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This article presents a new alternative for data resource, by applying the proposed methods of Principal Components Analysis
(PCA) or of Discrete Wavelet Transformation (DWT) on the VV and VH polarization images of the Sentinel-1 radar satellite,
aiming at a better classification of data. The study area concerns the Houareb site located in the city of Kairouan in central
Tunisia. In addition to Sentinel-1 data, field truth data and the Euclidian Minimum Distance (EMD) criterion were used for
classification and validation. Energy descriptors have been proposed in this study for classifications. Cross validation was used to
evaluate the results of the classification. The best classification result was achieved using the DWT method applied on VH and
VV images with an Overall Precision (OA) of 0.671 and 0.548, respectively, against an OA value of 0.371 and of 0.449 when the
PCA method and the Minimum Distance (MDist) classifier were applied on the dual (VV; VH) polarization, respectively. The
DWT transformation gives the highest Kappa Precision Coefficient (KPC) of 0.8.

1. Introduction

Sentinel-1 satellite images in Interferometric Wide (IW)
swath mode at level 1 with Ground Range Detection (GRD)
were widely used in the last years to identify the Land Cover
(LC). Makinde and Oyelade [1] established the LCmap of the
Lagos site, located in Nigeria by using the maximum likeli-
hood method which was applied for both the VV and VH
polarization GRD_IW Sentinel-1 images and achieved an
OA of 0.757 and a KPC of 0.719. Abdikan et al. [2] combined
VV and VH image polarizations according to eight scenarios
and used the Support Vector Machine (SVM) classifier to
map the LC in urban area of the megapole site at Istanbul,
in Turkey. Results showed higher OA value, of 0.933 instead
of 0.739 when the VV polarization is used. Balzter et al. [3]
used the full polarizations and the digital elevation data of
the SRTM to provide the LC maps of the Thüringen region
located in Germany. Four classified images were provided
using the Random Forest (RF) method. Result evaluation
was made with the 2006-CORINE map. The OA and KPC

values were equal to 0.684 and 0.63, respectively. Various
approaches used the synergy between the remotely sensed
optical and radar data to elaborate the retrieval LC maps.
Recently, Bousbih et al. [4] used the classical RF and SVM
classifiers with different indicators, derived from the Sentinel
constellations (Sentinel-1 and Sentinel-2) to generate the clay
content map of a semiarid LC located in central Tunisia. The
used moisture indicator was given from the soil moisture
maps over different periods. Maps are obtained by combin-
ing the Synthetic Aperture Radar (SAR) and the optic data
in the Water Cloud Model (WCM) and in the Integral Equa-
tion Model (IEM). Gao et al. [5] used the Sentinel-1 and the
sentinel-2 data fusion over a site in Urgell (Catalunya, Spain)
to retrieve the soil moisture by using the change detection
approach and the backscattered NDVI Sentinel-1 radar
index. The synergy use of the optic and the radar data was
helpful to LC discrimination and identification. However,
the full polarimetric radar data and the optic data were not
free at the same time. The almost free IW_GRD_Sentinel-1
data are available in VV and VH polarizations, only, like
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for the Tunisian country. Sentinel-1 and Sentinel-2 data can
be free downloaded from the Copernicus web site (https://
scihub.copernicus.eu/). Unfortunately, the only use of this
dual polarization (VV; VH) provides poor OA and KPC
values for Sentinel-1 data classification. For this raison, we
propose to use PCA or DWT orthogonal transformations
on VV and VH Sentinel-1 images in order to improve the
LC classification.

The orthogonal transformations can lead to a spatial or a
frequency analysis depending on the nature of the transforma-
tion [6]. When the Finite Impulse Response (FIR) filter is used
to filter the satellite image, the frequency analysis can bemade.
Hence, the new components issued from the filtering enclose
energy information. The new component issued from the
spatial transformation are obtained from the pixel image
projection procedure such us the PCA and the Independent
Component Analyses (ICA). These methods use interband
covariance matrix to build the new space representation in
which bands are uncorrelated.

The PCA transformation is widely used in feature extrac-
tion methods. Alons and Malpica [7] used the PCA to obtain
a pan sharpening remote sensing images from the multispec-
tral bands in order to perform the automatic classification
methods, while Wang and Wang [8] elaborated a region-
based unsupervised segmentation by adaptively combining
the texture and the spectral distributions using the PCA
method. Singh and Kaur [9] used the PCA to verify if the
reduced feature sets for both the water and the urban area
coverage in SAR image database are the same as obtained
by the GLCM (Gray Level Cooccurrence Matrix) and the
GLRLM (Gray Level Run Length Matrix).

In literature, the DWT was applied on (i) SAR data for
noise filtering of the Sentinel-1 data [10], (ii) for preclassifica-
tion change detection from the Sentinel-1 multipolarized
images [11], (iii) to retrieve the wind direction form a series
of VV-Sentinel-1 images [12], (iv) for image classification
[13], and for parameterizing the feedforward neural net-
works to improve remote sensing LC identification [14]. In
this context, this paper shows the powerful use of the DWT
components of the Sentinel-1 data, comparing to the use of
the spatial PCA method, for a classification procedure.
Classifications accuracies are based on the field measure-
ments acquired over the Kairouan plain study site, located
in central Tunisia (Lat. 35° 40.686′ N, Long. 10° 5.7798′ E).

During the two last decades, this study area was a subject
of interest of many researchers. The most recent study is that
of Bousbih et al. [4]. Authors generate the clay content map
of the plain, using the Sentinel-1 and the Sentinel-2 data.
Bousbih et al. [15] used the multidate VV and VH Sentinel-
1 measurements in synergy with Landsat-8 optical data, to
evaluate the soil characteristics (moisture and roughness)
and the vegetation parameters of the same site. Zribi et al.
[16] used the ENVISAT ASAR radar data (C-band) in
synergy with the SPOT-5 optical images. Zribi et al. [17]
elaborated for the same site the moisture model of bare soils
by combining the Envisat ASAR and the TerraSAR-X multi-
spectral (L, C, and X) data, which was acquired within in situ
measurements of the soil moisture content and the ground

surface roughness. Other studies were carried out to map
the Kairouan plain LC by using only the optical sensors
[18]. So far, there is no any satisfactory classified map for this
site.

This paper aims to provide a Sentinel-1 classified image
of the Kairouan plain by using the above-mentioned
methods. Our paper is organized as follows: in Section 2,
the studied area is described; the ground measurements and
the database are presented and the two proposed procedures
are described. Section 3 presents the results and the discus-
sion. Finally, conclusions are presented in the last section.

2. Materials and Methods

2.1. Study Site. The study region is located in the south west
of Kairouan as presented in Figure 1 with latitudes 35° to
35° 45′ N and longitudes 9° 30′ to 10° 15′ E, in the center
of Tunisia. The study area was chosen as an experimental
area by the SIDA FAO project. The region is characterized
by a semiarid climate, and it is considered as a plain area.
In the Kairouan plain, agriculture is the main economic
activity. It includes animal husbandry, cereals and vegetable
crops, and arboriculture (almond, apricot, citrus, and olive)
dominated mainly by olive plantations.

2.2. GCP Measures. A campaign of Ground Control Points
(GCP) of LCs was carried out from 10 to 12 June 2019 on
the study area by using the free ODK brief case android appli-
cation (https://odk-demo.readthedocs.io/en/latest/briefcase-
install.html). The accuracy of the GCP is 14.53 meters. The
GPS point’s data were retrieved on computer and processed
on the Qgis 3.4.6 software to obtain the georeferenced LC
map which represents the GCPs centered in polygons of each
LC species. Seven LC species were identified on this site as
presented in Table 1 and Figure 2: fruit trees, cereals, fallow,
bare soil, soil covered with straws, olive trees, and vegetable
crops. The urban area, daim and wadi were visited in cam-
paign and then localized on the TCI Sentinel-2B subimage of
the study area as presented in Figure 1.

2.3. DEM Map. The Shuttle Radar Topography Mission
(SRTM) data was used to extract the Digital Elevation Model
(DEM) at 30m of the study area as presented in Figure 3(a).
The SRTM data can be free downloaded from website http://
edcsns17.cr.usgs.gov/EarthExplorer/.

The study area presents in the north and north-west a
mountain chain. The DEM map was been thresholded, so
pixel slope values >15% were converted to grayscale 255
and the others to 0 as presented in Figure 3(b). From the
slope map, we masked some reliefs of the study area with
black color (as presented in Figure 3(c)).

2.4. Sentinel-1 Data and Processing. Sentinel-1 data were
downloaded from the ESA’s Copernicus Open Access Hub
(https://scihub.copernicus.eu/) at the date of 05 June 2019.
No LC change was detected from this date to the campaign
date. Sentinel-1 satellite provides the level 1 GRD products
in IW mode in descending and ascending orbit at an angle
of incidence between 39 and 40 degrees and in the C band
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frequency with a spatial resolution of 10 meters in dual polar-
ization (VV and VH).

The Sentinel-1 data was preprocessed using the Sentinel
Application Platform (SNAP) as follows: (i) the calibration
step allows the conversion of the signal recorded by the
sensor in the form of digital accounts into backscatter coeffi-
cient; (ii) the geometric terrain correction (georeferencing)

step permits to correct the geometric distortions by using
the Digital Elevation Model (DEM) proposed by the NASA’s
Shuttle Radar Topography Mission (SRTM); (iii) the thermal
noise removal step using the Lee filter.

The subimages as shown in Figures 4(a) and 4(b) were
extracted from the VH and VV polarization images; they
cover the region of interest (as presented in Figure 1). The
size of each image is 3227 pixels in line by 2917 pixels in col-
umn and is coded on 16 bits. The VH and VV subimages
have a covariance of 733.5. Thus, the LC similarities included
in the polarization images reduce the accuracy of the classifi-
cation. We propose to reduce this correlation between bands
by the use of PCA or DWT transformations.

2.5. Classifier Algorithms. Classification methods which use
pixel values or distribution function give low OA values
because of the effect of the cross-pixel’s values correlation
of the LCs [19]. The PCA and the DWT methods transform

Table 1: List of classes identified on the study area.

Classes Polygon label Species LC

C1 None Urban areas LC1

C2 Bare soil LC2

C3 Soil covered with straws LC3

C4 None Wadii LC4

C5 Olive trees LC5

C6 Fallow LC6

C7 Cereals LC7

C8 Vegetable crops LC8

C9 None Daim LC9

C10 Fruit trees LC10

5 km

Figure 2: Georeferenced map of the study area (zoom ×4). The LC
polygons are centered on the GCPs measures. The polygon label is
shown in Table 1.
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Figure 1: TCI Sentinel-2B subimage of the study area—June 5, 2019—TCI image is in true color composite bands (B4: red, B3: green, B2:
blue). In image, rectangle delimitates campaign area.
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the initial images into a set of new images which are uncorre-
lated with each from other, and the LCs are uncorrelated in
the new space representation. The contribution of these
transformations is to reduce the LC correlation between the
VV and VH bands and so to increase the LC-OA value of
the classified image.

In this paper, DWT and PCA transformations were
applied on Sentinel-1 data and the obtained pansharpening
images of the study area have been classified according to
the EMD criterion (Figure 5) Results were compared to those

obtained with the use of the MDist method in order to see the
contribution of orthogonal transformations for the improve-
ment of the classification results.

2.5.1. DWT Description. DWT is a multiresolution approach.
The bidimensional DWT is achieved by implementing a
bank of single-dimensional filters (filters designed from a
Mother Function (MF)) which are low-pass, hðxÞ, and
high-pass, gðxÞ, analysis filters. For one level of redundant
DWT decomposition as presented in Figure 6, the image is

29.170 km
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m

(a) (b)

(c)

Figure 3: (a) Slope map derived from DEM; (b) thresholding DEM map; (c) relief mask.
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Figure 4: Sentinel-1 polarization subimages. (a) VH; (b) VV.
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decomposed into three detail images (LH, HL, and HH)
corresponding to the image distinct frequency bands and into
the LL subband which is the low-pass-filtered version of the
image. The LL subband is further decomposed with the same
manner, in the second level decomposition [20, 21]. The four
subbands have the same size as the original image in case of
the redundant DWT decomposition. We have applied the
redundant DWT on the VV and VH Sentinel-1 images sepa-
rately at one level of decomposition, and we have obtained
three details subbands and an LL band for each image.

2.5.2. PCA Transform. To apply the PCA on the Sentinel-1
data (composed of the bibands VV and VH) we have, firstly,
to compute the covariance matrix between the VV and VH
images and, secondly, to project each pixel of Sentinel-1
image from the VV and VH space representation into the
new space CP1 and CP2, respectively, by using a transform

matrix which is composed by the eigenvectors of the covari-
ance matrix [6]. Figure 7 shows the new CP1 and CP2 com-
ponents of the Sentinel-1 images of the study area.

2.5.3. LC Descriptors. The used LC descriptors are described
as follows [6, 22]:

Energy : E = 1
M

〠
l,m

D l,mð Þð Þ2, ð1Þ

L1 norm : MD =
1
M

〠
l,m

D l,mð Þj j: ð2Þ

These descriptors are computed in a Region Of Interest
(ROI), where (l, m) are the coordinates of a pixel in the pan-
sharpening image D; M is the ROI size, given in pixels.

2.5.4. Classification Procedure. The EMD criterion was used
to classify the Sentinel-1 data of the study area by using the
DWT or PCA methods as shown in Figures 5(a) and 5(b),
respectively. In the classification procedure, the EMD repre-
sents the minimum Euclidian distance between the Local
Descriptor Vector (LDV) and the LC energy Descriptor
Vectors (LC_DV). The LDV (use (3) in case of DWT, use
(4) in case of PCA) was computed for each ROI on the
pansharpening images according to formulas (1) and (2),
for each position of the ROI-Scanning Window (ScW),
which has a size equal to kxk. The used scanning shift is equal
to 1, and the classification result is a labeled image.

In DWT (PCA, respectively), the LC_DV (3) (LC_DV
(4), respectively) was computed from each LC feature
extracted from DWT subbands (CP1 and CP2, respectively)
for each (for both, respectively) polarized Sentinel-1 image

MF

VH or VV

DWT

LH HL HH

LDV

EMDLC_DVs

Labeled image

Confusion matrix
(OA, Pr, R, FP, KPC)

Classified image

ScW (kxk)

Shift = 1

(a)

PCA

LDV

EMDLC_DVs

Labeled image

Confusion matrix
(OA, Pr, R, FP, KPC)

Classified image

ScW (kxk)

Shift = 1

CP1 CP2

VH and VV

(b)

Figure 5: Classification flowcharts: (a) DWT method, (b) PCA method.
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Figure 6: One level of DWT decomposition of an image. LH image
corresponds to the lines low-pass and then the columns high-pass-
filtered version of the image; HL image corresponds to the lines
high-pass and then the columns low-pass-filtered version of the
image. HH image corresponds to the lines high-pass and then the
columns high-pass-filtered version of the image.
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according to the position of the LC polygons (Figure 2). For
each LC specie (Table 1), it attributed an LC_DV (Table 2).
We have considering 2/3 of these LC polygons as training
samples, and the rest (1/3) were used for validation of the
image classification.

VDWT = ELH, EHL, EHH, MDLH, MDHL, MDHHð Þ, ð3Þ

VPCA = ECP1, ECP2, MDCP1, MDCP2ð Þ: ð4Þ

29.170 km

(a) (b)

32
.2

70
 k

m

Figure 7: PCA components of the Sentinel-1 data of the study area: (a) CP1; (b) CP2.

Table 2: Examples of LC_DV computed on LC ROI located on VH and VV images, PCA components, subbands obtained by the DWT
applied to the image of the polarization VH according to MF= ‘Coiflet5’, subbands obtained by the DWT applied to the image of the
polarization VV according to MF= ‘sym2’.

Bands LC_DV LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10

HLVH
E (1.0e-003) 1.2 0.5 0.6 0.3 0.8 0.6 0.4 0.7 0.2 0.9

MD (1.0e-005) 0.32 0.05 0.06 0.02 0.10 0.09 0.02 0.09 0.01 0.12

LHVH

E (1.0e-003) 1.3 0.6 0.6 0.3 0.9 0.6 0.6 0.9 0.2 0.8

MD (1.0e-005) 0.43 0.06 0.07 0.02 0.13 0.05 0.06 0.15 0.01 0.11

HHVH

E (1.0e-003) 0.1 0.1 0.1 0 0.1 0.1 0 0.1 0 0.1

MD (1.0e-007) 0.28 0.05 0.6 0.02 0.13 0.05 0.03 0.07 0.01 0.09

HLVV
E (1.0e-003) 9.5 5.7 5.6 2.8 7.4 5.8 5.0 8.8 1.8 6.3

MD (1.0e-003) 0.27 0.05 0.05 0.01 0.09 0.05 0.04 0.14 0.01 0.07

LHVV

E (1.0e-003) 9.3 5.9 4.8 2.7 6.6 5.4 4.7 6.7 1.9 6.4

MD (1.0e-003) 0.27 0.06 0.04 0.01 0.07 0.05 0.04 0.07 0.01 0.07

HHVV

E (1.0e-003) 1.8 1.1 1.1 0.5 1.3 1.0 0.9 1.2 0.4 1.3

MD (1.0e-005) 0.9 0.2 0.2 0.1 0.3 0.2 0.1 0.2 0 0.3

CP1
E 35.4 38.8 21.3 53.1 34.5 22.6 26.4 22.9 61.5 27.7

MD (1.0e+003) 2.3 2.1 0.7 3.3 1.8 0.9 1 0.9 4.6 1.4

CP2
E 15.6 9.1 9.4 8.6 14.9 9 8.2 12.3 12.2 10.6

MD (1.0e+003) 0.43 0.14 0.14 0.11 0.34 0.13 0.10 0.25 0.25 0.18

VH
E 83 65 61 47 79 66 56 87 60 79

MD (1.0e+04) 0.75 0.45 0.40 0.24 0.66 0.46 0.32 0.82 0.46 0.59

VV
E 155 146 142 103 161 154 130 173 130 159

MD (1.0e+04) 2.60 2.20 2.06 1.10 2.69 2.45 1.73 3.17 1.98 2.74

Table 3: Nonnormalized confusion matrix.

C1 C2 C3 Subtotal

LC1 X11 X12 X13 Y1

LC2 X21 X22 X23 Y2

LC3 X31 X32 X33 Y3

Subtotal Z1 Z2 Z3 T
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Table 4: Highest values of R of the classes identified on Sentinel-1 classified data using DWT method.

Classes MF Polarization k OA Pr R

C1 Sym2 VV 11 0.548 0.574 0.918

C2 Db45 VH 11 0.482 0.48 0.97

C3 Db45 VV 11 0.478 0.41 0.44

C4 Db45
VV

9 0.450 0.64 1.00

11 0.478 0.78 1.00

VH 11 0.482 0.35 0.78

C5 Coiflet5 VH 11 0.671 0.77 0.73

C6 Db45 VH 11 0.482 0.58 0.93

C7 Coiflet5 VH 11 0.671 0.60 0.66

C8 Db45 VV 11 0.478 0.36 0.93

C9 Coiflet5 VH 9 0.640 0.90 0.89

C10 Db1 VH 9 0.474 0.31 0.65

Table 5: List of classes identified on Sentinel-1 classified data using DWTmethod in case of the restriction Pr > 0:5with (R > 0:57, FP < 47%).

Classes MF Polarization k FP (%) Pr R

C1

Db1 VH 9 16.22 0.83 0.77

Db45
VV

11 15.58 0.82 0.72

9 10.91 0.87 0.70

VH 11 37.58 0.69 0.84

Coiflet5 VH 11 31.26 0.73 0.83

Sym2 VV 11 27.01 0.77 0.74

C2 Coiflet5 VH 9 46.92 0.55 0.57

C4

Db45 VV 11 28.33 0.78 1.00

Coiflet5 VH
9 2.61 0.97 0.79

11 17.06 0.84 0.87

C5 Coiflet5 VH 11 38.48 0.64 0.69

C6 Coiflet5 VH
9 7.62 0.91 0.81

11 15.86 0.83 0.76

C7 Coiflet5 VH
9 44.45 0.62 0.72

11 31.36 0.74 0.90

C8 Coiflet5 VH 11 12.85 0.82 0.59

C9
Coiflet5 VH

9 10.14 0.90 0.89

11 7.29 0.92 0.87

Sym2 VV 11 16.73 0.84 0.93

Table 6: The OA and KPC metric values for the best classification results using: the DWT applied on the polarization VH according to
MF= ‘coiflet5’, the DWT applied on the polarization VV according to MF= ‘sym2’, the classifications by the PCA and the MDist. All for k = 11.

Methods Bands OA KPC

DWT
VH 0.671 0.8

VV 0.548 0,735

PCA VH and VV 0.371 0.336

MDist VH and VV 0.449 0.441
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2.6. Evaluation Criterion. The classification accuracy assess-
ment is provided by the following metrics: Overall Accuracy
(OA), Precision (Pr) (5), and true-positive rate of the consid-
ered class (R) (6). Metrics are computed from the confusion
matrix. The confusion matrix is a table that shows the corre-
spondence between the classification result and a reference
data (validation polygons). The coefficients of the matrix
are given in terms of probability (normalized by the total

number of test examples of any class). OA is calculated as
the sum of correct classifications divided by the total number
of classifications.

Pr =
TP

TP + FPð Þ , ð5Þ

32
.1

70
 k

m

29.07 km
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C3
C4
C5
C6
C7
C8
C9
C10

Class Label

(a)

C1
C2
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C4
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C6
C7
C8
C9
C10

Class Label

(b)

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10

Class Label

(c)
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C2
C3
C4
C5
C6
C7
C8
C9
C10

Class Label

(d)

Figure 8: (a) VH image classified by the DWT procedure considering MF= ‘coiflet5’ and k = 11, (b) VV image classified by the DWT
procedure considering MF= ‘sym2’ and k = 11, (c) Sentinel-1 image classified by PCA procedure for k = 11, (d) Sentinel-1 image classified
by MDist method for k = 11.
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R =
TP

TP + FN
, ð6Þ

where TP and FP are the numbers of the true-positive and
false-positive predictions for a considered class. FP is the
sum of values in the corresponding column (excluding the
TP), and FN for a class is the sum of values in the corre-
sponding row (excluding the TP).

The Kappa coefficient (KPC) is also a measure used in
remote sensing classification data assessment. KPC is com-
puted from the nonnormalized confusion matrix (Table 3).
In this case, coefficients (Xij) of the confusion matrix repre-
sent the number of pixels in LCi which is associated to the
class j. KPC is defined using equation (7), where pe is the
expected agreement ratio (8), and oa is the observed agree-
ment (9).

KPC =
oa − peð Þ
1 + peð Þ , ð7Þ

pe =
∑i Yi∙Zið Þð Þ

T
with Yi =〠

j

Xij Zj =〠
i

Xij T =〠
ij

Xij, ð8Þ

oa =〠
i

Xii: ð9Þ

3. Results and Discussions

The results show that by using the DWT method, just one
decomposition level is enough to achieve satisfying for all
LC classes’ accuracy assessment. We could identify nine LC
classes among the ten observed classes with an R value (6)
above than 0.65 as presented in Table 4. However, the best
R value achieved for the C3-class (soil covered with straws),
not well identified by DWT procedure, is equal to 0.44. As
seen in Table 4, these best results, for each LC classes, depend
on a specific choice of the DWTMF, the polarization, and the
ScW size (kxk). So, with only the use of VH polarization
(resp. VV), we can well identify classes C2, C4, C5, C6, C7,

C9, and C10 (resp., C1, C4, and C8). The ScW size is equal
to 9 or 11, and the OA values are beyond from 0.474 to
0.671, in these cases. The OA and R gives good accuracy
assessments, but, for some classes such as C2, C6, C8, and
C10 (resp., C1 and C8) for which R > 0:6 and Pr < 0:58 (5),
they present a risk of confusion with other classes in the event
of use of the polarization VH (resp., polarization VV). To
avoid this risk, Pr must converge to 1 (high R value and
low FP value). Table 5 illustrates the eight classes for which
Pr > 0:5 with (R > 0:57, FP < 47%). With these restrictions,
the R value for some classes (C2, C6, and C8) can be less than
those illustrated in Table 4. The classes C3 and C10 are not
identified in the case of this restriction (condition). The clas-
ses C1, C4, C5, C6, C7, C8, and C9 give the highest R values
considering the restriction, in case of use of the polarization
VH. All the classes, except C3 and C10, can be well identified
by the use of the MF named ‘coiflet5’, the polarization VH
and k equal to 11. The OA and the KPC values are equal to
0.671 and 0.8, respectively, in this case (Table 4, Table 6).
Figure 8(a) (resp., Figure 8(b)) illustrates the VH (resp.VV)
classified image, in case of k equal to 11 and MF ‘coiflet5’
(resp., MF ‘sym2’).

During the field campaign in June, we noticed that the
wadi’s soils (C4) were dry and were dotted with straws, so
it can be considered as a bare soil. In addition, the farmers
begin to harvest grain. In light of these findings, we merged
the classes C3 and C4 in classification procedure. The results
show that we can achieve an R value of these merged classes
equal to 0.97 by considering MF as ‘Db45’, the VV polariza-
tion and k equal to 5.

The results obtained by the PCA classification proce-
dure (Figure 5(b)) do not give satisfaction (Table 7). The
OA and KPC values do not exceed 0.371 and 0.336, respec-
tively (Table 6). Results show only the classes C2 and C9
can present a TP > 50% but with an FP > 50% (87.57%
and 89.12%, respectively). These classes have a high-class
confusion risk (Table 8). So, DWT method permits to give
best results than PCA and MDist method for all classes with
lower values of FP.

Table 7: PCA classification results given by the (FP, Pr, and R) metrics values, in case of the restriction (FP < 50%).

k OA Classes FP (%) Pr R

3 0.260
C4

2.55 0.28 0.21

5 0.302 49.44 0.34 0.25

7 0.327

C3 32.24 0.42 0.23

C7 33.37 0.44 0.26

C10 11.28 0.15 0.26

9 0.326
C4 43.00 0.40 0.28

C7 38.32 0.39 0.25

11 0.372

C4 27.48 0.54 0.32

C3 37.60 0.47 0.33

C4 27.48 0.54 0.32

C5 14.19 0.00 0.00

C6 43.88 0.35 0.24

C7 25.67 0.60 0.39

C8 8.21 0.18 0.12
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Figure 8 illustrates the best results of image classifications
in case of use of ScW size equal to 11 for: DWT method
applied on the polarization VH with the use of MF= ‘coiflet5’,
for DWTmethod applied on the polarization VV with the use
of MF= ‘sym2’; the PCA method and the MDist classification.
These configurations give the highest OA and KPC values.

4. Conclusion

In this article, we present the potential of the Discreet Wave-
let Transform (DWT) to retrieve efficient subbands for clas-
sification of Sentinel-1 images (VH and VV). The proposed
classification approach was tested on the Kairouan plain,

Table 8: Confusion matrices: DWT (VH ‘coiflet5’; VV ‘sym2’), PCA and MDist. k = 11.

Methods C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

LC1

PCA 26.51 8.58 5.85 11.40 2.0 8.38 6.04 5.46 0 25.73

DWT_VV 91.90 0.30 0 0 3.15 0 0 1.62 0 3.03

DWT_VH 86.55 0 0 0 5.48 0 0 2.19 0 5.78

MDist 33.46 14.62 3.08 0 10 16.15 0 6.15 8.46 8.08

LC2

PCA 0.00 92.73 7.27 0.00 0.00 0 0 0.00 0.00 0.00

DWT_VV 0 30 28.18 0 2.73 18.18 3.64 0 0 17.27

DWT_VH 0 51.43 0 0 0 22.86 25.71 0 0 0

MDist 0 40 32.73 0 0 14.55 2.73 0 10 0

LC3

PCA 0 38.24 32.84 0 2.45 13.24 3.43 0 0 9.80

DWT_VV 0 3.65 54.17 0 0 11.46 30.73 0 0 0

DWT_VH 5.88 4.90 43.63 0 3.43 0.98 0 33.33 0 7.84

MDist 0 43.18 52.27 0 0 1.14 0 0 3.41 0

LC4

PCA 29.55 1.41 0.63 31.97 0.17 0.72 3.05 0.29 12.67 19.53

DWT_VV 0 0.60 0 72.81 0 0.17 9.68 0 16.73 0

DWT_VH 0 0 0 86.90 0 0 8.04 0 5.07 0

MDist 0 0 0 100 0 0 0 0 0 0

LC5

PCA 26.42 0 .0 4.69 0 0 0 38.52 29.63 0.74

DWT_VV 0 7.79 8.44 0 37.01 10.39 3.90 22.73 0 9.74

DWT_VH 0 0 0 0 73.44 0 0 26.56 0 0

MDist 32.25 28.13 9.38 0 4.69 4.69 0 0 21.88 0

LC6

PCA 3.23 46.33 12.46 0.15 2.35 23.61 4.84 0.88 0.73 5.43

DWT_VV 0 9.09 28.03 0 1.52 19.70 37.88 0 0 3.79

DWT_VH 0 46.75 5.20 0 0 38.31 5.84 1.30 0 2.60

MDist 0 52.5 17.5 0 0 30 0 0 0 0

LC7

PCA 1.09 15.49 10.87 0 0.82 15.22 38.59 0 0 17.93

DWT_VV 0 0 0 35.71 0 0 64.29 0 0 0

DWT_VH 0 6.52 2.72 15.76 0 9.24 65.76 0 0 0

MDist 0 8.6 6.72 5.38 0 1.08 76.34 0 1.88 0

LC8

PCA 17.28 1.23 0 2.47 2.47 3.70 1.23 12.35 54.32 4.94

DWT_VV 28.57 0 0 0 0 0 0 71.43 0 0

DWT_VH 32.14 0 0 0 0 0 0 64.29 0 3.57

MDist 3.7 0 0 0 7.93 0 0 91.36 0 0

LC9

PCA 6.41 0.03 0.16 7.50 0.13 0.26 0.38 1.28 80.93 2.92

DWT_VV 0.07 0.90 0 5.1 0.10 0 0.53 0 93.08 0.17

DWT_VH 0 0 0 1.30 0 0 4.65 0.43 93.62 0

MDist 3.21 4.04 2.21 3.61 5.51 4.14 8.22 61.12 4.34 3.58

LC10

PCA 40.58 0.54 0.36 1.27 3.80 2.36 6.70 11.78 0.54 32.07

DWT_VV 38.67 16 0.67 0 13.33 4.67 2 10.67 0 14

DWT_VH 17.33 0 0 0 12.67 0 0 2.67 0 67.33

MDist 5.33 0 0 0 32 2 0 42 0 18.67
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located in central Tunisia. The Land Cover (LC) of this semi-
arid region presents a diversity of classes: fruit trees, cereals,
fallow, bare soil, soil covered with straws, olive trees, vegeta-
ble crop, urban area, daim, and wadi. The proposed LC
descriptors (energy, norm L1) and the Euclidian Minimum
Distance criterion were used to classify the Sentinel-1 data
of the study area. Classification results were assessed by the
use of the ground truth data.

As shown in our study, DWT approach gives better
classification results than the Principal Components Analysis
approach and the minimum distance classification. High
representation of data with DWT improves OA from 0.371
to 0.671 and the KPC from 0.336 to 0.8.

In the future, we plan to use features extracted from the
DWT pansharpening images as inputs for machine learning
to automate the classification process in order to optimize
time for the LC mapping.

Nomenclature

PCA: Principal Components Analysis
DWT: Discrete Wavelet Transformation
VH, VV: Polarizations of the Sentinel-1

image
IW: Interferometric wide
OA: Overall Precision
LC: Land Cover
SVM: Support Vector Machine
MDist: Minimum Distance classifier
KPC: Kappa Precision Coefficient
GCP: Ground Control Points
DEM: Digital Elevation Model
SRTM: Shuttle Radar Topography Mission
EMD: Euclidian Minimum Distance
MF: Mother Function
LH, HL, HH, LL DWT: Energy subbands of the image
CP1 and CP2: PCA components of the image
E: Energy
MD: L1 norm
ROI: Region Of Interest
ScW: Scanning Window
LDV: Local Descriptor Vector
LC_DV: LCs energy Descriptor Vectors
Pr: Precision
R: True-positive rate of the considered

class
TP: True-positive prediction for a con-

sidered class
FP: False-positive prediction for a con-

sidered class

Data Availability

The Shuttle Radar TopographyMission (SRTM) data was used
to extract the Digital Elevation Model (DEM) at 30m of the
study area. The SRTM data can be free downloaded from web-
site http://edcsns17.cr.usgs.gov/EarthExplorer/Sentinel-1data
and from the ESA’s Copernicus Open Access Hub (https://
scihub.copernicus.eu/) The Sentinel-1 data was preprocessed

using the Sentinel Application Platform (SNAP) as follows:
(i) the calibration step allows the conversion of the signal
recorded by the sensor in the form of digital accounts into
backscatter coefficient; (ii) the geometric terrain corrections
(georeferencing) step permits to correct the geometric distor-
tions by using the Digital Elevation Model (DEM) proposed
by the NASA’s Shuttle Radar Topography Mission (SRTM);
(iii) the thermal noise removal step using the Lee filter.
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