
Research Article
Weighted Mask R-CNN for Improving Adjacent
Boundary Segmentation

SungMin Suh ,1 Yongeun Park ,2 KyoungMin Ko ,1 SeongMin Yang ,1,3

Jaehyeong Ahn ,1 Jae-Ki Shin ,4 and SungHwan Kim 1,3

1Department of Applied Statistics, Konkuk University, Seoul, Republic of Korea
2Department of Social and Environmental Engineering, Konkuk University, Seoul, Republic of Korea
3AI Analytics Team, DeepVisions, Seoul, Republic of Korea
4Korea Water Resources Corporation, Busan, Republic of Korea

Correspondence should be addressed to Jae-Ki Shin; shinjaeki@gmail.com and SungHwan Kim; shkim1213@konkuk.ac.kr

Received 16 August 2020; Revised 23 November 2020; Accepted 14 December 2020; Published 23 January 2021

Academic Editor: Zhenxing Zhang

Copyright © 2021 Sung Min Suh et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the recent era of AI, instance segmentation has significantly advanced boundary and object detection especially in diverse fields
(e.g., biological and environmental research). Despite its progress, edge detection amid adjacent objects (e.g., organism cells) still
remains intractable. This is because homogeneous and heterogeneous objects are prone to being mingled in a single image. To
cope with this challenge, we propose the weighted Mask R-CNN designed to effectively separate overlapped objects in virtue of
extra weights to adjacent boundaries. For numerical study, a range of experiments are performed with applications to simulated
data and real data (e.g., Microcystis, one of the most common algae genera and cell membrane images). It is noticeable that the
weighted Mask R-CNN outperforms the standard Mask R-CNN, given that the analytic experiments show on average 92.5% of
precision and 96.4% of recall in algae data and 94.5% of precision and 98.6% of recall in cell membrane data. Consequently, we
found that a majority of sample boundaries in real and simulated data are precisely segmented in the midst of object mixtures.

1. Introduction

The identification of genera in water samples is of central
importance in assessing water quality in vision. Over the
years, this procedure has mainly relied on manual counting
[1], which inevitably suffers limitations in consuming time,
manpower, and energy. Thus, it is urgent to develop vision
sensing-based automatic tools capable of expediting the
detection and quantification process. Commonly, previous
studies on algae genera have focused on developing accurate
classification models. For identifying labels, the model is
designed to predict the corresponding taxa, learning on
images containing genera of interest. Large-scale data by aug-
mentation technique have been exploited to fine-tune a
model on the basis of the AlexNet architecture [2]. It is
remarkable that they have achieved performance of overall

accuracy 99.51% of 80 genera, each of which contains more
than 2000 samples. Different from deep learning-based
methods, various predictive models based on hand-crafted
features also reported promising results. Importantly,
Schulze et al. and Bueno et al. [3, 4] have obtained 95% and
98% accuracy, respectively. Given that the accuracies of the
studies nearly come to 100%, seemingly it seems that classifi-
cation of genera is conquered. Apart from this, Park et al. [5]
have proposed the Bayesian optimization-based neural archi-
tecture search (BO-NAS) for a better classification of cyano-
bacteria with the convolutional neural networks (CNN).
Using the flow cytometer and microscope (FlowCAM; [6]),
they collected the image data of cyanobacteria including
Microcystis characterized in interfering effects due to
crowded cells and diatoms. It is remarkable that this CNN
model effectively classified the algal genus with an F1 score,
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which is the harmonic mean of precision and recall, of 0.95
for the eight genera. Interestingly, leveraging all of the
CNN, the grayscale surface direction angle model (GSDAM;
[7]) and Canny edge detection [8, 9] have identified algae in
an unsupervised fashion. Mary and Prabakaran [10] seg-
mented and classified 70 genera of 1531 images using Canny
edge detection and the Inception V4 [11]. Previous studies
have achieved significant classification results on some gen-
era images, but they were limited in scope to classification
[12]. To detect and quantify genera furthermore, several
intractable problems still remained. As discussed in [1], it is
required to locate genera presented in the image since the
taxonomist handles images containing multiple taxa. For
doing this, we necessarily introduce both Region of Interest
(ROI) detection and instance segmentation algorithm.

Recently, image classification has been applied in a vari-
ety of fields such as geoscience and remote sensing (RS). In
the hyperspectral (HS) images containing specialties on spa-
tial information, several research projects have been success-
fully made [13]. Hong et al. [14] address the HS images
focusing on RS images with the multimodal deep learning
framework (MDL-RS). The MDL-RS networks propose five
plug-and-play fusion modules making possible to submit
the image information effectively through the modalities. In
the two extraction subnetworks (Ex-Net) based on pixel-
wise or spatial-spectral architectures, each modality extracts
the feature map through the CNN-based networks. Embed-
ding the Ex-Net outputs to the input of fusion network
(Fu-Net), the Fu-Net binds the feature maps using concate-
nation- and compactness-based methods. The nonlocal
graph convolutional network (nonlocal GCN) classifies the
HS images with a novel graph-based semisupervised learning
[15].

Furthermore, the recent studies also pay attention to
detecting the precise boundary in the midst of the complex
image data. Xie et al. [16] utilize the hyperparameters to train
and used transfer learning to reduce the training time of the
GlacierNet CNN modified from the SegNet [17]. In [18], the
deep fully convolutional network dilated kernel (FCN-DK)
based on the supervised pixel-wise image classification for
improving cadastral boundary detection in urban and semi-
urban areas is proposed. The performance of the model is
compared with the state-of-the-art techniques, including
Multiresolution Segmentation (MRS; [19]) and Globalized
Probability of Boundary (gPb; [20]). For the medical image
segmentation especially in CT images, the adaptive fully
dense (AFD) neural network adding the horizontal connec-
tions in U-Net structure [21] is known to perform outstand-
ing boundary detection [22].

Instance segmentation is the simultaneous task of detect-
ing and delineating each distinguishable object in an image.
Breaking through the Faster R-CNN [23], the model used
object detection with a parallel branch for predicting seg-
mentation masks, namely, the Mask R-CNN [24], surpassing
all the previous state-of-the-art methods on the COCO
instance segmentation data set [25], and has been widely
applied to diverse academic domain. Although its superior
performance is unquestionable, it still has difficulty in han-
dling densely crowded and overlapping instances.

To address these obstacles, we propose a novel way of
improving the Mask R-CNN by accommodating extra
weights in the model that integrates prior known knowledge.
In the experiments, we apply weights to neighboring bound-
aries of algae especially in Microcystis genus which are quite
complex to classify because of the variety form of algae. Nota-
bly, it is also shown worthy of effectively counting cells (i.e.,
vision sensing) through calculating objective areas for the
measurement of concentration in algae. Moreover, we lever-
age heavy weights to adjacent boundaries of objects in multi-
ple cell membrane images for improved accuracy.

The rest of this paper is organized as follows. In Section 2,
the proposed methods are given. Next, in Section 3, we
describe how we acquire the image data sets, preprocess,
and provide experiment results. In Section 4, we discuss our
results comparing with existing works and address future
works.

2. Methods

2.1. Mask R-CNN Network Architecture. Network architec-
tures of the Mask R-CNN largely consist of two parts: (1) fea-
ture extraction and (2) instance segmentation. First, the
ResNet101 module [24] pretrained by the COCO data set is
used. The backbone network and feature pyramid network
(FPN) architecture designed to extract features are used for
better accuracy and processing speed. Next, in the head of
network architecture, the model detects ROI, and from the
derived ROI detection and classification are made. With
these frameworks, the fully convolutional mask prediction
is lastly implemented for instance segmentation.

2.2. Integration of Distance Weight with Mask R-CNN. Here,
standing on the shoulder of the Mask R-CNN, we propose
the weighted Mask R-CNN specially designed to accommo-
date a priori known weights to the main objective function.
This method is mainly aimed at precisely separating the
boundary of multiple samples in the context of instance seg-
mentation. Putting in a nutshell, the tasks of the Mask R-
CNN achieve largely three goals: (1) classifying class labels,
(2) detecting bounding boxes, and (3) segmenting instances.
Firstly, the model extracts feature maps by passing resized
images through the CNN. On the basis of the feature maps,
the Region Proposal Network (RPN) stage allows for the can-
didates of objective bounding box among generated anchor
boxes. Subsequent to this, the ROI align is performed to
gather the precise pixel location data. The ROI align serves
as a building block to detect objects as well as to segment
instances. Focusing on ROI align, the model extracts feature
maps of interest areas by using exact coordinates through
fully convolutional network (FCN [26]). Afterwards, through
the process of minimizing the objective function, we opti-
mize the Mask R-CNN model. The model defines the objec-
tive function as the aggregation of the loss functions of
classification, localization, and segmentation [27]. Moreover,
each loss function is optimized by the softmax function, box
offset regressor, and mask FCN predictor, respectively. In
this process, the novelty of the Mask R-CNN comes into play
in advancing the former image recognition models (e.g., Fast
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R-CNN [28] and Faster R-CNN). While deriving the objec-
tive function, the Mask R-CNN implements the pixel-wise
binary classification and decouples mask prediction with
both category classification and bounding box detection.
Notably, the binary classification method has merits in terms
of reduction computation costs. The ROI align precisely
masks, aiming at approximating ground truth areas.

For the weighted Mask R-CNN, below is the proposed
objective function:

L = Lcls + Lbox +w ⋅ Lmask

=
1

Ncls
〠
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where pi is the predicted probability of anchor i being an
object, p∗i is the ground truth label (binary) of whether
anchor i is an object, ti is the predicted four parameterized
coordinates, t∗i is the ground truth coordinates, Ncls is the
normalization term set to be minibatch size (0~256), Nbox
is the normalization term set to the number of anchor loca-
tions (0~2400), λ is the balancing parameter set to be (0~10
such that both Lcls and Lbox terms are roughly, equally
weighted), k is the number of ground truth class, w is the
weight matrix assigned to pixel instances, and

Lsmooth
1 xð Þ =

0:5x2, if xj j ≤ 1,

xj j − 0:5, otherwise:

(
ð2Þ

In addition, we integrate both image representations and
a priori known knowledge of adjacency in the model.
Inspired by the U-Net, this weight induces strong separation
across samples as boundaries get closer. In theory, the closer
the boundary the bigger the weight:

w xð Þ =wc xð Þ +w0 ⋅ e
− d1 xð Þ+d2 xð Þð Þ2/2σ2 ,

w = 1 + w xð Þ −min w xð Þð Þ
max w xð Þð Þ −min w xð Þð Þ ⋅ δ,

ð3Þ

where wc : Ω→ R is the weight map to balance the class fre-
quencies, d1 : Ω→ R denotes the distance to the border of
the nearest cell, d2 : Ω→ R denotes the distance to the bor-
der of the second nearest cell, and δ refers to the weight
adjusting parameter, respectively.

In principle, wðxÞ is subject to size of objects, distance
between objects, and shape of the objects in an image. To
account for variability, we scale each weight map separately
to the range from 0 to 1. Next, we consider the parameter δ
to determine the power of the weight matrix. The weight
parameter δ can be used for adding the extra emphasis on
the boundary of object especially when the distance between
objects is too narrow so that we hardly distinguish bound-
aries. Subsequent to this, we impose this weight matrix to
the objective function of masks in the fashion of element-

wise computation. Taken together, Figure 1 displays the
end-to-end architecture of the proposed model.

Moreover, the stochastic gradient descent (SGD) algo-
rithm is used as an optimizer and minibatch size is fixed to
1 in this study, and we set the learning rate of 0.001 and
100 epochs. Validation processes with comparing ground
truth masks to assess predictive performance. For implemen-
tation, the Mask R-CNN adopts the PyTorch packages for
simplicity [29].

3. Numerical Experiments

3.1. Data Sets. In what follows, we describe the data sets for
numerical study. First and foremost, it is essential to gen-
erate well-preprocessed data sets to produce reliable exper-
iment results. To this end, we apply several preprocessing
techniques such as standardization or scaling to raw data
and matching each preprocessed image with precise
annotations.

3.1.1. Simulated Data. In simulation I, we generate circle
images each of which includes inside 4 and 6 circled objects
for train data sets, respectively, where all images have resolu-
tion of 512 × 512 × 3 pixels. Similarly, we generate circle
images including the prespecified number of objects for test
data set (i.e., 4 and 6). Subsequent to this, we divide each
image both in horizontal and vertical direction in the way
that each circle is exclusively placed one at a diagonal slot
and the radius of each circle is limited to the boundary of
slots. Simulation II emulates the nature of real data, for which
we generate the shape of ellipses in accommodating random-
ness and complexity to the simulation data sets. More pre-
cisely, we randomly choose the center points of objects and
generate ellipses of random sizes for experiment data sets
assigned to the diagonal slots. This configuration makes dis-
tance between objects arbitrarily determined and promotes
adequate complexity.

3.1.2. Microalgae and Cell Membrane Data. Freshwater
microalgae samples used in this work were collected at 11
weirpools and five reservoirs located in the four major rivers
(e.g., Han, Nakdong, Geum, and Yeongsan) in Korea. Water
(quantitative) or net (qualitative) samples were taken from
the surface and immediately fixed to the final 1% concentra-
tion with acidified Lugol’s iodine solution [30]. Quantitative
samples were allowed to stand in the dark place of the labo-
ratory for more than one week, and then, the supernatant
was carefully siphoned and concentrated an appropriate cell
density (above 104 cells/mL). Image acquisition was per-
formed using photomicroscopes (Zeiss AXIO Scope.A1 and
Vert.A1 model, Germany) attached camera (Axiocam 506
color) assisted with computer software (ZEN lite 2012), and
captured images have resolution of 1936 × 1460 × 3 pixels
at 200x or 400x magnification of a microscope. A manual
identification of algae species was carried out based on their
taxonomic characteristics by [31].

In the experiment, 469 Microcystis images are used in
total. Since the images are collected insufficiently, the perfor-
mance of segmentation model can be severely deteriorated.
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However, we fine-tune by means of the CNN pretrained with
the COCO data set in order to tackle the degrading perfor-
mance problem. In addition to this, we also analyze 30 cell
membrane images in electron microscopic (EM; [32]) seg-
mentation challenge at the International Symposium on Bio-
medical Imaging (ISBI). After that, taxonomists elaborately
assess the consistency of labeling and annotations. LabelMe
(https://github.com/wkentaro/labelme) is used as an annota-
tion tool widely accepted for segmentation tasks. Impor-
tantly, it is very useful to annotate polygons simply by
marking points and labeling genus taxa challenging due to
the complexity and variety of shapes of algae and cell mem-
brane. Thus, we annotate one by one to accurately delineate
sophisticated boundaries. Finally, the annotation files are
automatically saved in the JSON file format. For algae data
set, we split the whole data into the training set of 319 images
and the test set of 150 images.

3.2. Results

3.2.1. Evaluation Metrics. True positive (TP) pixels are
ground truth target pixels and also predicted as target pixels.
True negative (TN) pixels are not ground truth target pixels
and also not predicted as target pixels. False positive (FP)
pixels are not ground truth target pixels but predicted as tar-
get pixels known as Type II Error. False negative (FN) pixels
are ground truth target pixels but not predicted as target
pixels called as Type I Error. Precision and recall are defined
as

Precision = TP
TP + FP

,

Recall =
TP

TP + FN
:

ð4Þ
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Figure 1: Integration of the weight map under the architecture of the Mask R-CNN.
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(Mask R-CNN)

= |GT_min_distance
−M_min _distance| 

Measure I
(Weighted Mask R-CNN)
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Mask R-CNN
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Figure 2: Examples of calculating Measure I from two ellipse images.

4 Journal of Sensors

https://github.com/wkentaro/labelme


A precision-recall curve is a plot of precision (y-axis) and
recall (x-axis) with varied thresholds. Average Precision (AP)
is the under area of the precision-recall curve and is calcu-
lated as the mean precision given recall measures. mAP is
the mean of Average Precision calculated by the multiple
objects in an image. Intersection over Union (IoU) is a

well-known measure from ground truth mask ðgtmaskÞ and
predicted mask ðpredmaskÞ in evaluating image segmentation
methods:

IoU =
gtmask ∩ predmask
gtmask ∪ predmask

: ð5Þ

In this study, we further define the mean IoU of multiple
objects in an image (mIoU (mean of Intersection over
Union)). In this paper, we compute mAP and recall at the
given IoU threshold (default 0.5). Without the given IoU
threshold, we compute mAP and recall over a range of IoU
threshold (as default 0.5 to 0.95 with an increment of 0.05).

The first measurement in the boundary detection in this
paper called as Measure I is defined as the absolute value of
difference, that is, a minimal distance of adjacent two objects
between the ground truth mask and predicted mask. Figure 2
describes the example of Measure I.

The second measurement in the boundary detection
called as Measure II gauges the proportion of mask pixels
among predesignated areas. We compare Measure II in both
models with algae and cell membrane images, where the
Mask R-CNN produces overlapping inferred masks of two

Original image Mask R-CNN

Original image Weighted Mask R-CNN

Figure 3: Examples of calculating Measure II from algae images.

Table 1: The comparison of Mask R-CNN, weighted Mask R-CNN, and MEInst in simulation I.

# of circles 4 6

Model MEInst Mask R-CNN
Weighted Mask R-CNN

MEInst Mask R-CNN
Weighted Mask R-CNN

δ = 0:1 δ = 0:5 δ = 1 δ = 0:1 δ = 0:5 δ = 1
Mean 0.768 1.110 0.629 0.857 0.984 0.834 0.936 0.659 0.830 1.008

se 0.062 0.056 0.048 0.052 0.052 0.036 0.034 0.031 0.035 0.033

Table 2: The comparison of Mask R-CNN, weighted Mask R-CNN, and MEInst in simulation II.

# of ellipses 4 6

Model MEInst Mask R-CNN
Weighted Mask R-CNN

MEInst Mask R-CNN
Weighted Mask R-CNN

δ = 0:1 δ = 0:5 δ = 1 δ = 0:1 δ = 0:5 δ = 1
Mean 1.212 1.154 0.787 0.941 1.039 0.895 0.947 0.745 0.941 0.942

se 0.073 0.068 0.055 0.047 0.062 0.068 0.075 0.068 0.075 0.059

Table 3: Comparison of the performance of object detection
between Mask R-CNN and weighted Mask R-CNN in algae and
cell membrane images.

Mask R-CNN Weighted Mask R-CNN
Algae Cell membrane Algae Cell membrane

mAP50 0.862 0.899 0.925 0.945

mAP75 0.688 0.796 0.786 0.852

mAP 0.603 0.625 0.673 0.677

Recall50 0.945 0.970 0.964 0.986

Recall75 0.785 0.867 0.843 0.908

Recall 0.699 0.704 0.734 0.739

mIoU 0.801 0.579 0.845 0.636
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objects separable in truth. Under this scheme, the lower Mea-
sure II, the better model in predictive power. Figure 3 illus-
trates the examples of Measure II.

3.2.2. Experiment Data. We compare the Mask R-CNN,
weighted Mask R-CNN, and Mask Encoding for Single Shot
Instance Segmentation (MEInst; [33]) models via Measure I
and present the mean and standard errors given the prespe-
cified number of circles and ellipses (i.e., 4 and 6) in
Tables 1 and 2. The results indicate that the predicted mask
of the weighted Mask R-CNN model is superior across simu-
lation scenarios when we estimate the ground truth mask
compared to the Mask R-CNN and MEInst. We train on
the ResNet-50-FPN model as the backbone implemented in
the PyTorch package for both theMEInst and weightedMask
R-CNN. The Mask RCNN runs at 67.47ms per image with
almost the same as the weighted Mask R-CNN records, and
MEInst runs at 77.69ms per image using our workstation
(Intel i7-7800X, RAM 128GB, Geforce GTX 1080 Ti GPUs).

3.2.3. Real Data. In Table 3, we compare the performance of
the Mask R-CNN and weighted Mask R-CNN models in real
data. In algae data, mAP50 and Recall50 are 0.862 and 0.945 in
the Mask R-CNN and 0.925 and 0.964 in the weighted Mask
R-CNN, where mAP50 and Recall50 refer to mean AP and
recall under IoU threshold of 0.5. In the same manner, mIoU
in the Mask R-CNN is 0.801, and in the weighted Mask R-
CNN, it is 0.845. In cell membrane data, mAP50 and Recall50
are 0.899 and 0.970 in the Mask R-CNN and 0.945 and 0.986
in the weightedMask R-CNN. As a whole, it is evident that the
weighted Mask R-CNN performs better than the Mask R-
CNN in both microalgae and cell membrane data.

Furthermore, in Table 4, the comparisons in detecting
borders between two models are given. We choose 14 algae
images and 14 cell membrane images each. Hence, we can
evaluate the area of images under the following conditions.
First, the objects in images are detected in both the Mask

R-CNN and weighted Mask R-CNN models. Second, the
masks inferred from the Mask R-CNN are overlapped. This
is reasonable in the sense that most of microalgae in an image
are jumbled and many have put efforts to separating individ-
ual algae in vision to facilitate counting. Third, the specified
objects are taxonomized as different groups. In Table 3, we
observe that the weighted Mask R-CNN (i.e., the mean of
0.36 and 0.65 for algae and cell membrane) consistently out-
performs the Mask R-CNN (i.e., the mean of 0.66 and 0.76
for algae and cell membrane) in separating boundaries of
adjacent objects with respect to all target images. See the sup-
plementary material (available here) for additional results.

4. Discussion

In this paper, we introduce the weighted Mask R-CNN spe-
cially designed to accurately segment instances. Simply put,
this method accommodates in theory a priori known knowl-
edge of boundary information in the midst of multiple
objects. In numerical experiments, it is shown that the
weightedMask R-CNNmodel performs better than theMask
R-CNN and MEInst models in the boundary detection as
stated in Tables 1 and 2. However, it is shown in the experi-
ment that δ is required to be tuned properly to improve per-
formance. In particular, we hardly perform the clear-cut for
algae (e.g., Microcystis) and cell membrane images, in the
sense that they are commonly mingled in an image and are
formed with heterogeneous figures. To overcome this, the
weighted Mask R-CNN is worth to implement the precise
segmentation tasks. On top of that, it is also noteworthy that
the proposed method can advance in microalgae research
domain in keeping with improving instance segmentation.
Surprisingly, this technique obviously contributes to quantify
each single cell in vision sensing approaches. In reality, there
are urgent needs in freshwater analysis to quantify the num-
ber of algae cells and the concentration of algae. This utility
enables to monitor water quality in seas or rivers [34]. When

Table 4: Comparison between Mask R-CNN and weighted Mask R-CNN by Measure II in algae and cell membrane images.

Image names Mask R-CNN Weighted Mask R-CNN Image names Mask R-CNN Weighted Mask R-CNN

Microcystis 1 0.38 0.09 Cell membrane 1 0.81 0.68

Microcystis 2 0.58 0.23 Cell membrane 2 0.82 0.82

Microcystis 3 0.82 0.74 Cell membrane 3 0.81 0.75

Microcystis 4 0.85 0.45 Cell membrane 4 0.68 0.60

Microcystis 5 0.41 0.18 Cell membrane 5 0.91 0.73

Microcystis 6 0.61 0.30 Cell membrane 6 0.62 0.50

Microcystis 7 0.77 0.35 Cell membrane 7 0.65 0.46

Microcystis 8 0.66 0.36 Cell membrane 8 0.80 0.74

Microcystis 9 0.80 0.18 Cell membrane 9 0.76 0.52

Microcystis 10 0.72 0.72 Cell membrane 10 0.86 0.75

Microcystis 11 0.57 0.31 Cell membrane 11 0.88 0.76

Microcystis 12 0.59 0.35 Cell membrane 12 0.35 0.34

Microcystis 13 0.67 0.15 Cell membrane 13 0.79 0.66

Microcystis 14 0.76 0.61 Cell membrane 14 0.88 0.83

Mean 0.66 0.36 Mean 0.76 0.65
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it comes to the model configuration, the weight in the model
only builds on distance basis between objects, but yet this
weight can be extended to other known knowledge in spirit
of data integration. It is also interesting to exploit cutting-
edge network architectures and modules in improving accu-
racy and accelerating the computational speed. We leave this
subject for future study.
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examples of Mask R-CNN (left) and weighted Mask R-
CNN (right). Figure S10: the instance segmentation examples
of Mask R-CNN (left) and weighted Mask R-CNN (right).
Figure S11: the instance segmentation examples of Mask R-
CNN (left) and weighted Mask R-CNN (right). Figure S12:
the instance segmentation examples of Mask R-CNN (left)
and weighted Mask R-CNN (right). (Supplementary
Materials)
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