noise cancellation circuits are a combi-
nation of different types of capacitors and passive components
custom designed for each part of the circuit to stabilize the
input voltage at different current drawing conditions. The
buffering circuits are important under three situations: with
short bursts of high current, for sensitive or higher frequency
components, and for components relatively far away from
the power source. The common source of the possible issues
is the parasitic inductance and capacitance in the Printed
Circuit Board (PCB) traces. These parasitic components are
always present, but their effects are greatly increased under
one—or more—of the three situations mentioned above. The
use of the buffering circuits was empirically proven to greatly
increase the stability and reliability of the overall system. The
power switches are a combination of high-side and low-side
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Figure 1: Block diagram of the major HydroMon3 components.

3Journal of Sensors



MOSFET- or BJT-based switching circuits, depending on the
operating nature and switching requirement of the component.

Shown in Figure 3, the PCB layout plays a major role in
reducing parasitic components in the traces and reducing elec-
trical interference for the more sensitive parts. Routing parallel
power paths utilizing both sides of the PCB minimizes the
power loop area, which in turn minimizes the parasitic com-
ponents in the traces. Using separate ground planes for high
power components and more sensitive components reduces
electrical interference, and the large ground plane under the
MCU provides noise shielding [17]. The populated boards
are mounted inside weather-proof boxes equipped with a
GSM antenna and a battery pack. A populated board and an
assembled unit are shown in Figure 4.

2.2. Energy Considerations. Extended data acquisition
periods in remote locations dictates very tight energy usage
allowance and imposes various restrictions on the type of
power sources. The first step is to ensure minimal energy loss
by removing unnecessary hardware. These modifications
include removing all LEDs (except for a heartbeat signaling
LED) and partial removal of any unutilized parts of the mod-
ules or sensors used. The next step is to use physical switches
to completely disconnect any part of the circuit when it is not
being used. This is very critical, since when dealing with very
low current consumption requirements, most sleep modes
on chips and modules still allow drawing relatively substan-
tial current. By using a combination of high-side and low-
side switching circuits, the leakage current is reduced to that
of the transistors making these switching circuits, and those
were chosen to have leakage current in the range of tens of
nanoamperes or less. The duration the platform components
staying on is equally important; therefore, the minimal time
each component needs to stay up without compromising
reliable performance was empirically determined to optimize
energy consumption.

The MCU, which is never disconnected from the power
supply, is supplied by a low quiescent current LDO DC/DC
converter, which is specifically chosen to limit the standby
current consumption of the regulator during the deep sleep
mode of the MCU, which is the case most of the time. These
overall measures allow for an extremely low average standby
current consumption of 30 μA. This standby current was
measured by a Keysight B2901A source/meter unit.

The energy requirements of each component in the system
were thoroughly studied to operate it as efficiently as possible,
and in order to accomplish that, theoretical average values
from datasheets are not sufficient, as most components have
many variables that effects the energy consumption behavior.
So, an extensive set of tests were undergone to take high-
resolution current measurement samples from each compo-
nent, while running it at the extremes of its operating condi-
tions and at the expected conditions of practical operation.
This allowed for an accurate representation of the expected
real-life energy consumption. The results of our tests are
shown in Table 1.

All measurements were done using Keysight B2901A
high-precision source/meter unit and were performed under
a supply voltage of 7.9V. The figures of the RTC were not
shown here as it is supplied by its own battery, which practi-
cally lasts more than 5 years.

As noted by previous research, using common renewable
energy sources like solar panels was avoided due to the risk
of vandalism and theft [1], in addition to increasing the com-
plexity of field mounting and narrowing the range of locations
the devices can be deployed at. In principle, a battery pack
with a working voltage range of 5–16V can be adequately used
to run the device. Yet, the range of 6–10V was found to be the
most efficient and reliable. Since the device is intended to be
deployed in bulk numbers, six common AA alkaline batteries
are used in series configuration to achieve the desired operat-
ing voltage over the lifetime of the battery and provide
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Figure 2: Power management circuit block diagram.
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adequate energy capacity, while minimizing the overall system
size. To increase the lifetime, NiMH, C-cells, D-cells, or
lithium batteries can be directly used instead.

2.3. Stream Stage Monitoring. One of the biggest motivations
for the development of the HydroMon3 platform is to
monitor floods through stream stage measurements and to
acquire high-resolution data for characterization and model-
ing purposes. To achieve that, the device should be able to
measure water level with adequate accuracy and temporal
resolution.

Due to the mechanical nature of sound waves, ultrasonic
sensors are a popular choice to measure water surface
distance. In addition to that, several factors make them
appealing for our application. This type of sensor provides
contactless readings with no moving parts, and no special
mounting requirements, which is crucial for applications
involving potentially devastating water flow and allows for
simpler and more versatile installation. A JSN-SR04T-2.0
waterproof ultrasonic sensor is used for its availability, low
cost, and rigidity. The sensor consists of a waterproof trans-
ducer connected through a 1.5-m shielded cable to the main
board, and it can be easily mounted using commercially
available plastic tubing in field deployment. The sensor inter-
faces to the microcontroller through two digital pins to
trigger pulses and receive echo duration.

The flood monitoring system is built upon achieving
monitoring goals under very low energy consumption. This
dictates an intermittent operation of the MCU, alternating
between different sleep and wake-up levels to guarantee
adequate level of performance at the least amount of required
energy. The general workflow of the platform is shown in
Figure 5.

Immediately after the first power-up, the system enters
self-testing routine, where it starts applying a number of
algorithms to start and diagnose each part of the platform,
initiate logging session in the memory, and transmit all diag-
nostic data to the cloud server to start a transmission session
there. This last step doubles as a way to confirm the health
status of the transmission subsystem and gives the operator
a way to assess the functionality of the device before any
extended deployment.

During the main loop, the MCU is in the deepest sleep
level most of the time, waking periodically using the internal
Watch Dog Timer (WDT) to trigger periodic wake-up cycles,
where the code proceeds to acquire main hydrological and
meteorological data every prespecified time duration. This
interval can be changed depending on the desired data reso-
lution, where the higher data acquisition frequencies impact
the overall lifetime of the battery. In Figure 5, two-minute
intervals were used, as it was the chosen frequency for the
deployed devices. As the transmission process requires a
substantially high amount of energy, the data is stored on
the MCU’s memory temporarily before sending it as a data
bulk at the end of a certain time interval. This exact time
interval is determined according to the MCU’s memory
capabilities, data resolution, number of sensors, and how
“real-time” the data is desired to be. Due to the use of an
RTC, it could be also set to transmit at the end of each hour,
as shown Figure 5. This makes data much easier to post pro-
cess, and simpler to compare with data from other sources.

The RTC could have been used to initiate the trigger to
wake the system up, but this would lead the RTC to require
much higher energy (around 92 times more as per the data-
sheet) to operate in this mode, and in case of any failure in
the RTC, the entire system would malfunction. On the other
hand, our approach requires less energy, and in case of a
failure in the RTC, it would send a signal reporting that
and use an internal timer instead, which will shorten the
battery life substantially but will keep the system running
until it a maintenance team can deploy another device.

Due to the very low energy consumption of the device,
low-resolution voltage data is more than enough. The voltage
readings are taken only once per hour and are taken before
the start of the transmission routine, since the transmission’s
relatively high power demand may cause the battery voltage
to slightly dip, making the reading less accurate.

The transmission routine starts by switching on the
transmission subsystem power circuit, followed by a series
of AT commands through the serial communication ports
to guide the GSM module thought the GPRS routine and
transmit the bulk data to the cloud. The MathWorks® Thing-
speak™ IoT service is used because of the powerful visualiza-
tion and postprocessing abilities directly on the website.

To guarantee best accuracy for the water level field
measurements, three stages of comprehensive tests were
conducted on the system and are as follows.

(i) First Stage. A series of tests were conducted under
laboratory-controlled conditions. Measurements
were taken at different distances, and over the course
of several days, to tweak all power-up, standby, and

Figure 3: Main platform PCB layout.
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Figure 4: A populated board and a deployed HydroMon3 unit.
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pulse timings, in order to minimize energy con-
sumption while guaranteeing readings reliability,
repeatability, and voltage stability.

(ii) Second Stage. To simulate uncontrolled conditions
expected in the field, the system was tested in an out-
door testing facility, where temperature and humid-

ity were changing through the day, and some wind
and vibrations were present. The water level was sta-
ble, and the measuring angle and surroundings were
close to ideal.

The measurements were substantially affected by the
ambient temperature and humidity cycles through
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Figure 5: The general workflow of the stream stage monitoring system.

Table 1: Current and energy consumption figures for major components.

Component Average current (mA) Duration of an operation cycle (seconds)
Energy consumption/cycle

of operation (mWh)

GSM 35.16 38 2.923

Ultrasonic sensor 20 3.3 0.145

SD card module 17.4 2.44 0.093

MCU + passive components 0.03 3600 0.237
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the day. Taking the measurements without account-
ing for those variations resulted in substantial varia-
tions through the day. To enhance the reading
accuracy, an equation developed by Panda et al.
[18] was used to compensate for the temperature
and humidity effects on the speed of sound in air,
as can be seen in equation (1):

Cs = 331:296 + 0:606 × θ½ �ð Þ × 1 + RH × 9:604½ð
× 10−6 × 100:032× θ− 0:004×θ2ð Þð ÞiÞ,

ð1Þ

where Cs is the speed of sound in air after compensa-
tion, θ is the air temperature, and RH is the relative
humidity of air.

While using the equation as is resulted in better
accuracy, the results were overcompensated, and
the equation parameters need to be calibrated to
our own hardware setup. To do that, a series of
tests were conducted to acquire several thousands

of reading for distances from 0.5 to 4 meters, under
different temperature and humidity conditions,
using multiple hardware setups to account for
small variations between individual components.
The results of these experiments were analyzed,
and the equation parameters were optimized
accordingly using the GRG nonlinear optimizing
method. The results of the parameter optimization
process is shown in equation (2):

Cs = 331:296 + 0:43657 × θ½ �ð Þ × 1 + RH × 24:5456½ð
× 10−6 × 100:06137× θ− 0:01632×θ2ð Þð ÞiÞ:

ð2Þ

The optimized equation resulted in substantially
greater accuracy and much smaller measurement var-
iations with temperature and humidity change. The
results of this optimization process is demonstrated
in Figure 6, where the three cases were plotted against
each other, noting that the actual distance to be mea-
sured was 2078mm (±2mm, due to the irregular
shape of the sensor’s tip). It is clear that that the opti-
mized equation produced much more consistent
results and have substantially mitigated the effects of
the temperature and humidity variations. The micro-
fluctuations are due to the sensor’s measurements
accuracy, and those cannot be overcome.

(iv) Third Stage. To identify other environmental condi-
tions that may be present in the field and may affect
the accuracy and reliability of the measurements, a
different approach was taken. Multiple units were
installed in remote uncontrolled areas very similar
to where they would be installed during actual
deployment, while more units were set up in outdoor
testing facilities under unfavorable testing conditions.
Several different data acquisition systems were
installed in these locations to verify some of the mea-
surements and to collect additional data such as
atmospheric pressure and wind speed. The results of
these tests confirmed that the uncontrolled environ-
mental conditions could cause unexpected issues in
the measurements. These particular measurements
were characterized by either abnormally very low or
very high readings. This is very problematic, as typical
averaging techniques of the readings will only get
things worse, since it will not be possible to identify
these outliers afterwards. By analyzing the data
collected by the different test setups, it was found that
wind, vibrations, and uneven measurement surfaces
were the main contributors to these outliers.

To solve this problem, a statistical filtering approach
was followed. After taking several distance readings,
the code will first filter any reading that is out of the
operational range of the device. After that, it will
neglect a range of the highest and lowest readings
depending on the number of the original valid
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readings. The remaining values will be averaged to
produce the final measurement value. However,
these values cannot be arbitrarily chosen. The num-
ber of readings to be taken will substantially affect
the lifetime of the battery, and the number of read-
ings to be neglected will affect the accuracy of the
results. To accurately determine these parameters, a
probabilistic model of the outliers was developed.
The system was tested under different wind and
vibrations levels, taking measurements for a range
of distances and doing that on different types of sur-
faces. Using the results of those tests in addition to
the previous field collected data, the filter parameters
were optimized.

The final produced filter was undemanding enough
to be implemented in the system’s microcontroller
without requiring overly high processing power or
extended on-time periods, while providing very
good results, as can be seen in Figure 7. The figure

demonstrates the effectiveness of this filtering
method by comparing the results taken by a simple
averaging technique, compared to the developed fil-
ter. The measurements demonstrated were taken in
an in-field water channel susceptible to heavy wind
gusts, and having a very uneven surface. The average
distance measured using the unfiltered readings is
1562.3mm, compared to an average of 2981.5mm
for the filtered readings. Considering that the actual
distance to be measured was 2978mm (±5mm due
to the uneven measured surface), the filtered results
are substantially better.

(v) Additional Tests. To further analyze the effects of
temperature on the system, the system was put
through multiple cycles of both slow and rapid tem-
perature change, from zero to 60 Celsius, but no
noticeable effects on data or system stability were
found. In addition, another set of tests involving
the sensor alone was made; this involved putting
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Figure 8: Block diagram of the tipping bucket monitoring device workflow.
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the transducer under different thermal conditions,
from minus 10 degrees to 70 degrees Celsius, but
no considerable effect was noticed.

2.4. Tipping Bucket Precipitation Measurement. Precipitation
rate is one of the most essential meteorological data types for
a successful hydrological flood monitoring and modeling
effort. However, most currently available meteorological data
in the region are averaged across a relatively long period of
several hours or more. As several flood events are caused by
thunderstorms, and very rapid weather changes, these
important details are ultimately lost in the averaging process.
Moreover, these metrological events are usually localized and
show very high spatial variations, making it essential to have
a lot of acquisition points scattered spatially. Bearing that in
mind, having a precipitation rate monitoring device that is
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capable of registering these fast changes, while being practical
to mass deploy, is the key. Due to the modular design of the
HydroMon3 platform, it can perform as a precipitation
meter and transmitter by simply connecting a rainfall sensor
and performing some software modifications.

A tipping bucket sensor is the most common type of
devices used to register precipitation rate. It allows for accurate
measurements, while having a very simple mechanism, mak-
ing it a very reliable sensor for long time remote measure-
ments. The sensor used in this work is the Rika RK400-04
tipping bucket rainfall sensor. The working principle of this

sensor depends on the small “buckets” filling up with a cali-
brated volume of water before “tipping” to spill over, causing
a signal to be sent. Since the volume of the bucket is known,
and the area of the sensor’s funnel is also known, then each
signal sent will represent a certain amount of rainfall. Addi-
tionally, if the signals were timed, then it could also give infor-
mation about the rainfall rate, which is the target of this work.

While this system is based on the same platform software
as the flood level monitoring device, it differs from it in that
the MCU does not need to initiate the measurement process,
rather the sensor itself will produce the signal. This will
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generally allow for a more passive working principle and thus
will generally have a substantially longer operating times, and
subsequently battery lifetime. The general working principle
of the rainfall sensor is shown in Figure 8.

The system starts up with the same diagnostic routine,
before it starts the main loop. The tipping bucket sensor is
connected to a physical interrupt pin on the MCU, where
every time the sensor “tips,” the MCU registers one tip
through the interrupt routine, regardless of the current state
of the MCU. This allows the MCU to keep track of the
sensor’s operation with minimal wake-up time. The system
will save all the data collected to the SD card, but will only
transmit data if it registers a rainfall event, or as a heartbeat
signal at the end of the day.

At normal rainfall rates, the device will transmit data
once per hour, but at higher rates, that could indicate a storm
or a thunderstorm event; the device will transmit data every
10 minutes, allowing for a more real-time data acquisition.
Due to the passive nature of the workflow and the lower
transmission rate most of the time, the energy requirements
of the more intense transmission pattern during a storm
can be justified. The data acquisitions resolution and trans-
mission frequency can be modified in the software to adapt
for different data and energy requirements.

Since the output of the tipping bucket is a low-speed
digital signal, no filtering or calibration is needed. The device
will store and return data as “number of tips” without calcu-
lating the amount of rainfall, where this postprocessing is
done at the receiving end. This is done so the device can be
flexibly connected to different-capacity tipping bucket
sensors without the need to adjust the software parameters.

3. Results and Discussion

The results presented in this section are a showcase of the
actual deployment of 20 devices in two flood-active hydro-
logical regions in Jordan, Dead Sea, and Petra.

3.1. Data Acquisition Performance. Figure 9(a) shows the loca-
tion of the installation sites in Petra, while Figure 9(b) shows
those in the Zarqa Main Watershed. It should be noted that
the locations were chosen strategically to cover the majority
of the area’s spatial extents while taking topography in consid-
eration. Each subbasin was equipped with a rain gauge and a
stream gauge to monitor the rainfall-runoff processes. Mass
deployment of the multiple HydroMon3 (sample deployed
devices can be seen in Figures 9(c) and 9(d)) and sensor arrays
allowed for real-time monitoring of precipitation rate and
magnitude as well as the corresponding runoff hydrograph;
both data types are accompanied with a time signature allow-
ing for a cause-effect evaluation.

Measurements acquired from the deployed devices pre-
sented here demonstrate the capabilities and the effectiveness
of the HydroMon3 platform. Figure 10 shows the stream
stage device capturing a high-resolution flow event due to
the high data acquisition rate. Although the entire event
lasted about two hours, the reported data shows a detailed
profile of the event, with a relatively high accuracy.

In hydrology, spatial variations can be very high. There-
fore, and in order to properly capture the variation, it is advan-
tageous to deploy numerous low-cost devices. To illustrate the
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concept, Figure 11 shows two subsequent events occurring at
two different locations (6 kilometers apart) at the same hydro-
logical region. These events were accurately captured with the
exact time relative to each other, showing the substantial
difference in the profile of each location; this can be attributed
to the shape of the subbasin, topography, and retention char-
acteristics among other possible factors. Moreover, the subse-
quent event confirms the accuracy and the repeatability of the
device’s results.

Data acquired by the several deployed rain gauge devices
over more than a year of stable operations and consistent
measurements confirm reliable and accurate data acquisition
and demonstrate the benefits of the high temporal data reso-
lution, and the wide spatial coverage of the hydrological
region. Similar to what was illustrated in Figure 11, deploy-
ment of several devices was instrumental in highlighting the
spatial variability of precipitation quantities. Figure 12 shows
recorded total daily precipitation amounts (mm) at the
HydroMon3 device locations as well as the reported data
from the official meteorological department (shown in
orange color) for two sample dates. The figure clearly high-
lights the necessity of intense deployment of these devices
to properly capture the rainfall-runoff patterns in such
small-scale settings.

Figure 13 further demonstrates the variation in readings,
both spatially and temporally. The figure summarizes the
total daily precipitation recorded at 5 stations distributed
throughout the watershed of interest for 17 storm events
throughout the 2019-2020 rainy season. Significant varia-
tions are noted in some of these events (e.g., the 10-10-2019
storm) which clearly demonstrates the need for several mon-
itoring stations in order to properly capture the precipitation
pattern and accurately study and model the system’s perfor-
mance. It is worth reemphasizing that the intents of this
paper are to demonstrate the monitoring system and not dis-
cuss the resulting data; that will be done in a separate effort.

Rainfall intensity is equally important for hydrological
studies involving flash flood analysis. Figure 14 shows the
detailed profile of a thunderstorm event occurring over a
period of about 10 minutes; rainfall intensity is presented in
mm/hr. Such events are the main drivers to flash floods. It
can be clearly seen that a reported record of hourly or daily
frequency will miss these short bursts of precipitation. Thus,
if modeling runoff due to thunderstorm events is required,
then these low-resolution records will not be sufficient, hence
the need for our customizable, highly deployable systems.

Figure 15 demonstrates rainfall intensity at two different
sites in the same hydrological region, showing the difference
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Table 2: Verification of the initial measurements with field lifetime.

Component
Average
current
(A)

Duration of an
operations cycle

(seconds)

Energy
consumption/cycle of
operation (mWh)

Number of
cycles/hour

Energy
consumption/110
days (mWh)

GSM 35.16 38 2.923 1 7,718

Ultrasonic sensor 20 3.3 0.145 30 11470.8

SD card module 17.4 2.44 0.093 1 245.9

MCU + passive components 0.03 3,600 0.237 1 625.7

Total energy consumption/110 days
(mWh)

20,060.4 mWh

Estimated usable capacity of six
Energizer Max® alkaline AA batteries

19,750–21,725 mWh
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in the time the storm reached each site, and the difference in
the profile and intensity.

3.2. Energy Performance. This factor of the system perfor-
mance is extremely important. These devices are typically
installed in remote locations with limited accessibility. The
need for a very small footprint is high in order to minimize
vandalism. Thus, one of the success criteria that we set for
the developed devices is the extremely low-energy consump-
tion and relatively cheap energy source.

Most deployed devices of the flood monitoring system
were supplied with six Energizer Max® alkaline AA batteries
in series to standardize conditions for evaluation purposes.
Of-the-shelf batteries were preferred to continue the general
theme of a low-cost and easy-to-reproduce device. However,
different battery technologies and types within the safe oper-
ating voltage can be directly plugged into the platform.
Different workflows, sensors, acquisition frequencies, and
transmission frequencies are what determines the overall
energy consumption. This is clearly shown in the difference
in energy consumption between the two devices.

In the flood level monitoring devices, the diagnostic data
acquired by the deployed units show that the device held reli-
able operation until a pack voltage of 6.5 to 7V was reached.
Accordingly, this resulted in a lifetime of 100 to 120 days of
operation. The voltage profiles of three sample devices are
shown in Figure 16. By interpolating the voltage readings
and the battery’s datasheet figures, the average current
consumption of the stream stage monitoring device is 950
μA, while the average power consumption is 7.39mW.

To verify the soundness of our initial measurements and
estimations of the system’s energy consumption, a breakdown
of the components energy consumption and estimated opera-
tion time are shown in Table 2 for a 110-day interval. The esti-
mated consumption is compared to the expected usable
capacity of six EnergizerMax® alkaline AA batteries according
to their datasheet. The table shows how the expected energy
consumption of the system falls within the expected capacity
of the batteries, proving the validity of our initial work.
Depending on the GSM signal strength, distance to be mea-
sured, temperature, and small variation in the electronics
components, the lifetime of the batteries will vary, as was seen
in the three cases demonstrated in Figure 16.

The tipping bucket rain gauge, on the other hand, due to
its passive operating nature and the digital nature of the
acquired data, only transmits—for the most part—when an

actual event of interest occurs. Bearing in mind that the
transmission routine is the most energy-demanding opera-
tion, this substantially reduces the active energy consump-
tion, which translates into a relatively very long battery
lifetime. Figure 17 shows the voltage profile of three sample
devices over a period of six months.

As clearly seen in Figure 17, the voltage level is far from
reaching the end-of-life voltage level. To approximate the
expected lifetime, the data from the flood monitoring device
performance and the datasheet performance curves were
used to forecast the curve shape as can be seen in Figure 18.
The figure shows that one battery pack should theoretically
last more than 3.5 years. Building upon lab measurements
and deployed unit data, the average current consumption of
the rain gauge meter device is 82 μA, and its average power
is 638 μW. Due to the variable frequency of acquisition and
transmission in this device, energy consumption will increase
with the increase of rainfall frequency, making the battery
lifetime climate-dependent.

As in the case of the flood level monitoring devices, the
initial energy consumption measurements of the compo-
nents validate those findings, as the GSM module only oper-
ated around 700 times during that year, and the tipping
bucket sensor is passively operated and thus requires no
power. Table 3 shows how low the energy consumption is
in this device, noting that the batteries are more likely to
self-discharge before they are used up by the device. The
results demonstrated in the table are for 110-day interval
for easier comparison with the flood level monitoring device.

For testing purposes, a few units were equipped with
NiMH and lithium AA batteries. NiMH was found to pro-
vide little added value for the much higher cost, plus being
less favorable for very low power applications due to their
generally higher self-discharge rate. Lithium AA batteries,
on the other hand, showed better performance and more sta-
ble voltage, but the higher price and lower availability make
them less desirable to standardize.

4. Conclusion

The significance of this work manifests in the ability of utiliz-
ing themass production of IoT-relatedmodules and electronic
parts to minimize costs and maximize flexibility, while achiev-
ing reliable performance and data acquisition capabilities that
rivals other much more expensive commercial solutions. The
average cost of the main platform was about 50 USD, while

Table 3: Verification of the compatibility of the initial energy measurements for the rain gauge device field test results.

Component
Average

current (A)

Duration of an
operations cycle

(seconds)

Energy consumption/cycle
of operation (mWh)

Number of
cycles/hour

Energy
consumption/110 days

(mWh)

GSM 35.16 38 2.923 0.0799 616.7

SD card module 17.4 2.44 0.093 1 245.9

MCU + passive
components

0.03 3,600 0.237 1 625.7

Total energy
consumption/110 days
(mWh)

1488.24 mWh
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the ready to deploy unit had an average cost of 90 to 150 USD
depending on the type and number of sensors used; this is far
below 10% of commercially available solutions, and it provides
much higher flexibility. The quality of gathered data and the
device’s low energy requirements were empirically evaluated
and verified by the data gathered in lab a prototype testing,
as well as from over 20 field-deployed units.

Comparison of local data showed the significance of
spatial distribution and temporal resolution on the variability
of acquired data and stresses the need to cover these aspects,
where the success of this project opens the door to wide-scale
coverage of key hydrological locations to achieve the needed
spatial and temporal data resolution.

For future work, a soil moisture monitoring device based
on the HydroMon3 platform is currently being developed to
further enhance the capability of full hydrological monitoring.
The energy performance of the stream stage monitoring
device was adequate for one season at current settings, but it
can be further enhanced by optimizing the transmission rou-
tine to only transmit when an event of interest occurs. Current
data from the field units would aid in developing these
algorithms.
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