Hindawi

Journal of Sensors

Volume 2021, Article ID 9651117, 13 pages
https://doi.org/10.1155/2021/9651117

Research Article

Hindawi

Trading and Pricing Sensor Data in Competing Edge Servers with

Double Auction Markets

Bing Shi,"”” Zhaoxiang Song,' and Jiangiao Xu

ISchool of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan 430070, China
2Shenzhen Research Institute of Wuhan University of Technology, Shenzhen 518000, China
*Department of Information Security, Naval University of Engineering, Wuhan 430033, China

Correspondence should be addressed to Jianqiao Xu; xujianqiao321@163.com
Received 6 November 2021; Revised 10 December 2021; Accepted 13 December 2021; Published 31 December 2021
Academic Editor: Guolong Shi

Copyright © 2021 Bing Shi et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development of the IoT (Internet of Things), sensors networks can bring a large amount of valuable data. In addition to
be utilized in the local IoT applications, the data can also be traded in the connected edge servers. As an efficient resource
allocation mechanism, the double auction has been widely used in the stock and futures markets and can be also applied in the
data resource allocation in sensor networks. Currently, there usually exist multiple edge servers running double auctions
competing with each other to attract data users (buyers) and producers (sellers). Therefore, the double auction market run on
each edge server needs efficient mechanism to improve the allocation efficiency. Specifically, the pricing strategy of the double
auction plays an important role on affecting traders’ profit, and thus, will affect the traders’ market choices and bidding
strategies, which in turn affect the competition result of double auction markets. In addition, the traders’ trading strategies will
also affect the market’s pricing strategy. Therefore, we need to analyze the double auction markets’ pricing strategy and traders’
trading strategies. Specifically, we use a deep reinforcement learning algorithm combined with mean field theory to solve this
problem with a huge state and action space. For trading strategies, we use the Independent Parametrized Deep Q-Network (I-
PDQN) algorithm combined with mean field theory to compute the Nash equilibrium strategies. We then compare it with the
fictitious play (FP) algorithm. The experimental results show that the computation speed of I-PDQN algorithm is significantly
faster than that of FP algorithm. For pricing strategies, the double auction markets will dynamically adjust the pricing strategy
according to traders’ trading strategies. This is a sequential decision-making process involving multiple agents. Therefore, we
model it as a Markov game. We adopt Multiagent Deep Deterministic Policy Gradient (MADDPG) algorithm to analyze the
Nash equilibrium pricing strategies. The experimental results show that the MADDPG algorithm solves the problem faster
than the FP algorithm.

1. Introduction

With the development of the IoT (Internet of Things), smart
terminals embedded with a large number of sensors such as
cameras, GPS, and gyroscopes are becoming more and more
common in daily life [1], where massive amounts of data are
collected [2]. In addition to being utilized by the local smart
IoT applications, these valuable data can be traded in the
connected edge servers, which can on one hand provide
the computing resource for the smart phone applications,
and on the other hand, provide a market mechanism for
trading the data between the data users (referred as buyers)

and data generators (referred as sellers) [3]. For example,
traffic information can be collected from the smartphone
to edge server, which can be sold to some navigation appli-
cations for optimizing the route planning. In this scenario,
double auction, as an auction mechanism in which there
are multiple buyers and sellers (referred as traders in the fol-
lowing) in the market can be used for trading data between
data users (buyers) and data generators (sellers) by the edge
server. In this mechanism, buyers and sellers can bid at any
time during the trading, and the market will match buyers
with sellers who have submitted the bids at a specified time.
This mechanism allows traders to enter the market at any

https://orcid.org/0000-0001-6497-7863
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9651117

time and trade multiple commodities at the same time. Due
to its high allocation efficiency, double auctions have been
widely used to solve real-world resource allocation, such as
in the stock market [4], the emission trading market [5],
the spectrum auction market [6], cloud computing resource
allocation market [7], and the sensors networks resource
allocation market [3]. In such markets, both traders and
the double auction market need to adopt efficient trading
strategies and market mechanism [8].

In the real world, there may exist a large number of
traders on the edge server to trade data. Furthermore, there
may exist multiple edge servers running double auction mar-
kets. At this moment, traders need to decide which double
auction to participate in and how to bid in the selected dou-
ble auction market, while the double auction market needs
efficient mechanism to improve the allocation efficiency to
attract more traders. Since the pricing strategies can deter-
mine the price at which traders will trade, it will affect the
traders’ profit significantly. At the same time, the trading
strategies (i.e., how to choose the market and bidding) will
in turn affect the market’s pricing strategies, thereby affect-
ing the market allocation efficiency. Therefore, we need to
analyze the trading strategies of traders and pricing strate-
gies of double auctions in the environment with multiple
competing edge servers running double auction markets.

In double auctions, both the market and traders are self-
interested agents, and their strategies are affected by each
other. Game theory is widely used to analyze the strategic
interactions of self-interested agents, in which Nash equilib-
rium is an important solution concept. Therefore, we will
analyze the Nash equilibrium trading strategies and pricing
strategies in this competing environment. Specifically, this
problem involves a large number of traders, which may have
continuous bidding space and private preference. Although
the generalized FP algorithm can solve similar problems, it
will be difficult to solve the Nash equilibrium in a feasible
time when there are a large number of traders. In this paper,
we will analyze the Nash equilibrium trading strategies and
pricing strategies based on deep reinforcement learning
and mean field theory. For the Nash equilibrium trading
strategies, we combine the Independent Parametrized Deep
Q-Network (I-PDQN) algorithm, which is suitable for solv-
ing the problem with hybrid actions, with the mean field the-
ory [9, 10] to solve the Nash equilibrium trading strategies.
The experimental results show that this algorithm can solve
the problem significantly faster than the FP algorithm. For
the Nash equilibrium pricing strategies, we adopt the Mul-
tiagent Deep Deterministic Policy Gradient (MADDPG)
algorithm. We also find that the Nash equilibrium pricing
strategy obtained by this algorithm is the same as the solu-
tion of FP algorithm, and the MADDPG algorithm can solve
the problem faster than the FP algorithm. The experimental
results can also provide useful insights for designing the
practical trading strategies and pricing strategies in the real
world.

The rest of this paper is structured as follows. In Section
2, we introduce the related work. In Section 3, we introduce
the basic settings of the double auction market. In Section 4,
we analyze the Nash equilibrium trading strategy based on

Journal of Sensors

the I-PDQN algorithm and mean field theory. In Section 5,
we use MADDPG algorithm to solve the Nash equilibrium
pricing strategy. Finally, we conclude the paper in Section 6.

2. Related Work

There exist a number of works about data acquisition
[11-14]. Specifically, Sangoleye et al. studied the data acqui-
sition problem from the SIoT nodes following a techno-
economics-based approach via exploiting Contract Theory.
Chung et al. proposed a test-bed that consists of on-body
sensors and an Android mobile device to acquire the human
activity data and then used LSTM network to recognize
human behavior. Ho et al. proposed a frame that uses
unmanned aerial vehicles (UAVs) to collect data and used
Particle Swarm Optimization (PSO) method to find the opti-
mal topology in order to reduce the energy consumption, Bit
Error Rate (BER), and UAV travel time. Maksymova et al.
studied liDAR sensor data acquisition and compression for
automotive applications.

There also exist a lot of works about data trading, such as
[15-17]. Specifically, Tian et al. proposed a market mecha-
nism considering the privacy leakage for trading IoT data
in one-to-many trading scenarios [18]. They further pro-
posed a many-to-many data trading strategy, which rede-
fines some unreasonable assumptions of the existing
mechanisms [19]. Yu et al. proposed a market model to
trade mobile data between mobile users by taking into
account data demands and demand uncertainty [20]. Hui
et al. proposed a sensing service system by considering the
utilities of data providers and data service providers with a
data pricing strategy in the vehicle sensor networks [21].
Niyato et al. proposed a data market model for IoT data
[22]. Al-Fagih et al. proposed a data pricing model for public
sensing data by considering delay, quality of services, and
trust factors [23]. Furthermore, double auction, as a highly
efficient resource allocation mechanism, has been widely
used in the data trading market. For example, Jiao et al.
designed a double auction-based data market model and
pricing mechanism to maximize the profit [24]. Chen et al.
used double auction to trade sensor data [25]. Sun et al. used
edge servers as a double auction market to solve the problem
of insufficient computing resources [26]. Cai et al. proposed
a truthful double auction mechanism for data trading mar-
ket against three major challenges, including diverse market
preferences, the complex conflicts of interest relations of
data consumers, and the strategic behaviors of both
sides [27].

Trading strategies and pricing strategies play an impor-
tant role in the double auction market, and therefore, there
exist a number of works about trading strategies and pricing
strategies in double auctions. For trading strategies, Gode
et al. proposed the “Zero Intelligence” (ZI) trading strategy
for the first time [28]. Traders can only randomly select bids,
and all bids are uniformly distributed. Brown and Von pro-
posed the fictitious play algorithm (FP algorithm for short)
[29], in which each trader estimates the FP beliefs of other
traders through historical bids and calculates the current
best response strategy based on this. But the original

Journal of Sensors

algorithm can only solve the complete information game, so
Rabinovich et al. proposed a generalized FP algorithm to
analyze the continuous type of incomplete information
game [30], but this generalized algorithm is only suitable
for unilateral auctions. Shi et al. made improvements on this
basis to analyze the incomplete information game problem
under double auctions [31]. For the first time, Schvartzman
and Wellman combined empirical game theory with the
Q-learning algorithm in reinforcement learning to analyze
the optimal trading strategy of traders in the double auction
market [32], but this algorithm is only suitable for a small
and discrete space of bidding actions. Chowdhury et al. pro-
posed a trading strategy using Monte Carlo Tree Search
(MCTS) [33]. However, this algorithm is suitable for discrete
bidding sets and cannot deal with bidding problems with
continuous types and action spaces. Bredin and Parkes
designed a framework of truthful bidding in double auction
market [34].

Furthermore, there also exist some works analyzing the
market pricing strategies in the competing environment
with multiple double auction markets. Miller and Niu exper-
imentally analyzed traders’ market selection strategies in the
competing marketplaces trading environment [35]. Cai et al.
analyzed the impact of different adaptive strategies on the
trading strategy and its own earnings in the market compe-
tition environment [36]. Shi et al. considered two different
pricing strategies and analyzed how to adjust their pricing
strategies to attract traders in two competing markets [37],
and then they considered four typical types of fees in pricing
strategies, to analyze the Nash equilibrium market selection
in competing environment [38].

From the above work about data trading strategies, we
can find that there exist few works on trading with continu-
ous types and action spaces under incomplete information,
and most of the above works only consider a small number
of traders when analyzing the Nash equilibrium solution.
Regarding the market pricing strategies, although there exist
some works considering the competing environment, these
works have not considered how the market should adjust
the pricing strategy under the incomplete information game
of a large number of traders. In this paper, we will analyze
the Nash equilibrium trading strategies of sensor data and
market pricing strategies of the double auction market run-
ning on the edge server in a competing environment with
a large number of traders.

3. Basic Settings

In this section, we will introduce the basic settings of traders
and the double auction market running on the edge server.
We will describe the basic settings of traders and introduce
how to compute the expected profits of traders. We then
introduce the pricing strategy of double auctions and
describe how to compute the allocation efficiency of the dou-
ble auction market.

3.1. Basic Setting of the Trader. In this paper, the traders con-
sist of data buyers and data sellers. The set of buyers is
denoted as % = {1,2,---,B}, and the set of sellers is denoted

as §={1,2,--,S}. The set of all markets is denoted as .#
={1,2,---,M}. Each trader has a type, and the type of the
seller is the lowest price it is willing to sell. The buyer’s type
indicates the highest price at which the buyer is willing to
buy an item, and the seller’s type is the lowest price at which
the seller is willing to sell the item. The type actually indi-
cates the trader’s preference on the item. The types of a

buyer and a seller are denoted as 6° € [0,1] and 6" € [0, 1],
respectively, which is private information, that is, the type
of each specific buyer or seller is unknown to others. How-
ever, the types of all buyers and sellers are assumed to be
common knowledge, and i.i.d drawn from the cumulative
distribution functions F? € [0, 1] and F* € [0, 1], respectively,
there are assumed to be differentiable, and the probability

density functions are f° and f°, respectively. We assume that
a small cost 7 will occur when the trader enters the market
(for example, the time it takes for online trading). Therefore,
when the buyer’s type is too low or the seller’s type is too
high, they choose not to enter the market. In doing so, the
behavior of buyers bidding low offers and not entering the
market, and the behavior of sellers bidding high offers and
not entering the market can be distinguished. Next, we
describe how traders choose a market and bid in the market.

We define the action of a buyer as a tuple 8}; =m, di’n and
thus the buyer’s market choice and the bid in the selected
market are treated as trading strategy. Note that m#0

means that the buyer bids d°, in market m, and m = 0 means
that the buyer does not enter any market. Similarly, we use
&' =m, d,, to represent the seller’s action.

3.1.1. Trader’s Expected Utility. In this section, we introduce
how to compute the expected utilities of traders. In what fol-
lows, we introduce how a seller’s expected utility is calcu-
lated. Similarly, the buyer’s expected utility can also be
derived in the same way. The expected utility of a seller is
determined by its type €', its action &° = m, d;,, and its belief

about the actions of other buyers and sellers Q, O, We
define (2}, as a tuple d; ,,, d dy
the i smallest seller’s bidding action in market . In partic-
ular, the number of sellers taking each different action is

denoted as a tuple x =x;, x,,-+,x, where x; represents the

S o>y m» Where d} | represents

number of sellers choosing action d;,. Now, the seller’s
position is determined as follows. We use X7,(¢2,.d:,,) to
represent the number of other sellers who have a lower bid-
ding than dfm in market m, and it can be calculated as

X;z (Qin’ dim) =

z x. (1)

62 0< 2,

Similarly, excluding the seller itself, we use X7 (€2, dim)
to represent the number of sellers who have the same bid as

the seller, and it can be calculated as

> R,

B0, 9=d;,,

X (o i) = 2)

Now, any position from X3 (O, dim) +1 to X5 (2,
dfm) + X5 (2, dim) +1 can be seller’s bidding action dim,
and this position is denoted as v,, €V,,, where V,, is the
set of all possible positions. So the probability of any v,, in

the set V,, is

1
X (an, df,m) +1

P(v,) = (3)

Now, the seller’s expected value can be calculated as

Vm (Vm’ er;n’ GE’ dim) = gD(Vm, Qi’ dim) X 03’ (4)
where ¢(v,, Qi’m, dfm) represents whether the seller can
trade in the market.

o 1 if Y2 (Qf’;1 dim) >,
o (v 2,) = - (5)
0 ifY? (an, d;m) <

where Y,, represents the total number of buyers with a bid of
d;,, or less in the market.

ern (an’ dim) =

2

30k g2,

My, (6)

Considering all v,, in the market m, the expected value of
the seller is

V(0.0 2,9,) = 3 BP(r) x U, (v, 0,6,).

(7)

The derivation process of the buyer’s expected value is
the same.

Then, we derive the equation of calculating the expected
payment of the seller, and expected utility can be calculated
as expected payment minus expected value. We can deter-
mine the equilibrium price range [d}, d,,] and the price is p,
=d,+kx (d), - d;) according to the equilibrium k pricing
strategy. Then, the seller’s expected payment for bidding
d;,, is

5 S
‘@m (Vm’ di,m’

L, k) =
) T if (p(vm, Q;l;, dfm)
(8)

P+t if (p(vm,QB,dim>:

Journal of Sensors

Now the seller’s expected utility for bidding dim is

Vo (6,250 20,8) Ik, = V., (6.,

Qb Qin) -, (vm, d
(9)

The derivation process of the buyer’s expected utility is
similar.

Now at market auction stage ¢, assuming that the seller’s

. b b . .
'.(radlng strategy is 8° = (g, d g), the seller’s immediate reward
is

if +0,
o B9 (10)

0 if g=0.

=3 5 b S5

The accumulative reward of the seller is

R= By, (1)
z=t

where y is the discount factor in reinforcement learning,
indicating the degree of importance of future rewards. The
derivation of the buyer is the same.

3.2. Market Setting. We now introduce the basic settings
about the pricing strategy of double auctions.

3.2.1. Equilibrium K Pricing Strategy. In this paper, it is
assumed that all markets adopt equilibrium k pricing strat-
egy, in which the pricing parameter of the market is k € [0,
1]. Therefore, it is stipulated that the pricing parameter of
market m is k,, and the competitive pricing strategies of M
markets are 8 =k, ky,---ky;.

In equilibrium k pricing, the equilibrium price range is
E,. After equilibrium matching, traders who successfully
match (the matched seller’s asking price does not exceed
the buyer’s bid) can trade at any price within the equilibrium
price range. Therefore, the set of buyers and sellers who suc-
cessfully match and can trade is {<l~71,§1>,<52,§2>,~--,<Zvlm,

Sy > }» and the set of bidding is {<d’, d\>,---,<db , d;, > }.

Im> %Im
According to the above conditions, the equilibrium price

. . . 5 b
interval must be a subinterval of interval (dj,;»dp,.1),

aka. E, c(o> o), which is recorded as E,=[d)d,].
Under equilibrium k pricing, all traders trade at the same
price and are in E,. The trading price is p =d, + (d;, — d;) X
k. Obviously, when k is larger, to the market biases to the
seller, otherwise, it biases to the buyer.

3.2.2. Allocation Efficiency. We now introduce how to com-
]pute the allocation efficiency of the markets. Allocation effi-
ciency is one of the most important metrics of measuring the

= Qperformance of the double auction. The allocation efficiency

is the ratio of the actual profit obtained by all buyers and
sellers in the market to the maximum profit theoretically

5
im’

i oob
‘Qm"Qm’

Journal of Sensors

obtained when they submit their types as the bid, which is

b
ZieTB& ei - TPi

ZieTB*M

+[TP; - 6]

AE= , (12)

6" — TP}

+ ‘TP;“ -6

where TB is the set of actual transactions made by traders, 95.’
is the type of the buyer in transaction i, 6 is the type of the
seller in transaction i, TP; is the transaction price of transac-
tion i, TB* is the set of transactions when traders submit
their types as their bids, and TP} is the transaction price of
transaction i when traders submit their types as the bids.

3.2.3. Market Reward. In this paper, the competing double
auction market intends to maximize the allocation efficiency
by adopting an efficient pricing strategy in order to attract
traders. Therefore, we take the market allocation efficiency
as the market reward.

In each stage t, each market publishes its pricing action.
Traders then choose a market to participate and bid accord-
ing to the trading strategy. When all participated traders
have bid, each market matches buyers with sellers according
to the equilibrium matching strategies According to equa-
tion (12), the immediate reward of the market is expressed
as follows:

ZieTBM
ZieTB"M

6; - TP,

+16; - TP||

rm,t =

(13)

6" - Tp:| + |65 —TPr|

The accumulative reward of the market is

ZieTle’ef‘J - TPi’ +16; - TP

2=t ZieTB*E

6" — TP} | + |65 — TP} |

4. Nash Equilibrium Trading Strategy

When traders choose the edge servers market to participate
and bid, their strategies are affected by each other. Therefore,
we need to derive the Nash equilibrium trading strategies. In
this paper, all traders use reinforcement learning to improve
their trading strategies until all traders have converged. At
this moment, traders have reached the Nash equilibrium
strategy. It should be noted that although the learning pro-
cess is repeated, the game we study is essentially a one shot
game. One shot game means that all participants play only
one round of game. In this repeated learning process, agents
will choose the action in the current state according to the
observed information of previous states and the obtained
profit and enter the next state at the same time. This process
is a sequential decision-making process. Therefore, we
model it as a Markov decision process and use the deep rein-
forcement learning algorithm to solve the Nash equilibrium
strategy. We use I-PDQN (independent parameterized deep
g-network) algorithm to analyze traders’ Nash equilibrium

trading strategy and evaluate it against the FP algorithm
[40] in terms of computation speed and convergence result.

We assume that there are two competing edge server
double auction markets. When the number of markets is
greater than 2, our method is still applicable. In each stage,
traders need to select a market and bid. Therefore, the trad-
ing strategy consists of two parts, choosing a market, where
the action space is discrete, and bidding, where the action
space is continuous. Therefore, the whole trading action is
a hybrid action with continuous and discrete action. Fur-
thermore, this problem involves a large number of traders.
Therefore, we intend to solve the trading strategy problem
of a large number of traders with hybrid actions based on
I-PDQN algorithm and mean field theory.

4.1. I-PDQN Algorithm. As we have discussed in the above,
P-DQN algorithm [41] is applicable to the hybrid action
space of a single agent. This algorithm is then extended to
the environment with multiple cooperative agents [42].
However, traders in the double auction market are not coop-
erative, and therefore, we extend it to the environment with
multiple noncooperative agents, called I-PDQN algorithm.
In the following, we first briefly introduce P-DQN algorithm
and then introduce I-PDQN algorithm.

P-DQN algorithm can deal with the problem with
hybrid action space. The idea is to update discrete action
strategy and continuous action strategy, respectively, in
combination with DQN algorithm [43] and DDPG algo-
rithm [44]. In the P-DQN algorithm, first, the low-level
parameters related to each high-level discrete action are
selected, and then, the discrete-continuous hybrid action
pairs that can maximize the action value function are calcu-
lated. More specifically, the discrete-continuous hybrid
action space & can be defined as

A={(ex,)|x,eX, forall eeclE]}, (15)
where [E] =0,1,---,E—1 is the set of discrete actions, and
X, is set of all discrete actions e € [E| corresponding to the
continuous actions. Therefore, a deterministic function can
be defined to map the state and each discrete action e to
the corresponding continuous parameter x,

xe:!’te(S;G)’ (16)

where 0 is the weight of deterministic policy network. A dis-
crete action value function Q(s, ¢, x, ; w) is further defined to
map the state s and all hybrid actions to the actual value. w is
the weight of the discrete action value network. P-DQN
updates the discrete action policy network parameters
through the following loss function:

(w) = 2 [Qs 0%, 0) -y (17)

where the expression of y is

y:r+1£&)](yQ(s',e,ﬂe(sl;9) ;w), (18)

where s’ is the next state after the hybrid action (e, x,) is
taken. The policy update of the continuous parameter part
is through fixing the parameter w and minimizing the loss
function 1°(8):

D

19(0) ==Y BQ(s, e 4, (53 6) ; w). (19)

d=1

Therefore, the action value function Q(s, e, x, ;) mainly
plays two roles. First, it outputs the greedy strategy for all
discrete actions (consistent with DQN), and second, it pro-
vides a gradient for the policy update of continuous
parameters.

After introducing P-DQN algorithm, we now introduce
I-PDQN algorithm for multiple non-cooperative agents. I-
PDQN is an algorithm with low space and time consump-
tion. Specifically, I-PDQN has a space complexity of O(An)
at each round. Where # is the size of replay memory, and
replay memory is cleared for each round, which means our
algorithm does not take up much memory space. Note that
it is difficult to get an exact value for the time complexity
of deep reinforcement learning. However, in our experi-
ments, we can get the convergence result in a reasonable
time. In more detail, the algorithm takes the competing mar-
ket pricing parameters, the number of buyers and sellers and
the bidding space as the input, and finally outputs the Nash
equilibrium trading strategy. Because each trader intends to
maximize its own profit, it learns the best trading strategy
independently. Therefore, the I-PDQN algorithm adopts
the autonomous learning paradigm, and each trader has an
independent P-DQN algorithm to learn [45, 46]. Because
this game involves a large number of traders, we introduce
the mean field theory into I-PDQN algorithm, to describe
the state of the market. The detail of the algorithm is shown
in Algorithm 1.

4.2. Experiment Analysis. The experiments are run on the
system with configuration Intel(R) Core(TM) i7-8700
CPU, 12 CPU cores, 7GB GPU memory, CUDA version
10.2, and Ubuntu 16.04.6 LTS 4.15.0-45 genetic GNU/Linux.

4.2.1. Parameter Setting. We now experimentally analyze the
Nash equilibrium trading strategy. In the experimental anal-
ysis, we consider 50 buyers and 50 sellers. For the hybrid
action of each trader, the discrete action set is expressed as
[E]={0,1, -, E— 1}, where E is the total number of discrete
actions, and the continuous action parameter corresponds to
each discrete action x, € [0, 1]. In the action selection stage,
each trader first generates the continuous parameters corre-
sponding to all discrete actions according to the observed
states. The exploration probability is set as £ =0.995', and
the exploration probability will gradually decrease with the
increase of training iterations. For the selection of discrete
actions, traders randomly select a discrete action from the
uniform distribution of {"U(0,3) with the probability of ¢
for exploration. [0,3] uniform distribution is used for ran-
dom exploration of discrete actions. Traders randomly select
a number in [0,3] uniform distribution. If it is between [0,1],

Journal of Sensors

it means that the choice of discrete action is 0, they do not
enter the market; if (1,2] means that the choice of discrete
action is 1, select market 1 to enter; if (2,3] means that the
choice of discrete action is 2, select market 2 to enter. There
are six states in each stage of the market, and the specific
parameters are explained in Table 1. For the replay memory
D,; =200000 of each trader i, the sample size R=64 is
selected in batch, the update ratios of 0; and w; are a=
0.01 and 8=0.001, and the discount factor of y is y = 0.95.

4.2.2. Experimental Results. We selects two typical pricing
strategies <0, 1> and <0.5,0.5 > for analysis. These are the
most common strategies in the economic market. The two
markets compete with each other. I-PDQN algorithm is used
to train the Nash equilibrium trading strategies to get which
market traders will enter and how many to bid in the equi-
librium state.

Figure 1 shows the changes of traders’ market choice in
the iterative process with a combined pricing strategy of <0
,1> where the pricing strategy of market 1 is k=0 and
the pricing strategy of market 2 is k = 1. At this time, market
1 is completely biased towards the buyer, while market 2 is
completely biased towards the seller. As can be seen in
Figure 1(a), with the passage of training, sellers with types
less than 0.5 will gradually enter market 2. This is because
market 2 is completely biased towards sellers, and thus, mar-
ket 2 will attract sellers to participate. However, since sellers
with types 0.5 cannot win in the competition, they will
choose to go to market 1 in order to successfully trade.
The analysis of buyers in Figure 1(b) is the same as the anal-
ysis of sellers’ market selection strategy. In Figure 1(b), mar-
ket 1 will eventually attract buyers with type greater than 0.5
and sellers with type greater than 0.5, while market 2 will
attract traders with smaller type. This shows that through
continuous learning, buyers and sellers will choose a market
that is conducive to their own market or can trade
successfully.

Figure 2 shows the convergence results of traders’ Nash
equilibrium trading strategy in the competing environment
with a pricing strategy of <0, 1 > . Note that the training pro-
cess of Algorithm 1 can only output the equilibrium action
of the specific types. Based on these equilibrium actions cor-
responding to trader types, we further use neural network to
fit the final trading strategy, which is a mapping from trader
types to actions. The results show that in the equilibrium
state, how traders select the market, and bid in the partici-
pated market. We also can find that both markets can attract
traders, and the markets can coexist. According to the mar-
ket choice of traders, it can be seen that traders with larger
types enter market 1, while traders with smaller types will
enter market 2. In market 1, because it is completely biased
towards the buyer, buyers are willing to bid close to their
types, a.k.a. bidding truthfully, while sellers want to hide
their bids more. In market 2, sellers are willing to bid close
to their true types because market 2 is completely biased
towards sellers. Sellers will try to bid truthfully in order to
improve the matching probability. From Figure 2, we also
find that when the type of buyer is less than 0.12 and the
type of seller is greater than 0.88, they will choose not to

Journal of Sensors

Output: the Nash equilibrium trading strategy of the trader

2 while The loss function of traders is not convergence do

current state;
4 Select action a;, = (e;,, x' according to the following rules
Select an action at random from €

5 a;, = ; ;
47\ (e ey =arg maxQls, e v @) 1-e
? ? e€[E

through the market rules;

8 Strategy training:

10 Yib =Yip t maxee[E]yQ(st’ e, X, (Sp4150i) s ;)
11 Calculate the random gradients leg
equation:

12 (wi,t) and 0,,, —0, - ﬁtvelg(ei,t)

12w, —w, -V, [

Input: market pricing parameters k; and k,, number of buyers B, number of sellers S, trader bidding space A

1 Initialization: For each Trader i € B+ S, Initialize the Exploration Parameter ¢, Batch Size R, Uniform Distribution &, and Ran-
domly Initialize the Network Weights w;i and 0;, and t = 0, and the Initial State Is syi

3 For each trader i, Calculate the continuous parameter X, «— ,(s;, ;0;,) corresponding to all discrete actions according to the

6 When the bidding time of the current stage ends, each trader obtains its immediate return r;, and the state s, i of the next stage
7 For each trader i, the tuple i, a;,,r;,, sl is stored in replay memory D;;

9 Each trader i takes R samples from replay memory D; and calculates y; according to equation:

(w) and Velg (0) according to equations (17) and (19), and update the weight according to

ArcoriTHM 1. I-PDQN algorithm.

TABLE 1: State parameters of traders.

Parameter Description

H, Normalization of recent average transaction price P
H, Best bid for traders with opposite roles

H, Best bid for traders with the same roles

H, Average bid of traders with the same roles

Hs Average bid of traders with opposite roles

Hg Last round transaction price

enter the market because of the fixed cost (such as time cost)
of entering the market.

For the competing markets with pricing strategy <
0.5,0.5 >, the results show that under the same pricing strat-
egy, traders will eventually converge to only one market,
where which market to be converged is random, and the bid-
ding strategies of all traders are similar to those in a single
market. This is because when the two competing markets
are the same, traders will choose the market with more par-
ticipants to enter in order to improve their probability of
being matched. This leads to that only one market can sur-
vive in the end.

4.3. Experimental Evaluation against FP. Another way to
solve the game with continuous private type is to use the
generalized FP algorithm. Therefore, we will evaluate our
algorithm against the FP algorithm. In this evaluation, we
still consider that there are two competing markets, and
the market pricing strategy is <0.1,0.9 >. We also assume
that there are 50 buyers and 50 sellers. We use the two algo-
rithms to train the traders’ trading strategies, respectively, to
obtain the final Nash equilibrium trading strategy. The
experiment is repeated for 50 times. In each experiment, I-

PDQN algorithm will initialize the types of traders randomly
in [0,1] under the uniform distribution. For FP algorithm,
the types of traders and initial FP beliefs are also initialized
randomly.

Figure 3 shows the average profits of traders when enter-
ing different markets when Nash equilibrium trading strate-
gies are obtained by different algorithms. It can be seen that
the results obtained by the above two algorithms are almost
the same, which can prove that the I-PDQN algorithm can
achieve the Nash equilibrium strategy the same as FP
algorithm.

We also evaluate the computation speed of the two algo-
rithms. We calculate the number of iterations and the com-
putation time of each iteration. The average and standard
deviation are calculated and the results are shown in Table 2.

The results show that although the I-PDQN algorithm
has more iterations when converging to the equilibrium,
the single iteration computation time of FP is about 5.031
times that of I-PDQN algorithm, and therefore, the total
average time of FP algorithm is 4.6745 times that of I-
PDQN algorithm. Therefore, we can see that using I-
PDQN algorithm can compute the trader’s Nash equilib-
rium trading strategy faster. The reason is that traders use
I-PDQN algorithm interacts with the environment and
others constantly, and they can obtain more experience
tuples to train their own policy network, and therefore, they
need more iterations. However, the algorithm only needs to
calculate their own hybrid actions according to the current
observed state, and therefore, it takes less time. In FP algo-
rithm, traders need to calculate the current best response
strategy against FP beliefs every iteration and update their
FP beliefs. All traders will repeat this process until conver-
gence. Therefore, with the increased number of traders, the
computation time of each iteration in FP algorithm will
increase, resulting in the increased total convergence time.

Ratio of seller type less than 0.5 in the market

NS A I B S A A
0 5000 10000 15000 20000 25000 30000 35000 40000

Number of iterations

—— Market 1
—— Market 2

(a) Market distribution ratio of sellers

Journal of Sensors

Ratio of buyer type more than 0.5 in the market

' 0 10000 20000 30000 40000
Number of iterations
—— Market 1
—— Market 2

(b) Market distribution ratio of buyers

FIGURE 1: Market selection of traders with pricing strategy <0,1 > .

Bidding

0.0 0.2 0.4 0.6 0.8 1.0
Type

- -4 = Sellers of market 1 —=— Sellers of market 2

- = - Buyers of market 1 —+— Buyers of market 2

FIGURE 2: Nash equilibrium trading strategy of traders.

5. The Competing Pricing Strategy

After analyzing the Nash equilibrium trading strategy, we
now analyze how the double auction market set the pricing
strategy in Nash equilibrium. Specifically, we will use the
MADDPG algorithm to design the competing pricing strat-
egy and evaluate it against the FP algorithm in terms of com-
putation speed and convergence result.

In the competing environment, the double auction mar-
ket will adjust the pricing strategy in real-time in order to
attract traders and obtain higher allocation efficiency. Intui-
tively, the pricing strategy and traders’ Nash equilibrium
strategy are affected by each other, and therefore, this is a
joint learning process between the market and traders,

which is shown in Figure 4. In the first stage, the market
selects a pricing strategy based on the observed state. In
the second stage, traders select the market and submit the
bids according to the Nash equilibrium trading strategy.
The competing market then compute the allocation effi-
ciency according to the current actions of traders and then
further update the pricing strategy in order to improve the
allocation efficiency. This process is repeated to reach the
equilibrium state. At this moment, we can obtain the Nash
equilibrium pricing strategy and the Nash equilibrium trad-
ing strategy under this pricing strategy.

5.1. MADDPG Algorithm. As we have described in the
above, the joint learning process is also a sequential decision
process, and it involves two competing markets. This can be
regarded as a Markov game. Therefore, we use Multiagent
Deep Deterministic Policy Gradient algorithm [48] to ana-
lyze the Nash equilibrium pricing strategy.

The MADDPG algorithm is centralized trained and
decentralized executed. Furthermore, each piece of experi-
ence replay contains the information of all agents at the cur-
rent stage. Each agent learns multiple strategies, and at the
same time use the overall effect of all strategies to do the
optimization. The space complexity of MADDPG depends
on the size of the replay memory D, which usually does
not exceed the number of traders in the market, which is
O(An), where A is the size of MDP tuples, and # is the size
of replay memory. The same as I-PDQN, replay memory is
cleared for each round. For the time complexity, it also can-
not be accurately calculated. However, it can ensure that the
convergence strategy is calculated in a reasonable time. Now,
we will briefly introduce MADDPG. We use 8=[6,,---,0,]
to represent the parameters of the strategy of n agents, and
n=|m,, -, m,] to represent the strategy of n agents. The
cumulative expected reward for the agent i is J(6,) =

Journal of Sensors 9
0.45
04] 0387532 10.38501
L, 0357
o)
=5 034
5
& 0259 021536324 02075864
S 024 .
oy
§° 0.15
Z 01
0.05 4
0
I-PDQN FP
W Market 1
W Market 2
(a) Average profits of sellers
0.45
043038324 10.38912
0.35 4
g]
; 0.3
sl
5 0254 $0:22126 10.21205
"~§ 0.2 4
o 0151
&
O 0.1
Z
0.05
0
I-PDQN FP
W Market 1
W Market 2
(b) Average profits buyers
FIGURE 3: Average profits of traders in two markets of different algorithms.
TaBLE 2: Number of iterations of different algorithms. function:
Number of iterations Each iteration time Total Y 2
Standard Standard . L(6;) = E, rx [(Qz (% ay5resa,) =)]’ (21)
Average . Average . time
deviation deviation
- 16215 0.08651 1.025 0.0958 16620 where the equation of y is
PDQN
FP 15065 0.19156 5.157 0.1545 77690 ~u' (1 /
y=r;+yQ (x ,al,...,an> o (22)
aj=4; (o;)
- [X2Ry'r;, 1], and for the deterministic strategy p, '

, the gradient is

V@,-]([’li) = Ex,u~D |:V9,.Aui(ai | 0i>vaiQ:'4 (x’ ap "an) ‘a,:‘ui(oi)] >
(20)

where QY is a value function for each agent. For the central-
ized critical, it is updated by minimizing the following loss

Q; is the target network, 9]'. is the parameter u' = [u],

-+, 1] with lag update of the target strategy, and the strate-
gies of other agents can be obtained by fitting approxima-
tion. It can be seen that critical can use global information,
and actor only uses local observation information. If we
know the actions of all agents, even if the strategies of each
agent are constantly updated, the environment is stable.
The MADDPG algorithm for designing the competing pric-
ing strategy is shown in Algorithm 2, which takes the pricing

10

Journal of Sensors

and trading strategy of trader, and
publish market pricing

[Initialize pricing stategy of market }

&

trading strategy under the pricing
strategy of current market

[Calculate the trader nash equilibrium

e

transfer to the next stage

N

on historical information

Calculate the allocation efficiency of -
M
the market under this pricing and } |:(> [sl e ety ety el

FIGURE 4: Dynamic pricing-joint learning process.

Input: continuous action space P, and P, of Market

and 69, initialize replay memory D

whileThe loss function of traders is not convergencedo
Action selection:

NN G W

8 Store tuples s,, a,, 1, s,,; in the replay memory
9 Strategy training:

Output: Equilibrium pricing strategies 7! and 7> of market M, and M,
1 Initialization: Initialize the actor network y and critical network Q of M; and M,, respectively, and initialize the respective
parameters 8% and 62 to initialize the target networks 4’ and Q' corresponding to the above two networks and parameters 6"’

Random initialization distribution N for action exploration;

Initial respective market states s, and sZ, and set the iteration cycle to t =0

The market selects actions a! and a? according to a = p(s" | 8*) + IN,, respectively
Release the pricing action a, = (a}, a2), then the trader adjusts his equilibrium trading strategy (I-PDQN algorithm) under the
pricing, and then the market calculates the reward r, = (r!, r?) and the new state s,,; = (s}, ,,s%,,)

10 fori = 1,2 (Update the strategy network for the two markets, respectively)do

11 Randomly sample r tuples from replay memory D and calculate y!"

12 The critical network Q is updated by minimizing the loss function of equation (21)

13 The actor network y is updated by maximizing the gradient of the sample strategy through equation (20)
14 Update the target network parameters 62 and 6% through equation 6, «— 70, + (1 - 7)0;

15 end

16 end

ALGorITHM 2. MADDPG algorithm.

parameter space of the two markets as the input and output
the Nash equilibrium market pricing strategy.

5.2. Experimental Analysis of Pricing Strategy. We now
experimentally analyze the Nash equilibrium pricing strat-
egy. The experimental setting is the same as that in I-

PDQN. The state of each market is a tuple, expressed as s’

=n, n?, ask™”, bid"", g,, where n‘ and n’ are the number
of buyers and sellers entering the market, bid”"" and ask™”"
are the average bidding of both buyers and sellers, g is the
number of deals. The pricing parameter spaces P, and P,
of the two markets are between [0,1] and the replay memory
size D =200000. For the generation of the original pricing

action, we use the normal distribution a, ~ N(a,,0.5) as
the noise exploration. The number of samples taken for
training each time is R = 128, the learning rate of actor net-
work is a® =0.001, the learning rate of critical network is
a“=0.0001, the update factor of target network parameters
is 7=0.001, and the discount factor is y = 0.9.

5.2.1. Experimental Results. In this experiment, the two mar-
kets obtain the Nash equilibrium pricing strategy through
continuous training. Figure 5 shows the action selection
trend of the competing market in the iterative process. It
shows that market 1 chooses higher pricing parameter in
the initial stage and finally stabilized at k = 1. For market 2,

Journal of Sensors

0.0 1 1 1 1 1 1 h 1
0 20 40 60 80 100 120 140 160 180

Number of iterations

—— Market 1
—— Market 2

FIGURE 5: Dynamic pricing of competing markets.

since the higher pricing strategy of market 1 attracted a large
number of sellers at the beginning, market 2 also tried to set
a higher pricing parameter, that is, k = 0.8, but it cannot beat
market 1. During this period, the action choice of market 2
fluctuated greatly, then gradually chooses a lower pricing
parameter, and finally stabilized at k = 0. Actually, we have
tried many experiments. The results show that the two com-
peting markets will eventually stabilize at k=0 and k=1,
that is, in the equilibrium state, the pricing parameter of
market 1 is k =0 and that of market 2 is k=1 or vice versa,
which is related to the initialized market network parame-
ters. This means that the market will be in favor a class of
traders, buyers, or sellers. In this case, the two markets can
coexist. This further shows that in a highly competing envi-
ronment, it is difficult for a market to attract all traders.

5.3. Experimental Evaluation against FP. Now, we evaluate
our algorithm against FP algorithm in terms of the compu-
tation speed and the allocation efficiency. The parameters
are the same as those in Section 4.2. Each experiment is
repeated for 10 times, and then we compute the average
result.

Under the equilibrium k pricing strategy, the experimen-
tal results show that when the algorithm converges, the final
pricing strategies of the two algorithms are stable k=0 and
k=1, where which pricing parameter the market adopts is
related to the initial parameters or the initial FP belief. This
shows that MADDGP algorithm will finally get the same
result as FP algorithm.

Furthermore, we look into the convergence speed in dif-
ferent algorithms when they reach Nash equilibrium. The
results are shown in Figure 6. It can be seen that when the
pricing strategy converges, the average computation time
of FP algorithm is 1.2 times that of MADDPG algorithm.
This means that our algorithm can reach the equilibrium
faster than FP.

11

70

60 - - 55.4471
50 4) 46.3812
40 A
30

20

Converge time (h)

10

0 T
MADDPG FP

FIGURE 6: Dynamic pricing of competing market.

6. Conclusion

In this paper, we analyze the Nash equilibrium trading strat-
egy of sensor data with a large number of traders in the com-
peting environment with multiple edge servers running
double auction markets. We adopt a deep reinforcement
learning algorithm I-PDQN combined with the mean field
theory to solve the Nash equilibrium trading strategy. In
the experimental analysis, the Nash equilibrium result of
the algorithm is consistent with that of FP algorithm, and
the computation speed is significantly faster than FP algo-
rithm. Then, we analyze how the edge server with double
auction set the price effectively in the competing environ-
ment. We use MADDPG to compute the Nash equilibrium
pricing strategy. The experimental result show that the Nash
equilibrium pricing strategy of this algorithm is consistent
with FP algorithm, and the computation speed is faster than
FP algorithm. The analysis of this paper can provide some
useful insights for designing the practical trading strategy
and pricing strategy in the competing environment with
multiple edge servers to trade sensor data.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This paper was funded by the Humanity and Social Science
Youth Research Foundation of Ministry of Education (Grant
no. 19YJC790111), the Philosophy and Social Science Post-
Foundation of Ministry of Education (Grant no.
18JHQO60), and Shenzhen Fundamental Research Program
(Grant no. JCYJ20190809175613332).

References

[1] Z.K. Xu, H. L. Zhang, X. Z. Yu, and Z. G. Zhou, “Combinato-
rial double auction-based allocation of retrieval tasks in inter-
net of things,” Journal on Communications, vol. 36, no. 12,
p. 47, 2015.

12

(2]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A
survey on internet of things: architecture, enabling technolo-
gies, security and privacy, and applications,” IEEE Internet of
Things Journal, vol. 4, no. 5, pp. 1125-1142, 2017.

P. Chavali and A. Nehorai, “Managing multi-modal sensor
networks using price theory,” IEEE Transactions on Signal
Processing, vol. 60, no. 9, pp. 4874-4887, 2012.

X. Xu, J. Ma, and X. Xie, “Price convergence under a probabi-
listic double auction,” Computational Economics, vol. 54, no. 3,
pp. 1113-1155, 2019.

P. Khezr and I. A. MacKenzie, “Consignment auctions,” Jour-
nal of Environmental Economics and Management, vol. 87,
pp. 42-51, 2018.

F. Hu, B. Chen, J. Wang, M. Li, P. Li, and M. Pan, “MastDP:
matching based double auction mechanism for spectrum trad-
ing with differential privacy,” in 2019 IEEE Global Communi-
cations Conference, pp. 1-6, Waikoloa, HI, USA, 2019.

D. Kumar, G. Baranwal, Z. Raza, and D. P. Vidyarthi, “A sys-
tematic study of double auction mechanisms in cloud comput-
ing,” Journal of Systems and Software, vol. 125, pp. 234-255,
2017.

X. Wang and M. P. Wellman, “Spoofing the limit order book:
an agent-based model,” in Workshops at the Thirty-First AAAI
Conference on Artificial Intelligence, pp. 651-659, San Fran-
cisco, California, USA, 2017.

A. Bensoussan, J. Frehse, and P. Yam, Mean Field Games and
Mean Field Type Control Theory[M], Springer, 2013.

J. Lasry and P. Lions, “Mean field games,” Japanese Journal of
Mathematics, vol. 2, no. 1, pp. 229-260, 2007.

F. Sangoleye, N. Irtija, and E. E. Tsiropoulou, “Data acquisition
in social internet of things based on contract theory,” in IEEE
International Conference on Communications, pp. 1-6, Mon-
treal, QC, Canada, 2021.

S. Chung, J. Lim, K. J. Noh, G. Kim, and H. Jeong, “Sensor data
acquisition and multimodal sensor fusion for human activity
recognition using deep learning,” Sensors, vol. 19, no. 7,
p. 1716, 2019.

D.T. Ho, E. I. Grgtli, P. B. Sujit, T. A. Johansen, and J. B. Sousa,
“Optimization of wireless sensor network and UAV data
acquisition,” Journal of Intelligent and Robotic Systems,
vol. 78, no. 1, pp. 159-179, 2015.

I. Maksymova, C. Steger, and N. Druml, “Review of lidar sen-
sor data acquisition and compression for automotive applica-
tions,” Multidisciplinary — Digital — Publishing Institute
Proceedings, vol. 2, no. 13, p. 852, 2018.

C. Niu, Z. Zheng, F. Wu, X. Gao, and G. Chen, “Trading data
in good faith: integrating truthfulness and privacy preservation
in data markets,” in The IEEE 33rd International Conference
on Data Engineering, pp. 223-226, San Diego, CA, USA, 2017.
X. Cao, Y. Chen, and K. J. R. Liu, “An iterative auction mech-
anism for data trading,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 5850-5854, New
Orleans, LA, USA, 2017.

Y. Jiao, P. Wang, D. Niyato, M. A. Alsheikh, and S. Feng,
“Profit maximization auction and data management in big
data markets,” in 2017 IEEE Wireless Communications and
Networking Conference (WCNC), pp. 1-6, San Francisco, CA,
USA, 2017.

L. Tian, J. Li, W. Li, B. Ramesh, and Z. Cai, “Optimal contract-
based mechanisms for online data trading markets,” IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 7800-7810, 2019.

(19]

(20]

[21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(31]

(32]

(33]

Journal of Sensors

J. Mao, L. Tian, J. Zhang, G. Duan, and C. Wang, “Many-to-
many data trading algorithm based on double auction theory,”
Procedia Computer Science, vol. 174, pp. 200-209, 2020.

J. Yu, M. H. Cheung, J. Huang, and H. V. Poor, “Mobile data
trading: behavioral economics analysis and algorithm design,”
IEEE Journal on Selected Areas in Communications, vol. 35,
no. 4, pp. 994-1005, 2017.

Y. Hui, Z. Su, and S. Guo, “Utility based data computing
scheme to provide sensing service in internet of things,” IEEE
Transactions on Emerging Topics in Computing, vol. 7, no. 2,
pp. 337-348, 2019.

D. Niyato, M. A. Alsheikh, P. Wang, D. I. Kim, and Z. Han,
“Market model and optimal pricing scheme of big data and
internet of things (IoT),” in IEEE International Conference
on Communications, pp. 1-6, Kuala Lumpur, Malaysia, 2016.

A.E. al-Fagih, F. M. al-Turjman, W. M. Alsalih, and H. S. Has-
sanein, “A priced public sensing framework for heterogeneous
IoT architectures,” IEEE Transactions on Emerging Topics in
Computing, vol. 1, no. 1, pp. 133-147, 2013.

Y. Jiao, P. Wang, S. Feng, and D. Niyato, “Profit maximization
mechanism and data management for data analytics services,”
IEEE Internet of Things Journal, vol. 5, no. 3, pp. 2001-2014,
2018.

C. Chen and Y. Wang, “SPARC: strategy-proof double auction
for mobile participatory sensing,” in International Conference
on Cloud Computing and Big Data, pp. 133-140, Fuzhou,
China, 2013.

W. Sun, Y. Liu, and H. Zhang, “Double auction-based resource
allocation for mobile edge computing in industrial internet of
things,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 10, pp. 4692-4701, 2018.

H. Cai, Y. Zhu, J. Li, and J. Yu, “Double auction for a data trad-
ing market with preferences and conflicts of interest,” The
Computer Journal, vol. 62, no. 10, pp. 1490-1504, 2019.

D. K. Gode and S. Sunder, “Allocative efficiency of markets
with zero-intelligence traders: market as a partial substitute
for individual rationality,” Journal of Political Economy,
vol. 101, no. 1, pp. 119-137, 1993.

G. W. Brown and N. J. Von, “Solutions of games by differential
equations,” Contributions to the Theory Games, vol. 27, no. 4,
pp. 73-79, 1950.

Z. Rabinovich, E. Gerding, M. Polukarov, and N. R. Jennings,
“Generalised fictitious play for a continuum of anonymous
players,” in The 21st International Joint Conference on Artifi-
cial Intelligence, pp. 245-250, Pasadena, California, USA, 2009.

B. Shi, E. H. Gerding, P. Vytelingum, and N. R. Jennings, “An
equilibrium analysis of competing double auction market-
places using fictitious play,” in The 19th European Conference
on Artificial Intelligence, pp. 575-580, Lisbon, Portugal, 2010.

L. J. Schvartzman and M. P. Wellman, “Stronger CDA strate-
gies through empirical game-theoretic analysis and reinforce-
ment learning,” in The 8th International Conference on
Autonomous Agents and Multiagent Systems-Volume 1,
pp- 249-256, Budapest, Hungary, 2009.

M. M. Chowdhury, C. Kiekintveld, T. C. Son, and W. Yeoh,
“Bidding strategy for periodic double auctions using Monte
Carlo tree search,” in The 17th International Conference on
Autonomous Agents and Multiagent Systems, pp. 1897-1899,
Stockholm, Sweden, 2018.

Journal of Sensors

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

(43]

(44]

[45]

[46]

(47]

(48]

J. Bredin and D. C. Parkes, “Models for truthful online double
auctions,” in The 21st Conference on Uncertainty in Artificial
Intelligence, Toronto, Ontario, Canada, 2012.

T. Miller and J. Niu, “An assessment of strategies for choosing
between competitive marketplaces,” Electronic Commerce
Research and Applications, vol. 11, no. 1, pp. 14-23, 2012.

K. Cai, J. Niu, and S. Parsons, “On the economic effects of
competition between double auction markets,” Agent-Medi-
ated Electronic Commerce and Trading Agent Design and
Analysis, p. 88, 2010.

B. Shi, Y. Huang, S. Xiong, and E. H. Gerding, “Setting an
effective pricing policy for double auction marketplaces,” in
Pacific Rim International Conference on Artificial Intelligence,
pp. 457-471, Phuket, Thailand, 2016.

B. Shi and X. Li, “A game-theoretical analysis of charging strat-
egies for competing double auction marketplaces,” Multi-
Agent Systems and Agreement Technologies, pp. 100-115, 2020.

S. Chen and C. Tai, “Trading restrictions, price dynamics and
allocative efficiency in double auction markets: analysis based
on agent-based modeling and simulations,” Advances in Com-
plex Systems, vol. 6, no. 3, pp. 283-302, 2003.

J. Heinrich, M. Lanctot, and D. Silver, “Fictitious self-play in
extensive-form games,” in International Conference on
Machine Learning, pp. 805-813, Lille, France, 2015.

J. Xiong, Q. Wang, Z. Yang et al., “Parametrized deep q-
networks learning: Reinforcement learning with discrete-
continuous hybrid action space,” 2018, https://arxiv.org/abs/
1810.06394.

H. Fu, H. Tang, J. Hao, Z. Lei, Y. Chen, and C. Fan, “Deep
multi-agent reinforcement learning with discrete-continuous
hybrid action spaces,” in The 21st International Joint Confer-
ence on Artificial Intelligence, pp. 2329-2335, Pasadena, Cali-
fornia, USA, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level con-
trol through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529-533, 2015.

T. P. Lillicrap, J. J. Hunt, A. Pritzel et al., “Continuous control
with deep reinforcement learning,” in International Confer-
ence on Learning Representations, San Juan, Puerto Rico, 2016.

A. Majumdar, P. Benavidez, and M. Jamshidi, “Multi-agent
exploration for faster and reliable deep Q-learning conver-
gence in reinforcement learning,” in 2018 World Automation
Congress (WAC), pp. 1-6, Stevenson, WA, USA, 2018.

M. Tan, “Multi-agent reinforcement learning: independent vs.
cooperative agents,” in Proceedings of the Tenth International
Conference on Machine Learning, pp. 330-337, Ambherst,
MA, USA, 1993.

S. Richard and G. Andrew, Reinforcement Learning: An Intro-
duction, The MIT Press, London, 2018.

R.Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive

environments,” Advances in Neural Information Processing
Systems, pp. 6379-6390, 2017.

13

https://arxiv.org/abs/1810.06394
https://arxiv.org/abs/1810.06394

	Trading and Pricing Sensor Data in Competing Edge Servers with Double Auction Markets
	1. Introduction
	2. Related Work
	3. Basic Settings
	3.1. Basic Setting of the Trader
	3.1.1. Trader’s Expected Utility

	3.2. Market Setting
	3.2.1. Equilibrium K Pricing Strategy
	3.2.2. Allocation Efficiency
	3.2.3. Market Reward

	4. Nash Equilibrium Trading Strategy
	4.1. I-PDQN Algorithm
	4.2. Experiment Analysis
	4.2.1. Parameter Setting
	4.2.2. Experimental Results

	4.3. Experimental Evaluation against FP

	5. The Competing Pricing Strategy
	5.1. MADDPG Algorithm
	5.2. Experimental Analysis of Pricing Strategy
	5.2.1. Experimental Results

	5.3. Experimental Evaluation against FP

	6. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

