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This paper presents the isolation of vibration through the acceleration feedback of the Kalman filter. In this paper, vibration
isolation was analyzed both analytically and experimentally through the estimation of the Kalman filter (KF). A negative
stiffness mechanism was used to reduce the level of vibration for the developed dynamic system. The technique of negative
stiffness can provide stiffness of infinite level to low stiffness as well as disturbance generated by the ground vibration directly.
The performance of an isolation system through a mechanism of negative stiffness was improved by the addition of
acceleration feedback. Acceleration was measured using a microelectromechanical (MEMS) type accelerometer instead of
traditional servo type accelerometers due to lower cost. However, the output of a microelectromechanical (MEMS) type
accelerometer is usually noisy. To avoid this difficulty, an acceleration that was estimated by a Kalman filter was considered in
the acceleration feedback instead of directly measured acceleration. The dynamic behaviors of the system were compared for
both the Kalman-filtered acceleration and the directly measured acceleration feedback. It is observed that the former has a
significant effect on the improvement of the characteristics of the vibration isolation systems than later.

1. Introduction

Vibrations are needed to be isolated in all different types of
mechanical systems including high-performance Nano and
microscale production processes. It is expected that mechan-
ical systems work without any surrounding disturbances. To
meet this demand, isolation systems such as microvibration
are being heavily used in space equipment, semiconductor,
and silicon wafer industries. In practical applications, vibra-
tion sources are considered as either ground vibration or
onboard-generated direct disturbance [1–3]. An isolation
system developed for vibration is able to suppress and
reduce these disturbances simultaneously. A lower level of
stiffness systems is appropriate for the attenuation of ground
vibration whereas high-stiffness systems are appropriate for
direct disturbances [4–6]. Moreover, a compensation of the
performances of low- and high-stiffness systems is signifi-

cant in the traditional passive vibration control; therefore,
passive type systems for vibration isolation are limited in
applications [7–9]. On the other hand, the principle of an
active isolation system for vibration is safe with respect to
this type of difficulty. Recently, the use of active microvibra-
tion isolation technology to isolate disturbances has received
adequate attention in Hi-tech industries [10–13].

Previously, several approaches were used for realizing
active vibration isolation systems. Among these methods,
the series combination of two isolators is an effective method
of maintaining simultaneous high-stiffness and low-stiffness
suspension [14]. Meanwhile, various control strategies, such
as state feedback control [15], H∞ control [16], feedforward
control [17], repetitive [18], and active acceleration control
[19], were previously applied to achieve an active isolation
system for vibration. In this work, a horizontal type isolation
mechanism for vibration was developed based on the
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concept of negative stiffness technique where isolators of
equal magnitude for positive as well as negative stiffness
are connected in series connection.

A suspension of magnetic dynamic system with the con-
trol of zero-power possesses negative type stiffness. The neg-
ative stiffness of a zero-power control system is constant,
and it varies depending on the constants of the magnet such
as coefficients of permanent type magnet used to supply bias
type force in the steady state, whereas an actuator (linear)
with exact negative stiffness control gives a variable negative
stiffness according to the gain selected [20]. In this current
research work, the positive, as well as negative stiffness’s, is
realized by proportional control and proper negative stiff-
ness control, respectively.

Nevertheless, the transient displacements of the vibra-
tion isolation systems mentioned above are not satisfactory
in some cases and are needed to be suppressed. In a previous
study, Hoque et al. improved the transient characteristics of
the isolation of a vibration system by adding a feedforward
control [21]. In this research, an innovative approach that
comprises feedback of acceleration added to the isolation
system for vibration attained with the negative stiffness
mechanism. This approach could improve the characteris-
tics of vibration isolation independently of the disturbances
identified in the system [21, 22]. MEMS accelerometers,
which are low in cost compared to commercial servo accel-
erometers, are used to find acceleration. However, MEMS
accelerometers have less sensitivity in a low-frequency
domain compared to the servo accelerometers [23]. In prin-
ciple, the zero-compliance system based on series connected
isolators can maintain its position at lower level of fre-
quency; hence, the nature of the developed dynamic system
for the isolation of vibration at low frequency is not ham-
pered with MEMS accelerometers. Nevertheless, the MEMS
accelerometer carries undesirable noise which may cause
the deterioration in dynamic responses [24]. Previously, var-
ious filtering techniques are used to improve the feedback
signals as well as to reduce the effect of undesired noises
[25, 26]. To avoid the difficulty regarding noises carried by
the MEMS accelerometers, this work uses the Kalman filter
(KF) to estimate the acceleration using direct measured
acceleration and system inputs; this estimated signal is sup-
posed to be used for the acceleration feedback. A previous
study showed that the Kalman filter performs suitably to
improve the accuracy of the rotor position in active mag-
netic bearings [27].

2. Negative Stiffness Mechanism for
Vibration Isolation

There are two conditions required to isolate a system from
vibration, such as lower level of stiffness suspension to
ground vibration and stiffness of infinite level against direct
disturbance. However, these two criteria need to be activated
simultaneously. In this work, the mechanism of negative
stiffness is utilized to obtain these two required criteria
simultaneously where two types of isolators are connected
in series (Figure 1).

In the mechanism of negative stiffness, one isolator is
designed that has a stiffness of positive magnitude and the
other isolator provides stiffness with negative values where
the magnitudes of stiffness were the same. In this work, the
object was displaced in the opposite direction of the applied
force. If δl is the amount of movement in the upward direc-
tion due to the application of mass Δm (Figure 1(a)), then
negative stiffness is usually presented using the following
equation.

k = Δmg
l − l + δlð Þ = Δmgð Þ

−δl
, ð1Þ

where the distance between the ground (base) and the
object at steady state is denoted by l.

In contrast, in a positive stiffness mechanism, a system
displaces in the exact same direction of force. Any weight
with a system of spring-damper usually compresses when
applying compression loads, while expands for tensile loads.
If ks and kp are the coefficients of two isolators that are
attached in series connection (Figure 1(b)), the combined
stiffness “kc” can be obtained by the following Equation (2):

kc =
kpks
kp + ks

: ð2Þ

It is seen that if the stiffness of two individual isolators is
positive (traditional spring) then the magnitude of combined
stiffness kc is lower when compared to their individual stiff-
ness. However, if one isolator has a positive stiffness and
another one possesses a negative stiffness with equal in mag-
nitude but opposite in direction (jkpj = j−ksj), then their
combined stiffness kc is infinite that can be presented by
the following equation.

kc =
−ksð Þks
−ks + ks

=∞: ð3Þ

Hence, in Equation (3), the relative distances of the top
isolation table are zero with respect to the ground (base)
against a force. In this research work, both isolators of pos-
itive as well as negative stiffness are realized by applying
exact negative stiffness and proportional derivative controls.

3. Modeling and Controller Design

The designed experimental isolation system for vibration is a
two-stage mechanism where the isolation and mass of the
middle table are added in series connection. A dynamic
model consists of a voice coil motor as actuators as depicted
in Figure 2(a). Acceleration feedback was used to improve
the dynamics of the developed negative stiffness-controlled
system for the isolation of vibration. Importantly, this
approach is independent of the disturbances identified in
the system.

MEMS accelerometer was used to measure absolute
acceleration that is used as acceleration feedback in each
controller to identify the effect of the feedback of acceleration
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on the isolation characteristics of vibration. The table for
vibration isolation (upper table in Figure 2(a)) is moved
along the horizontal translation motion (x-axis) where there
is no interference (internal) from the remaining axes. The
isolation motion for vibration and mas of the middle table
can be written using these two equations:

m1€x1 = k1i1 − k2i2,
m2€x2 = k2i2 + Fd ,

ð4Þ

where m denotes the table mass, x denotes distances/dis-
placements, k is actuator thrust coefficient, and Fd is the
amount of direct disturbance. In addition, the subscript 0
presents the base, 1 denotes the middle table, and 2 presents
the table for vibration isolation.

By transforming the equations using the Laplace trans-
form, it is possible to obtain the following two Equations
(5) and (6):

m1s
2X1 sð Þ = k1I1 sð Þ − ki2I2 sð Þ, ð5Þ

m2s
2X2 sð Þ = k2I2 sð Þ + Fd sð Þ: ð6Þ

The controller block diagram that is related to the mech-
anism of negative stiffness involves additional feedback of
acceleration (Figure 2(b)). The middle mass was subjected
to the proportional derivative controller, while in the isola-
tion table, negative stiffness control was applied. Additional
feedback of acceleration was added in both the two control-
lers. Hence, the currents for proportional-derivative (PD)
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Figure 1: (a) Conceptual schematic of negative stiffness method. (b) Isolators in series connection.
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Figure 2: (a) Schematic diagram of the developed experimental setup with controller and (b) controllers along with acceleration feedback.

3Journal of Sensors



control and negative stiffness based on the model can be
written as follows:

I1 sð Þ = − Pd1 + sPv1ð Þ X1 − X0ð Þ − s2GF sð ÞPa1X1, ð7Þ

I2 sð Þ = −s3GFPa2X2 − s2Pv2 + s Pd2 + Pp

� �
− PpPi

� �
X2 − X1ð Þ

s − Pið Þ ,

ð8Þ

where Pd is proportional, Pv is derivative, Pi is integral,
Pp is adjustment of stiffness, and Pa is gains of acceleration
feedback. On the other hand, GF presents the transfer func-
tion of a low-pass filter that is used to decrease the noisy
signal presents in the feedback of acceleration.

In the case of isolation table for vibration, the transfer
function of the ratio of distance (x2) to direct disturbance
(Fd) and distance (x2) to vibration generated by ground
(x0) can be generated using the Equations (5) and (6) as well
as (7) and (8).

X2 sð Þ
Fd sð Þ = α3s

3 + α2s
2 + α1s + α0

γ5s
5 + γ4s

4 + γ3s
3 + γ2s

2 + γ1s + γ0
, ð9Þ

X2 sð Þ
X0 sð Þ =

β3s
3 + β2s

2 + β1s + β0
γ5s

5 + γ4s
4 + γ3s

3 + γ2s
2 + γ1s + γ0

, ð10Þ

where α3 = ðm1 − k1GFPa1Þ, α2 = ð−m1Pi + k1Pv1 + k1GFPa1
Pi + k2Pv2Þ, α1 = ðk1Pd1 − k1Pv1Pi + k2Pd2 + k2PpÞ, α0 = ð−k1
Pd1Pi − k2PpPiÞ, β3 = k1k2Pv1Pv2, β2 = k1k2ðPd1Pv2 + Pd2Pv1 +
PpPv1Þ, β1 = k1k2ðPd1Pd2 + Pd1Pp − PpPiPv1Þ, β0 = k1k2ð−Pd1
PpPiÞ, γ5 = ðm1m2 −m1k2GFPa2 −m2k1GFPa1Þ, γ4 = f−m1m2Pi +
m2ðk1Pv1 + k1GFPa1Pi + k2Pv2Þ +m1k2Pv2 − k1k2GFPa1Pv2g,
γ3 = fðm1 +m2Þðk2Pd2Þ + ðm2 −m1Þðk2PpÞ +m2ðk1Pd1 − k1Pv1PiÞ +
k1k2ðPa1Pd2 + Pa1Pp + Pv1Pv2Þg, γ2 = fðm1 −m2Þðk2PpPiÞ +
m2ð−k1Pd1PiÞ + k1k2ðPd2Pv1 + PpPv1 +GFPa1PpPi + Pd1Pv2Þg,
γ1 = fk1k2ð−PpPv1Pi + Pd1Pd2 + Pd1PpÞg, γ0 = k1k2ð−Pd1PpPiÞ.

The acceleration feedback gains Pa1 and Pa2 determine
the coefficient s5 ðγ5Þ as a rise of these gains negatively
causes the reduction of the numerator of Equations (9)
and (10). Theoretically, it is seen that additional feedback
of acceleration reduces the displacements of a dynamic
system when compared to no acceleration feedback
condition.

The rise of the gains of feedback of acceleration in the
controller causes a mass increment of a dynamic system
(coefficient of s5 ðγ5Þ). Therefore, in practice, the system
would be stable in certain ranges of Pa1 and Pa2. The gains
of acceleration are chosen in such a way to the system stable.
However, to find the displacement of the tables at steady
state in the form of disturbance generated directly, Fd is
taken as stepwise, while the ground vibration is zero
(x0 = 0). It can be determined by using the following equa-
tions:

X2 ∞ð Þ
F0

= lim
s⟶0

α3s
3 + α2s

2 + α1s + α0
γ5s

5 + γ4s
4 + γ3s

3 + γ2s
2 + γ1s + γ0

= α0
γ0

,

ð11Þ

X2 ∞ð Þ
F0

=
−k1Pd1Pi − k2PpPi

k1k2 −Pd1PpPi

� � = −1
k2Pp

+ 1
k1Pd1

= −
1
ks

+ 1
kp

:

ð12Þ
The negative and positive stiffness of the given system

can be determined through Equation (12). It is seen that if
the magnitudes (absolute) of positive as well as negative stiff-
ness are zero then the steady-state type displacement of the
developed table for vibration isolation is zero. Therefore, a
system with negative stiffness as well as additional accelera-
tion feedback can be used to improve the isolation behavior
of vibration.

3.1. Controller Parameters. In this work, the magnitudes of
gains of controller parameters are determined using the
method of pole assignment. However, the developed vibra-
tion control system with negative stiffness mechanism
approaches a fifth order of system where the determination
of acceleration feedback gains using pole assignment is com-
plex and tedious.

To avoid such complexity, the middle and isolation table
is assumed to be the individual systems where the positive
and negative stiffness controls are applied, respectively. A
basic one degree-of-freedom (DOF) model is considered to
determine controller gains (Figure 3). The motion of the
table can be determined by the following equation:

m€x = Fa + Fd , ð13Þ

where m is table mass, x is distance of the table along the x
-axis, thrust force of actuator is Fa, and Fd is the direct dis-
turbance of the table.

The force Fa can be calculated by the following equation.

Fa = kii, ð14Þ

where generated thrust of the voice coil motor (VCM) is
proportional to the coil current i and k is the thrust
coefficient.

The transfer function of the actuator dynamics can be
written using the Laplace transforms by the following equa-
tion:

X sð Þ = 1
s2

ki
m
I sð Þ + 1

m
Fd sð Þ

� �
, ð15Þ

where the variable of each Laplace transform is denoted by
their capital.

3.1.1. Negative Stiffness Control. The control mechanism
using negative stiffness consists of a proportional-derivative
(PD) and local integral feedback (Figure 2(b)). The current
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(i, Figure 3) for the negative stiffness control can be written
using the following equation of Laplace transform.

I sð Þ = −
pd2 + sPv2
1 − Pi/s

+ Pp

� �
X sð Þ − X0 sð Þð Þ − s2Pa2

1 − Pi/s
X sð ÞÞ,

ð16Þ

where Pd2 is proportional, Pv2 is derivative, Pi is integral, Pp

is stiffness adjustment, and Pa2 is acceleration feedback
gains.

Finally, the representation of the transfer function of the
dynamics of the system with respect to the displacement to
the vibration generated by ground and direct disturbance
can be determined by the following two equations.

X sð Þ
Fd sð Þ = s − Pið Þ

tc sð Þ m + kiPa2ð Þ , ð17Þ

X sð Þ
X0 sð Þ =

kiPv2ð Þs + kiPd2 − kiPp

� �
s + kiPpPi

m + kiPa2ð Þ:tc sð Þ
, ð18Þ

where tcðsÞ indicates the characteristics equation of the sys-
tem (Figure 3) controlled with negative stiffness control,
which is extended by acceleration feedback and is expressed
as follows:

tc sð Þ = s3 + kiPv2 −mPi

m + kiPa2

� �
s2 +

kiPd2 − kiPp

m + kiPa2

� �
s +

kiPpPi

m + kiPa2
:

ð19Þ

Equation (19) shows that a dynamic system with the
control of negative stiffness behaves as a third-order system.
In general, the characteristic ideal equation of a third-order
system can be expressed by using the following equation.

td sð Þ = s2 + 2ζ1ω1s + ω1
2� �

s + ω2ð Þ = s3 + λ2s
2 + λ1s + λ0,

ð20Þ

where λ2 = 2ζω1 + ω2, λ1 = 2ζω1ω2 + ω1
2, and λ0 = ω1

2ω2. In
determining the gains, it is assumed that ω1 = ω2 = ωr . The
symbols ωr ð2π f rÞ present the frequency (angular), and ζr
denotes the damping ratio. In general, these two variables
can be used to characterize the dynamics of a second-order
system. Here, these parameters are used to find the poles

of the closed-loop of the third-order system, as they are
comprehensive when compared to the poles themselves.

Finally, the controller gains are calculated by the com-
parison of Equations (19) and (20) that can be written by
the following equation.

Pp =
ks
ki
, Pi =

α0
kiPp

m + kiPa2ð Þ, Pd2

= 1
ki

α1 m + kiPa2ð Þ + kiPp

� �
, Pv2

= 1
ki

α2 m + kiPa2ð Þ +mPið Þ:

ð21Þ

3.1.2. Positive Stiffness Control (PD Controller). Likewise, the
gains for the proportional-derivative controller (positive
stiffness) are determined with respect to the same model. A
diagram of the proportional-derivative control, including
the feedback of acceleration, is depicted in Figure 2(b). The
representation of the transfer function of the table (displace-
ment to disturbance measured directly and vibration from
base/ground) with proportional derivative control can be
written using these two following equations.

X sð Þ
Fd sð Þ = 1

m + kiPa1ð Þ̂tc sð Þ
, ð22Þ

X sð Þ
X0 sð Þ = kiPv1ð Þs + kiPd1

m + kiPa1ð Þ̂tc sð Þ
, ð23Þ

where t̂cðsÞ presents the characteristic equation of the
dynamic system as written by the following equation.

t̂c sð Þ = s2 + kiPv1
m + kiPa1

� �
s + kiPd1

m + kiPa1
, ð24Þ

where Pd1 is proportional, Pv1 is derivative, and Pa1 is
acceleration feedback gains of the proportional-derivative
(PD) controller. It is because systems with a traditional
PD control are second-order systems where the gains for
the developed control system are obtained by the compar-
ison of the coefficients of the equation of an ideal second-
order system with Equation (24). In general, the equation
of an ideal system of second order can be written by the
following equation.

t̂d sð Þ = s2 + 2bζr bω rs + ω∧r
2

� �
= s2 + ρ1s + ρ0, ð25Þ

where angular frequency and ratio of damping use to find
the poles of the second-order closed-loop system. Finally,
the controller gains for the PD controller are calculated
by using the following equation.

Pd1 =
mρ0
ki

,

Pv1 =
mρ1
ki

:

ð26Þ
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Figure 3: Single-axis horizontal suspension system.
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Moreover, the proportional gain (Pd1) of the controller
shows the static positive stiffness of the controlled system.
Hence, the proportional gain (Pd1) is calculated in such a
way that the acquired positive type stiffness (kp) and the
absolute magnitude of the negative type stiffness ks are
equal. Hence, the proportional gain (Pd1) can be deter-
mined through the following equation.

Pd1 =
kp
ki
: ð27Þ

In the theoretical analysis of designing the controllers
(mentioned above), it is found that the consideration of
feedback of acceleration with controllers virtually increases
the mass of the system, which leads to a smaller displace-
ment against disturbance (known or unknown). Moreover,
it is identified theoretically from Equations (17) and (22)
that the dynamic displacement will decrease as the acceler-
ation gains (Pa1 and Pa2) increase. However, in practice,
the system would be unstable beyond a certain range of
Pa1 and Pa2; hence, the values of Pa1 and Pa2 are adjusted
so that the system stands within stable region.

3.2. Optimal Estimation Using Kalman Filter. An accelerom-
eter is usually used to find the absolute value of the acceler-
ation of a system. However, a commercial accelerometer of
servo type is usually expensive. To solve this issue, a micro-
electromechanical system (MEMS) accelerometer is utilized
that is cheap but the signals are noisy. Also, the MEMS
accelerometer requires less space that could increase the
overall dimension of the setup.

To reduce such noise, the Kalman filter estimated
values were used instead of directly measured values for
the feedback signal. The measurement of the Kalman filter
can be considered as an algorithm of linear quadratic esti-
mation (LQE) that can be determined by the measurement
of a series of data (noise and other inaccuracies) over
time.

These estimates of variables are more precise when com-
pared to a single measurement. The significant application
of the Kalman filter is to use in the navigation and control
of aircraft, spacecraft, etc. [28]. The Kalman filter used in
this work is an observer-based filter (Figure 4), which esti-
mates the value of acceleration by reducing the estimation
of the errors of mean square (MSE). As a consequence, the
efficiency of the vibration isolation system will increase.

3.2.1. Simulations. The state-space model of the system
including process as well as measurement noise can be
shown by the following two equations.

_x = Ax + Bu + q,
y = Cx + r,

ð28Þ

where x denotes state variables, A presents state transition,
B shows control input, C is measurement matrices, u is
input variable vector, q denotes process vector for the esti-
mation of noise, and r is measurement noise vector. The

discrete model of state-space for the dynamic system can
be written using the following two equations with sam-
pling time.

xk =Ψxk−1 +Φu + γ,
yk = Cxk + λy = Cx + r,

ð29Þ

where Ψ = AΔt + I, Φ = BΔt, γ = qΔt, λ = rΔt, and k pre-
sents the time step. The estimation of the Kalman filter
values consists of two processes (state prediction and state
correction) individually, and the outcome of each step is
utilized as input to another step and continues these until
the iteration of the last value. To find these two steps/pro-
cesses, the algorithm of the Kalman filter is performed in
two different processes such as the time as well as mea-
surement update.

(1) Time Update.

xk−1 =Ψx̂k−1 + Bu,
Pk−1 =ΨP̂k−1Ψ′ +Q:

ð30Þ

(2) Measurement Update.

x̂k = xk−1 + Kk yk − Cxk−1ð Þ,

Kk = Pk−1C′
� �

CPk−1C′ + R
� �−1

,

P̂k = I − KkCð ÞP̂k−1,

ð31Þ

where Q denotes covariance matrices of noise (process), R
shows noise due to measurement, P is estimation error,
and Kk is Kalman gain matrix. The predicted and the esti-
mated value of x is denoted by ðxÞ and ðx̂Þ. In this work,
several numerical simulations were performed to identify
the influence of the feedback of acceleration based on the
estimation of Kalman filter values on the isolation of vibra-
tion. The input, state variable and transition, and matrices

Q (Process noise) R (Measuremet noise)

y
T
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X
T–1

 (Predicted)

X
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X
T (Estimated)

X
T–1

u

u
B
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φ

C

C

K

Unit delay Kalman gain

A

Z–1

S
1

Figure 4: Block diagram of the Kalman filter (KF) algorithm.
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of measurement were initialized to state the process of pre-
diction in numerical simulation.

X =

x1

_x1

x2

_x2ð
î2dt

266666666664

377777777775
, A =

0 1 0 0 0
k2
m1

Pp 0 −
k2
m1

Pp 0 0

0 0 0 1 0

−
k2
m2

Pp 0 k2
m2

Pp 0 0

0 0 0 0 0

266666666664

377777777775
,

B =

0 0
k1
m1

−
k2
m1

0 0

0 k2
m2

0 1

266666666664

377777777775
, u =

i1

î2

" #
, C = 0 0 1 1 0½ �,

ð32Þ

where the symbols denote exactly the same meanings as
presented in Section 3.

Table 1 shows the experimental parameters and the Kal-
man filter (KF) values used in the experiments and simula-
tions. The absolute values of these parameters were kept
exactly the same during the experiments and simulation.

In the numerical simulation, the developed dynamic sys-
tem is considered applying to white Gaussian noise, Kalman
filter estimated distances, and displacement of the system as
the feedback variables. The simulated results of velocity as
well as the position of the setup are taken at the steady-
state condition. These results of velocity and position show
that the estimated values through the estimation of the
Kalman filter were better with a lower level of noisy signal
when compared to a single direct measurement (Figure 5).
It is also found that the feedback control system based on

the calculated displacement of the Kalman filter shows a sys-
tem with lower-level deviation than the actual measured
signal.

The simulated results of the influences of the Kalman
filter (KF) on a control system are depicted in Figure 6. On
the other hand, Figure 5 presents the simulated position of
a proportional-derivative (PD) controlled system at steady
state, where the displacement is considered to be a feedback
variable. It is found that the Kalman filter can be used to
estimate velocity and displacement signals with lower levels
of noise than the measured signal. It is seen that the feedback
control depending on the measured signal gives a system
with a higher dynamic deviation. In contrast, if the feedback
mechanism of a control system depends on the estimation of
the Kalman filter, then the control system deviations are
decreased significantly (Figures 5 and 6).

4. Experimental Methodology

4.1. Developed Experimental Setup. In this work, the devel-
oped system of isolation for vibration consists of a table for
vibration isolation and a table for mass placed at the middle
of the experimental setup (Figure 7). These two tables are
vertically attached using bearings at the four corners of each
table.

In this experimental setup, the tables are free to move
along the axes of horizontal (motion of translational) and
vertical to make three degrees of freedom system (2 horizon-
tal and 1 vertical axis direction motions). The single axis (x
-axis) motion is controlled, and the motions of the other
axes are assumed to have no effect on the controlled motion.
The contact areas between the tables and supports are grease
lubricated so that the frictional effects in the control phe-
nomena become negligible. The middle mass motion is con-
trolled by voice coil motor that was set up between the
middle mass and the floor, while the voice coil motor that
controls the table for vibration isolation with respect to the
middle table was set between the two tables. Two MEMS
accelerometers are separately attached to the two tables for

Table 1: Parameters used in the experiments and simulations.

Model Parameters Value Unit

Kalman filter

Process noise (Q) 0.02 I5×1

0.02 eye (3) negative stiff system
m/s
m/s2

A

0.02 eye (2) positive stiff system
m/s
m/s2

Measurement noise (R) 1.1 I5×1

1.1 eye (3) negative stiff system
m
m/s
A.s

1.1 eye (2) positive stiff system
m
m/s

System
Mass m

30 (isolation table)
kg

52 (middle table)

Actuator coefficient (ki) 45 (both tables) N/A
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measuring acceleration. The control algorithms are devel-
oped using a digital signal processor (dSPACE™).

The size of the isolation table was 620mm × 620mm ×
10mm with a mass of around 20.5 kg. These table dimen-

sions were chosen on the basis of a traditional seat for a
driver in a loaded automobile. Moreover, the size of the mid-
dle table was chosen as the dimension of 530 × 530 × 10mm,
and the mass was approximately 15.5 kg.
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Figure 5: Effect of the Kalman filter on the accuracy of the signal subjected to white Gaussian noise (simulated): (a) signal for displacement
and (b) signal for velocity.
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Figure 7: Experimental setup with sensors. (a) Basic experimental setup, (b) conventional servo accelerometer, and (c) MEMS
accelerometer.
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5. Experimental Results of Vibration
Isolation System

In this work, by using with and without acceleration feed-
back, several dynamic characteristics of the control system
for vibration were measured. These measurements were
taken for both ground vibration and direct disturbance.

Figure 8 shows the dynamic responses of the isolation
system for vibration with and without the use of the feed-
back of the acceleration where the responses of frequency
to the direct disturbance of the table for vibration isolation
are presented with respect to the generated displacement as
the output. In the theoretical analysis (Section 3), it was
determined that a larger acceleration feedback gain (Pa)
caused a better response in the vibration isolation character-
istics compared to a lower acceleration feedback gain. This
theoretical finding was confirmed by the experimental

results, which are plotted in Figure 8, where the frequency
responses of the vibration isolation table were measured
for different Pa values varying from 0.2 to 0.4As2/m.

The peak of dynamic resonance (red line) was decreased
by 6% with the estimation of Kalman filter feedback of the
acceleration than the system without the use of Kalman filter
(Figure 9).

The algorithm of the Kalman filter (KF) generated an
estimated output that is dependent on the moving average
of the immediate previously obtained outputs. Hence, in
the Kalman filter estimated signals, there lie two extremely
different magnitude signals and they may also be noisy. This
may be one of the significant reasons for better output in the
characteristics of vibration isolation through the use of the
Kalman filter (KF).

In this work, the responses of frequency of the table of
vibration isolation to the vibration generated by ground were
calculated with and without the use of the feedback of accel-
eration where the gains and the phase angle were determined
based on the frequency of disturbance (Figure 10). In this
work, the effects of different gains of acceleration feedback
on the transmissibility of ground vibration were determined.

The outcome of this work shows that ground vibration
that possessed transmissibility above the resonance fre-
quency reduced as the gain of the feedback of acceleration
increased; however, it is realistic that the controlled system
was stable for a certain range of Pa values. In this work,
the values of Pa were varied from 0.1 to 0.4As2/m
(Figure 10). The ground vibration transmissibility was
further suppressed when the gain of the feedback of acceler-
ation was dependent on the estimation of the Kalman filter
instead of the direct measurement of signal (Figure 11). It
is noted that the acceleration feedback using the Kalman
filter estimation has a significant influence on the transmis-
sibility of ground vibration. The transient peak (red-colored
line, Figure 11) of the transmissibility of ground vibration
with the feedback of acceleration based on the estimation
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of the Kalman filter was reduced by almost 40% compared to
that of normal condition (blue-colored line, Figure 11).

6. Conclusions

A negative stiffness mechanism has been used for vibration
isolation and realized with the developed horizontal system.
The controllers for the mechanism of negative stiffness have
been designed and modeled with additional acceleration
feedback. In this work, MEMS accelerometers have been
utilized to calculate the acceleration of the tables of the
designed and modeled dynamic system. The measured noisy
acceleration signals were improved by using the estimation
of the Kalman filter through the MEMS accelerometer. The
simulation results depicted that the estimation of the
Kalman filter can estimate the values more accurately with
significantly lower levels of noise when compared to the
directly measured signals. The isolation characteristics of
vibration of the developed dynamic system against the
unpredicted disturbances were improved with acceleration
feedback, which was further improved with acceleration
feedback based on the estimated values of the Kalman filter.
Hence, the designed and fabricated system for the isolation
of vibration with the proposed techniques can be used in
noisy environments where disturbances are unpredictable.
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