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This paper proposes a new algorithm for the aerodynamic parameter and noise estimation for aircraft dynamical systems. The
Bayesian inference method is combined with an unscented Kalman filter to estimate the augmented states and the unknown
noise covariance parameters jointly. A Gauss-Newton method is utilized to sequentially maximize the posterior likelihood
function for the noise unknown parameter estimation. The performance of the proposed algorithm is evaluated and
compared with two other UKFs via a flight scenario of a given aircraft. The results indicate that the proposed algorithm
has equivalent performance to the simplified UKF with prior noise information and slightly outperforms the parallel UKF
on precision and efficiency in this flight scenario assessment. Then, the consistency and accuracy of the algorithm are
further validated by a Monte Carlo simulation with random process noise covariance. This adaptive algorithm provides
another feasible and effective way for estimating aerodynamic parameters from the aircraft real flight data with unknown
noise characteristics.

1. Introduction

The environment disturbance and sensor noise are the pri-
mary contamination sources to aircraft flight data. The dis-
turbance and noise during the flight are usually unknown
and unpredictable, and it brings errors and uncertainty in
system models and measurements. For accurately estimating
aerodynamic parameters from the flight data, the uncer-
tainty and noise must be modelled appropriately and han-
dled in the estimation methods. Thus, the research on
parameter estimation from the contaminated data is the
heightened spot in the aircraft aerodynamic characteristics
analysis, especially for the aerodynamic deviation study
between the flight and ground tests.

Kalman filters are the standard solutions to estimate
aerodynamic parameters. The classical two-step Bayesian
approach, such as extended and unscented Kalman filter
(EKF and UKF), had already been utilized for aircraft
parameter estimation and system identification in many pre-
vious researches [1, 2]. These studies show that UKF outper-

forms EKF regarding the robustness and accuracy of the
performance [1, 3, 4]. So UKF and its improved versions
were widely applied in the state and parameter estimation
domain. For estimating the parameter from the contami-
nated flight data, augmentation and parallelization are the
two feasible ways commonly adopted in the adaptive Kal-
man filters. While the state-parameter-noise augmentation
technology is less preferable because it may degrade the
accuracy of the parameters, the parallelized estimation tech-
nology performs pretty well according to the research of
Majeed and Narayan Kar [5]. Majeed introduced an adap-
tive UKF scheme that used a master UKF to estimate the
state and aerodynamic parameters and a slave UKF to esti-
mate the noise covariance parallelly. Jategaonkar and
Plaetschke [6] compared four algorithms for aircraft param-
eter estimation accounting for both process and measure-
ment noise. The augmented EKF approach and the three
Gauss-Newton based maximum likelihood (ML) approaches
were presented and compared in the reference. Finally, the
authors concluded that the Gauss-Newton-based ML
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method combined with a steady-state filter is generally
preferable.

The multiple model adaptive estimation (MMAE)
approach provides another way to handle the uncertainty
and noise in parameter estimation. MMAE uses several fil-
ters running in parallel, each representing a hypothesis of
the actual system, to generate enhanced state and parameter
estimates. The number of models needed for approximating
the actual system is related to the variable dimension. If the
uncertainty and noise in the system are a high dimensional
variable, then the number of hypothesis models is usually
large, and the computational burden will increase signifi-
cantly. There are some applications of MMAE in aerospace
engineering. Cristofaro et al. [7, 8] used an adaptive multiple
model approach for aircraft icing detection and identifica-

tion. Marschke et al. [9, 10] presented a generalized multiple
model adaptive estimator, which uses a window of previous
data via the autocorrelation matrix to perform the adaptive
update, to estimate the state without rate gyros information
or process noise covariance.

The ensemble Kalman filter (EnKF) [11] is a recently
developed state-of-the-art technology for data assimilation
in high-dimensional dynamical systems and has been widely
used in the fields of ocean and atmospheric science. The
Bayesian-based parameter inference and noise estimation
methods are concerned and discussed in the EnKF applica-
tions. Delsole and Yang [12] derived generalized maximum
likelihood estimates in the EnKF framework by using a
Newton-Raphson method to estimate states and parameters.
Stroud and Bengtsson [13] adopted a Bayesian approach in
EnKF to estimate the state and invariant scalar observation
variance; then, they proposed a new Bayesian-based EnKF
methodology for sequential state and parameter estimation
and introduced three representations of the marginal poste-
rior distribution of the parameters [14]. Dreano et al. [15,
16] proposed an iterative expectation-maximization (EM)
algorithm in EnKF to estimate the state and model error
covariances; then, Tandeo et al. [17] reviewed the
innovation-based methods for jointly estimating model and
observation error covariance matrices in ensemble data
assimilation. Ueno and Nakamura presented an online EM
algorithm [18] and a Bayesian-based iterative algorithm
[19] to estimate the noise covariance matrix parameters. Frei
and Kunsch [20] combined the particle filter with EnKF for
the joint state and noise covariance matrix estimation.
Brankart et al. [21] utilized a transformed algorithm and
EnKF to reduce the control space of the error covariance
parameter to decrease the computational cost of parameter
optimization.

The dynamical inverse problem issued in this paper
focuses on the estimation of system unknown parameters
from contaminated observations. Although several
approaches are available for the aircraft parameter and noise
estimation, there still exists improvement space in the esti-
mation precision, real-time, and stability performance of
algorithms. Thus, we propose a new parameter estimation
approach for the aircraft aerodynamic parameter online esti-
mation using the real flight test data. First, we adopt UKF as
the state and aerodynamic parameter estimation method by
considering its higher performance over other KF methods.
Then, the Bayesian statistic inference theorem, which has
been validated and applied in numerous data assimilation
problems, is introduced into the new algorithm to inference
the unknown disturbance and noise. A Gauss-Newton
method is adopted for parameter optimization by consider-
ing its high computational efficiency and the real-time
requirement of the new algorithm. Finally, an algorithm
framework of combining UKF with the Bayesian inference
and Gauss-Newton method for online aerodynamic param-
eter estimation from the contaminated flight test data is
derived in this paper. The new algorithm’s performance is
assessed and compared with other UKFs via the simulation
data of an aircraft flight scenario. The remainder of this
paper is organized as follows. The second section introduces

Initiallize state and parameter
distribution

Propagate state forward

Calculate the innovation error
and covariance

Maximize likelihood
function

Update the parameters 
distribution

Update the state distribution

i = 1

i = i +1 

Δ𝜃<𝜀 

yes

no

Figure 1: The framework of the Bayesian adaptive estimation
algorithm. The flow chart of the algorithm depicts the prediction-
inference-update cycle for the aerodynamic parameters and noise
covariance estimation.

Table 1: The physical parameters of aircraft.

Aircraft parameters Values

Mass M 72000 kg

Wing reference area s 124m2

Wing span l 34.1m

Mean aerodynamic chord bA 4.15m

Moment of inertia Ixx 1658755 kg ×m2

Moment of inertia Iyy 2392630 kg ×m2

Moment of inertia Izz 3846326 kg ×m2
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the UKF, Bayesian inference, and the Gauss-Newton method
for a nonlinear dynamical system and presents the algorithm
framework for the Bayesian adaptive unscented Kalman
filter. In the third section, the algorithm’s performance is eval-
uated and compared with other algorithms via a given aircraft
flight scenario. In the last section, some conclusions are given.

2. Materials and Methods

2.1. Nonlinear Dynamical System Model. The algorithm is
proposed for a nonlinear dynamical system. First, the
generic nonlinear system can be represented by a model with
additive Gaussian noise:
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Figure 2: Comparison of the system measurement data with the estimated states. The data is estimated by the Bayesian UKF algorithm, and
the system inputs are given in the last figure: (a) velocity comparison; (b) angle of attack comparison; (c) pitch rate comparison; (d) angle of
pitch comparison; (e) height comparison; (f) system input.
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Figure 3: Comparison of the parameter estimation performance of the three algorithms. The algorithms are the Bayesian UKF (BUKF)
which is proposed in this paper, the simplified UKF (SUKF) with prior noise knowledge, and the parallel UKF (PUKF) proposed in
reference [5]: (a) estimation results of CLα; (b) estimation results of CMα; (c) estimation results of CMq; (d) estimation results of CMδe.
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x
:
tð Þ = f x tð Þ, u tð Þ,Θ½ � +w tð Þ, w tð Þ ~N 0,Q t, θð Þ½ �,

y tð Þ = g x tð Þ, u tð Þ,Θ½ �,
z kð Þ = y kð Þ + υ tð Þ, k = 1, 2,⋯N , υ tð Þ ~N 0, R t, θð Þ½ � ,

ð1Þ

where x is the system state variable, u is the input vari-
able, y is the output variable, z is the discrete measurement
signal, N is the length of the sampling data, t denotes the
current time, Θ is the system unknown parameters, w and
υ represent the additive Gaussian process and measurement
noise, the covariance matrices Q and R are assumed to be
time-variant and depend on unknown parameter θ, and f ð
∙Þ and gð∙Þ represent general nonlinear functions.

The system parameter Θ and noise covariance parameter
θ are commonly unknown. The system parameter can be
estimated through the augmented system in Equation (2),
where the variables xa and wa denote the augmented state
and process noise, respectively. The noise parameter estima-
tion is difficult and has a strong correlation with the system
unknown parameter estimation. Here, we attempt to utilize
the Bayesian inference with the optimization method for
the noise parameter estimation.

x
:

a =
x
:

Θ
:

" #
=

f x tð Þ, u tð Þ,Θ½ �
0

" #
+wa tð Þ ≜ f a x tð Þ, u tð Þ,Θ½ � +wa tð Þ:

ð2Þ

2.2. Unscented Kalman Filter for Augmented State
Estimation. The augmentation approach estimates the sys-
tem state and unknown parameters jointly. Many previous
research confirmed the effectiveness and efficiency of UKF
for augmented state estimation with a priori noise informa-
tion. A standard UKF algorithm can estimate the augmented
system in Equation (2) as follows [1, 5]:

(1) Initialization

x̂a0 = E xa0f g =
x̂0

Θ0

" #
,

P̂
a
0 = E xa0 − x̂a0ð Þ xa0 − x∧a

0ð ÞT
n o

=
Px0 0
0 PΘ0

" #
:

ð3Þ

(2) Sigma points calculation and prediction

~χak = x̂ak x̂ak − γ
ffiffiffiffiffi
P̂a
k

q
x̂ak + γ

ffiffiffiffiffi
P̂a
k

qh i
,

~χak+1 = x̂ak +
ðtk+1
tk

f a bχ x
k, uk, bχΘ

k

� �
dt,

~xak+1 = 〠
2L

i=0
ϖ

mð Þ
i ~χai,k+1,

~Pk+1 = 〠
2L

i=0
ϖ

cð Þ
i ~χai,k+1 − ~xak+1
� �

~χai,k+1 − ~xak+1
� �T +Q, ð4Þ

where L is the dimension of the augmented state, super-

script “a” represents the augmented variable, χa =
χx χΘ
� �T denotes the sigma points matrix, χx represents
the variable corresponding to the system state, and χΘ repre-
sents the variable corresponding to the system unknown
parameters. The coefficients and weights in Equation (4)
can be calculated by Equation (5), where the superscripts
“m” and “c” of the weight ϖ are for the computation of mean
and covariance, respectively. According to the reference [1],
the values of a, b, and κ are chosen as 0.009, 2, and 0, respec-
tively.

λ = a2 L + κð Þ − L,

ϖ
mð Þ
0 = λ

L + λ
, i = 0,

ϖ
cð Þ
0 = λ

L + λ
+ 1 − a2 + b
� �

, i = 0,

ϖ
mð Þ
i = ϖ

cð Þ
i = 1

2 L + λð Þ , i = 1,⋯, 2L,

γ =
ffiffiffiffiffiffiffiffiffiffi
L + λ

p
:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð5Þ

(3) Measurement update

Yk+1 = g ~χxk+1, uk+1, ~χΘk+1
� �

,

~yk+1 = 〠
2L

i=0
ϖ

mð Þ
i Yi,k+1,

P~y~yk+1
= 〠

2L

i=0
ϖ

cð Þ
i Yi,k+1 − ~yk+1½ � Yi,k+1 − ~yk+1½ �T + R,

P~x~yk+1
= 〠

2L

i=0
ϖ

cð Þ
i ~χxi,k+1 − ~xk+1
� �

Yi,k+1 − ~yk+1½ �T ,

Kk+1 = P~x~yk+1
P−1
~y~yk+1

,
μk+1 = zk+1 − ~yk+1,

x̂k+1 = ~xk+1 +Kk+1μk+1,
P̂k+1 = ~Pk+1 −Kk+1P~y~yk+1

KT
k+1,

ð6Þ

where “~” denotes the prediction values, “^” denotes the
updated values, and μ is the innovation error between the
observations and the projection of the forecasts onto the
observation space. The diagonal elements in the covariance
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matrices Q and R are unknown and required to be infer-
enced by the Bayesian method.

2.3. Bayesian Inference Method. Since the unknown noise
characteristics will degrade the performance of UKF badly,
the sequential Bayesian inference is adopted to enhance the
adaptivity of UKF. The Bayesian inference method maxi-
mizes the posterior probability density function to calculate
the unknown parameters:

θ = arg max
θ

p θ zkjð Þ, ð7Þ

where zk is the kth measurements. The above posterior
distribution function can be written recursively via Bayesian
theorem:

p θ zkjð Þ∝ p θ zk−1jð Þp zk θ, zk−1jð Þ: ð8Þ

The formula in Equation (8) defines a recursive form of
the parameter distribution over time. The first term on the
right side is the posterior distribution of θ via the previous
measurements; the second term is the likelihood at the cur-
rent step. The innovation information is used to approxi-
mate the likelihood [14]:

p zk θ, zk−1jð Þ∝ Ŝk θð Þ		 		−1/2 exp −
1
2 ê

T
k θð ÞŜk θð Þ−1êk θð Þ


 �
, ð9Þ

where êk is the innovation error, Ŝk is the innovation
covariance matrix, the μk+1 and P~y~yk+1

in Equation (6) can,

respectively, represent the innovations êk and Ŝk.
Then, a representation of the parameter posterior distri-

bution is needed to update the parameter distribution recur-
sively. Stroud presented three representations of the
parameter distribution in reference [14], including a grid-
based distribution, a Gaussian approximation, and a particle
approximation with kernel resampling. Here, we choose the
Gaussian approximation method for the new algorithm.

The parameter posterior distribution at each step k is
approximated by a normal distribution with mean mk and
covariance matrix Ck; then, the probability density function
can be written as follows:

p θ zkjð Þ∝ exp −
1
2 θ −mkð ÞTC−1

k θ −mkð Þ

 �

: ð10Þ

Equations (8)–(10) define the update expression of the
parameter posterior distribution. An optimization algorithm
can be used to calculate the parameter’s statistic characteris-
tics recursively. The log-likelihood of the parameter poste-
rior probability function is given by

l θð Þ = ln p θ zk−1jð Þ + ln p zk θ, zk−1jð Þ
= −

1
2 θ −mkð ÞTC−1

k θ −mkð Þ − 1
2 ê

T
k θð ÞŜk θð Þ−1êk θð Þ − 1

2 ln Ŝk θð Þ		 		:
ð11Þ

Then, the parameter’s mean and covariance matrix at k

+ 1 step can be computed by maximizing the log-
likelihood function:

mk+1 = arg max
θ

l θð Þ,

Ck+1 = −
∂2l θð Þ
∂θ∂θT

" #−1
θ=mk+1

:
ð12Þ

2.4. Gauss-Newton Method for Parameter Optimization. For
the parameter optimization problem in Equation (12), the
conventional optimization scheme like genetic algorithm is
not suitable by considering the computational efficiency.
Here, we derive a Gauss-Newton recursive formula for the
parameter optimization problem and to satisfy the require-
ment of real-time performance. The Newton direction is
utilized as the parameter descent direction to guarantee the
steepest descent.

The parameter is maximized by taking the partial deriv-
atives of the log-likelihood function in Equation (11) with
respect to every unknown parameter to zero. The log-
likelihood function is simplified before calculating the partial
derivatives. First, the UKF deterministic sampling process
decides that the innovation error e is independent of the
unknown parameter θ, and the innovation covariance S is
a summation of the parameter-dependent noise covariance
and the deterministic forecast state covariance, which is
independent of θ. The innovation covariance matrix deter-
minant term is assumed to be constant by ignoring the
parameter θ influence on the matrix’s determinant. Finally,
the log-likelihood function can be written as follows:

ls θð Þ = −
1
2 θ −mkð ÞTC−1

k θ −mkð Þ − 1
2 ê

T
k Ŝk θð Þ−1êk + c, ð13Þ

where c is constant and independent of θ. The simplified
function is directly derived by θ, and the recursive formula
of parameter mean and covariance is expressed as follows:

mk+1 =mk −G−1
k gk,

gk = C−1
k θ −mkð Þ − 1

2 ê
T
k Ŝ

−1
k θð Þ ∂Ŝk θð Þ

∂θ
Ŝ
−1
k θð Þêk:

Gk = C−1
k −

1
2Ginnov θð Þ,

8>>>>><
>>>>>:

ð14Þ

Ck+1 = C−1
k −

1
2Ginnov mk+1ð Þ


 �−1
, ð15Þ

Table 2: The RMSE and efficiency of the three UKF algorithms.

Algorithms
RMSE Computational

time (s)CLα CMα CMq CMδe

SUKF 0.1167 0.1133 0.1558 0.0385 0.0312

BUKF 0.1191 0.0999 0.1466 0.0376 0.0319

PUKF 0.1592 0.1335 0.1396 0.0686 0.0322
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where gk and Gk are the gradient and Hessian matrix of
the log-likelihood function, Ginnov is an np × np matrix which
represents the Hessian matrix of the innovation-related term,
np is the dimension of the unknown parameters, fgijg denotes
the matrix element at the ith row and jth column and can be
given by

gij = −êTk Ŝ
−1
k

∂Ŝk
∂θi

Ŝ
−1
k
∂Ŝk
∂θj

+ ∂Ŝk
∂θj

Ŝ
−1
k
∂Ŝk
∂θi

 !
Ŝ
−1
k êk, i, j = 1, 2,⋯, np:

ð16Þ

The partial derivative of the innovation covariance matrix
S is involved in Equations (14)–(16); if only the diagonal ele-
ments of the noise covariance are concerned, then the partial
derivative is also a diagonal matrix, and its diagonal elements
can be given by

∂Ŝk θð Þ
∂θi

=
d1

⋱

dj

2
664

3
775, dj =

0, j ≠ i

1, j = i

(
, i, j = 1, 2,⋯, np :

ð17Þ

Then, the updates for the unknown parameters’ posterior
distribution can be calculated by Equations (14)–(17). First,
the mean updates are iterated several times by Equation (14)
until the error converges. Then, the covariance updates are
calculated by Equation (15) using the mean updates. This
Gauss-Newton-based optimization algorithm can be utilized
in online parameter optimization but also requires a very close
initialization and is vulnerable to disturbances.

2.5. Bayesian Adaptive Unscented Kalman Filter. By combin-
ing the above methods, we present a Bayesian adaptive
unscented Kalman filter to handle the aircraft aerodynamic
parameter estimation problem with the unknown noise char-
acteristics. The inference and optimization are utilized in every
filtering step to give the noise characteristic estimates. The
framework of this approach is shown in Figure 1. The param-
eter inference procedure is added between the prediction and
update steps of UKF to estimate the noise characteristics.
Thus, the proposed algorithm consists of prediction, parame-
ter inference and optimization, and update three steps.

The Bayesian adaptive unscented Kalman filter approach
for aerodynamic parameters and noise covariance estima-
tion is summarized below:
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Figure 4: Histories of mean values of the four estimated aerodynamic derivatives in Monte Carlo simulation. The means with 95% bands for
every step are fitted by the normal distribution and compared with the reference values: (a) statistics of CLα; (b) statistics of CMα; (c) statistics
of CMq; (d) statistics of CMδe.
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(1) Initialize the augmented states with xa ~N ðx̂a0, P̂a
0Þ

and the unknown noise covariance parameters with
θ ~N ðm0, C0Þ

(2) Propagate the augmented states forward by Equation
(4) for i = 1, 2,⋯,N − 1

(3) Calculate the ith step innovation error and covari-
ance using the parameter’s mean value mi by Equa-
tion (6); using the innovation information in
Equation (14) to iteratively calculate the mean
update mi+1 of the noise parameters until the itera-
tive error is less than a small tolerance; using mi+1
in Equation (15) to obtain the noise parameter
covariance updates Ci+1

(4) Update the system augmented state by Equation (6)
using the parameter’s mean value of ði + 1Þth step
and the state forecast of ith step, then repeat steps
(2)-(4) until the algorithm stops

3. Results and Discussion

3.1. Aircraft Longitudinal Dynamical Model. For assessing
the performance of the Bayesian adaptive UKF algorithm,
an aircraft longitudinal motion is modelled to generate the
simulation data. The motion in the wind axes can be
expressed as follows:

V
:
= −

q∞s
M

CD + Px

M
+ gx,

α
: = −

q∞s
MV cos βCL +

Pz

MV cos β + gz
V cos β −

1
cos β p cos α sin β − q cos β + r sin α sin βð Þ,

q
: = q∞sbA

Iyy
CM +

My

Iyy
+ Izz − Ixx

Iyy
pr −

Ixz
Iyy

p2 − r2
� �

,

φ
: = q cos ϕ − r sin ϕ,

h
:

=V cos α cos β sin φ −V sin β cos φ sin ϕ −

V sin α cos β cos φ cos ϕ,
ð18Þ

where V is the aircraft velocity; α and β denote the angle
of attack and sideslip; p, q, and r represent roll, pitch, and
yaw rates, respectively; φ is the pitch angle; ϕ is the roll
angle; h is the aircraft height; q∞ is dynamic pressure; Px
and Pz represent engine thrust; My is the thrust moment;
gx and gz are the gravitational acceleration components; s
is wing reference area; bA is the mean aerodynamic chord;
and M and I represent the aircraft mass and moment of
inertial, respectively.

The longitudinal aerodynamic coefficients CD, CL, and
CM are the drag, lift, and pitch moment coefficients, respec-
tively, and can be modelled by a polynomial formula by
Equation (19), where δe denotes the elevator angle.

CD = CD0 + CDαα,
CL = CL0 + CLαα + CLδeδe,

CM = CM0 + CMαα + C
M α

: α
: + CMqq + CMδeδe:

ð19Þ

The aerodynamic derivatives in Equation (19) are usu-
ally unknown and need to be estimated from the flight data.
Then, the unknown system intrinsic parameters generally
include the following:

Θ = CD0 CDα CL0 CLα CLδe
CM0 CMα C

M α
: CMq CMδe

� �T
:

ð20Þ

3.2. Algorithm Performance Assessment. A steady-level cruise
scenario of an aircraft with similar aerodynamic and flight
dynamical characteristics as Boeing 737 (B737) is utilized
to generate the flight simulation data. The aircraft’s aerody-
namic parameters are calculated by a computational fluid
dynamics tool. The physical parameters of the aircraft are
listed in Table 1. The aircraft cruises at the height of 5 km
with a velocity of 100m/s. The aircraft’s initial angular rate
is assumed to be zero, and its flight attitude is trimmed to
zero by the elevator angle of 1.06 degrees.

The process and measurement noises are assumed to be
white Gaussian noise with zero mean and a given covari-
ance. The pseudo-random number generated via the given
noise characteristics is added to the system state and mea-
surement models during every simulation step. The process
and measurement noise covariances for this scenario are
given by

Q = diag 0:01 2:5 × 10−3 2:5 × 10−3 1 × 10−4 0
� �

,
R = diag 0:7164 1:0 × 10−8 1:5 × 10−8 2:5 × 10−7 0:25

� �
:

ð21Þ

In order to improve the identifiability of the aerody-
namic stability and control derivatives, three “3211” distur-
bance signals with the amplitude of 5 degrees are
consecutively added to the trimmed input signal. The simu-
lation generates 100 s of data with a sampling time of 0.05 s
to evaluate the algorithm.

The Bayesian UKF estimation algorithm proposed in
this paper is compared with the simplified UKF and the par-
allelized UKF [5] to evaluate the performance. The accurate
noise characteristics are given to the simplified UKF while
the other two UKFs run with unknown noise characteristics.
The process and measurement noise covariance matrices Q
and R are unknown and need to be estimated. Since the
influence of Q can be projected to the measurement noise
influence according to UKF, so only the measurement noise
covariance matrix R is estimated, and the process noise
covariance matrix Q is simply regarded as a diagonal matrix
with a small amount of 1e − 6 to avoid the morbidity of the
state error covariance matrix. Assuming the five state vari-
ables are all observed, and considering the height is not vul-
nerable to the disturbance and noise, then the covariance of
height is not estimated in R and regarded as a constant value
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of 0.01m. Finally, the four noise covariance parameters θ and
four noise insensitive aerodynamic derivatives Θ in Equation
(22) are assumed to be unknown and need to be estimated.

Θ = CLα CMα CMq CMδe
� �T ,
θ = RV Rα Rq Rφ

� �T
:

ð22Þ

For this flight scenario, the system states are initialized by
the measurement data at t = 0 s. The unknown parameters

are, respectively, initialized by Θ0 = ½0, 0, 0, 0�T , θ0 =
½10−4, 10−4, 10−4, 10−4�T . The augmented state error covariance
matrix is initialized as an identity matrix, and the initial noise
parameter error covariance is Pθ0 = diag ð1, 8 × 10−4, 10−4,
10−4Þ. Specifically, the noise parameter initialization is only
needed in the running of the Bayesian and parallel UKFs, and
the same parameter initialization is adopted in all three UKFs.

Figures 2(a)–2(e) compare the simulated measurement
data with the five estimated states by the Bayesian UKF algo-
rithm. The results show that the estimated states are consis-
tent with the measurement data, and the algorithm can
effectively filter the noise. The system input is disturbed by
three “3211” signals between 0 and 15 s (see Figure 2(f)).

Figure 3 compares the parameter estimation perfor-
mance of the three algorithms, which are the Bayesian
UKF, the simplified UKF, and the parallel UKF. The three
UKFs are denoted as BUKF, SUKF, and PUKF in Figure 3
and Table 2, respectively. The four unknown aerodynamic
derivatives are estimated by the three UKFs and compared
with the reference value which is presented in the simulation
program. The estimated results of the four derivatives all
converge to the reference values rapidly from the zero ini-
tials. The estimates of aerodynamic derivatives show that
the Bayesian UKF has the equivalent precision as the simpli-
fied UKF with prior noise characteristics knowledge, while
the error of the parallel UKF is more obvious than the other
two methods. Especially for the estimates of CLα, the results
of parallel UKF converge more slowly. The root mean square
error (RMSE) of the estimated results to the reference values
is compared in Table 2. The calculation of RMSE uses the
relative error (see Equation (23)) for reflecting the estimates’
overall deviation from the reference values. The results in
Table 2 indicate that the estimates of CMδe are more accurate
than the other three derivatives; the accuracy of Bayesian
UKF estimates is equivalent to the simplified UKF estimates;
the estimation error of parallel UKF is bigger than Bayesian
UKF for the three derivatives of CLα, CMα, and CMδe in this
flight scenario. The average computational time of every fil-
tering step in Table 2 shows that the efficiency of Bayesian
UKF is slightly lower than simplified UKF and higher than
parallel UKF on the same computing platform.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

i=1
erið ÞTeri

vuut ,

er =
bΘ −Θtrue
Θtrue

:

ð23Þ

The performance of the Bayesian adaptive algorithm is
further assessed by a Monte Carlo simulation with 1800 real-
izations. For every realization, the diagonal elements of the
process noise covariance are randomly chosen from the
±10% range of the given values of Q in Equation (21). The
Monte Carlo simulation results are sequentially fitted by
the normal distribution, and the statistics of the mean and
standard deviation with their 95% bands are given in
Figures 4 and 5. The histories of the estimated mean values
with 95% bands are compared with the reference values in
Figures 4(a)–4(d). The Monte Carlo results validate the
robustness and effectiveness of the adaptive algorithm for
the aerodynamic parameter estimation with unknown noise
characteristics. The narrow 95% bands of the mean values
indicate the excellent consistency of estimates for the varied
process noise covariances. The three derivatives in the pitch
direction converge to the reference values rapidly, while the
steady-state mean estimates of CLα slightly deviate from the
reference value (about 11% less than the reference value).
The standard deviations with 95% bands for the derivatives
are shown in Figure 5. The banded curves also illustrate
the estimation accuracy and consistency of the Bayesian
UKF algorithm. The Monte Carlo simulation shows that
the estimation accuracy of CLα is lower than other deriva-
tives, which may be related to the slow convergence of the
derivatives in the aircraft lift direction under disturbance
and noise.

4. Conclusions

This paper issues the problem of system state and intrinsic
parameter joint estimation with unknown noise characteris-
tics. A Bayesian adaptive unscented Kalman filter is pro-
posed for this problem. A Gauss-Newton-based noise
parameter optimization method is introduced into the
UKF filtering procedure for maximizing the posterior prob-
ability likelihood function. The proposed algorithm is evalu-
ated and assessed by a steady-level cruise scenario of a B737-
like aircraft. A simplified UKF and a parallel UKF are
applied to the same flight scenario with the Bayesian
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Figure 5: Histories of standard deviations of the four estimated
aerodynamic derivatives in Monte Carlo simulation. The four
derivatives’ standard deviations with 95% bands for every step are
fitted by the normal distribution.
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adaptive UKF for the performance comparison. The results
demonstrate that the Bayesian adaptive UKF algorithm can
estimate the system augmented states from the flight data
with unknown noise characteristics. The adaptive filter per-
forms very well with relatively high accuracy and efficiency.
The comparison with the other two UKFs illustrates that the
Bayesian UKF has equivalent performance to the simplified
UKF with prior noise information but slightly outperforms
the parallel UKF on the aerodynamic derivatives’ estimation
precision and computational time for this flight scenario.
Then, the effectiveness and consistency of the proposed
algorithm are further validated by a Monte Carlo simulation.

The algorithm proposed here has the potential applica-
tion prospect in the aerodynamic parameter estimation from
the aircraft real flight test data and provides another way of
handling the parameter-noise simultaneously estimating
problem. This algorithm possesses the same inherent merits
and defects of Newton methods, so the further improvement
in precision, stability, and efficiency of the algorithm is
required in future researches.
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