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In the farmland Internet of Things, to achieve precise control of production, it is necessary to obtain more data support, which
requires the deployment of many sensors, and this will inevitably bring about high investment and high-cost problems. This
paper mainly studies the optimization of sensor placement in the agricultural field. Through compressed sensing and algorithm
optimization, the number of sensors used is reduced and the cost is reduced on the premise of ensuring the effect. At present,
there are many mature sensor layout optimization methods, but these methods will have incomplete parameters due to
experimental conditions and environmental factors. They are more suitable for structural health monitoring and lack research
in agricultural applications. Considering that the sensor layout optimization can be converted into the characteristics of image
compression selection and the compression effect of the compressed sensing theory is better, therefore, this paper proposes a
sensor layout optimization method based on compressed sensing. Due to the structural characteristics of the existing
measurement matrix in the compressed sensing theory, the specific position distribution of the optimized sensor layout cannot
be obtained directly. This paper improves the existing sparse random measurement matrix to determine the number of sensors
required for a given region and the function of the specific location of each sensor. The experimental results show that soil
moisture can be measured with a small error of 0.91 by using 1/3 of the original sensor number. The result of data
reconstruction using 1/6 of the original sensor is average, and the average error is up to 1.68, which is suitable for the
environment with small data fluctuation.

1. Introduction

Precise irrigation and irrigation automation are the inexora-
ble trends of the development of modern agriculture. The
accurate measurement of soil moisture content is the basis
of precision irrigation and irrigation automation [1]. There
are mainly 3 methods for soil moisture measurement,
namely, manual soil sampling and drying, remote radar sens-
ing, and acquisition by sensors. Manual soil sampling and
drying are accurate but require the manual collection of soil
samples at multiple locations. High in cost and weak in time-
liness [2], this method is difficult to adapt to modern agricul-
tural production. Remote radar sensing is the use of
microwave radar on the satellite to measure the water on
the soil surface. However, the measurement result is too
coarse-grained [3] to guide fine agriculture production. Soil
moisture sensors can quickly and accurately measure the

same point in the soil and are widely used in precision
irrigation.

When soil humidity sensors are applied to measure the
soil moisture content, the more soil humidity sensors are
buried in a profile, the more precisely the soil moisture mea-
surement will be [4]. However, as the number of sensors
increases, so does the cost of production systems, and there
is a contradiction between cost and data accuracy. To save
the agricultural irrigation system cost and improve the effi-
ciency of the state estimators, the paper proposes a method
for soil humidity sensor layout based on compressed sens-
ing, aiming at reducing the number of sensors as much as
possible on the premise of accuracy.

Compressed sensing, also known as compressive sam-
pling or sparse sampling, is a technique for finding sparse
solutions of underdetermined linear systems. According to
this theory, if the signal is sparse, it can be reconstructed
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and recovered from sampling points much lower than the
sampling theorem requires [5]. Compressed sensing is used
in electronic engineering, especially signal processing, to
obtain and reconstruct sparse or compressible signals. This
method takes advantage of the sparsity of the signal. Com-
pared with the Nyquist theory, this method can recover the
entire desired signal from fewer measured values. Simply
put, the process of data compression is completed during
the sampling process. In the process of signal sampling,
compressed sensing uses a few sampling points to achieve
the same effect as full sampling. In the compressed sensing
theory, the original signal can be accurately reconstructed
under the condition of few measuring points. Based on this
feature, an optimization method based on compressed sens-
ing of soil humidity sensor layout is proposed in the paper.
Firstly, the sensors are densely placed in farmland soil by
which original soil humidity data is obtained, and then Fou-
rier Transform is applied for sparse representation of the
data; secondly, the sparse presentation data is operated
through the improved sparse random measurement matrix
and an observed value is obtained; finally, through the
reconstruction algorithm, the reconstructed signals are
obtained. Through comparison of the three kinds of sensor
layout optimization strategies, it is found that 1/3 of the
original number of sensors can measure the soil moisture
with a minor error.

This paper theoretically ameliorates the existing sparse
random measuring matrix, proposing a soil humidity sensor
layout optimization method based on compressed sensing.
The implemented functions are to quantify the required sen-
sors in a given area and place them at specific locations.
Effects are achieved that with fewer sensors, the whole
farmland soil temperature distribution is measured, which
reduces the costs effectively while increasing the efficiency
of information processing of the system.

2. Related Work

In farmland IoT, strengthening the research on soil quality
protection and management and realizing the intelligent
management of farmland protection are the key to guarantee
the safety of agricultural products [6]. In the field of farm-
land irrigation IoT, many scholars have been solving the
problems on the hardware level. For example, Feng, to lower
the irrigation water cost, achieved water saving by intelligent
irrigation and raising irrigation water efficiency through
embedded control technology [7]. Liu, on the possible time
out and cross-restriction problems, proposed the farmland
data collection mechanism to guarantee the reliable trans-
mission of data [8]. Liu and Yang proposed a network man-
agement project of network topology management, location
management, energy management, and fault management,
referring to the features of node power and limited process-
ing energy in sensor networks, to realize the remote manage-
ment of the sensor monitoring network and the effective
detection of the farmland environment for the users [9].
Singh and Saikia proposed an irrigation control system
based on Arduino. The system collects and receives data
through Arduino and uploads it to a designated interactive

website, on which the real-time soil status factor and the stan-
dard value of different factors required by crops are shown
[10]. All these research studies ensure the instantaneity, accu-
racy, and reliability of the soil humidity data on the hardware
level. It alleviates the noise folding phenomenon of com-
pressed sensing [11], making compressed sensing a more
effective choice in the optimization of agricultural sensors.

Sensor layout optimization plays an important role in
different fields. In structural dynamics, a good sensor layout
could recognize accurately the model parameter of a struc-
ture and ascertain the damage degree of the structure [12].
In direct kinematics, the location of the sensors will influ-
ence the calculation complexity, the accuracy of position
sensing, and the reliability of the system [13]. In a network
warning system, the position of sensors affects the effective-
ness of warnings [14]. In thermology, placing a temperature
sensor in an optimal position helps to accurately and in real
time predict thermally induced deformation at a particular
location [15].

Sensor layout optimization based on the model analysis
method is a methodology by which the layout strategy is
obtained through optimum analysis based on establishing a
finite element model and setting an optimization target.
The sensor layout optimization method based on the model
analysis method was first proposed by Kammer as the effec-
tive influence method [16]; that is, a sensor placement pro-
gram is to be obtained by maximizing the spatial
independence and signal intensity of the target finite ele-
ment model. Then, Heo et al. proposed kinetic energy to
place the sensors [17]. Based on the EI method and KE
method, Wu et al. proposed the effective independence
driving-point residue method, improving the spatial inde-
pendence and element strain energy of the above two
methods [18]. Mukherjee et al. applied a reweighing method
replacing repeated function simulation to estimate the
expected influence value and proposed a mode analyzing
method for sensor placement for nonlinear uncertain
systems [19]. Modeling error was caused inevitably in the
course of establishing a finite element model with the above-
mentioned sensor layout optimization method, and model-
ing tends to be trapped into the local optimum.

To avoid modeling error, Krause et al. proposed a sensor
node placement method driven by data [20]. Guestrin et al.
proposed to place the sensor based on rules of mutual infor-
mation [21]. Xu and Choi used noise measurement and a
mobile self-adaption anisotropy space-time Gaussian
process, which enables nonparametric prediction toward a
given space-time phenomenon [22]. The abovementioned
methods presume that the space random process is Gaussian
distribution; however, soil humidity in farmland does not
completely follow Gaussian distribution, and thus, it does
not work very well.

Compressed sensing is a technology that could be used
to obtain and reconstruct sparse signals and does not depend
on the Gaussian distribution of data. Put forward in 2006 by
Donoho [23], now, compressed sensing has been extensively
used in fields like wireless communication. Compressed
sensing is extensively applied in sensor node information
collection [24–26], but few studies have been made in the
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sensor. In this paper, soil water distribution is treated as a
two-dimensional image. The compressed sensory theory
has a good effect and has been proved by a large amount
of theoretical proofs in the field of image compression.
Therefore, this method has general conditions.

3. Method

3.1. Compressed Sensing Theory. Compressed sensing of the
signal mainly includes three steps [23]: the first step is sparse
representation, which converts the original signal into a
sparse signal on another dimension; the second step is to
reduce the dimension of the observation matrix to minimize
the information loss of the original signal; and the third step
is to design a reconstruction algorithm to recover the N
-dimensional original signal from the m-dimensional sam-
pled signal (m < n). Figure 1 shows the compressed sensing
framework.

3.1.1. Sparse Representation. Based on the signal sparse
decomposition theory, N-dimensional discrete real value
signal x = ðx1, x2,⋯, xnÞ could be denoted as a linear combi-
nation of a group of uncorrelated bases ψiði = 1, 2, 3,⋯,NÞ.

x = 〠
N

i=1
ψiαi = ψα: ð1Þ

In the formula, ψ = ½ψ1, ψ2,⋯,ψN � is the basis matrix
N ×N . If there are only K nonzero coefficients in α, then x
is called the K sparse signal in basis matrix ψ. If the conver-
sion coefficient of the signal decays to zero exponentially
with the order sorted, the signal is compressible.

3.1.2. Measurement Matrix. Suppose signal x, with length as
N , is reflected by a group of unit vectors Ф = ½Ф1,Ф2,⋯,ФN �
and the measured value y ∈ RMðM≪NÞ is obtained. This
process could be shown as

y =Φx: ð2Þ

We put formula (1) into formula (2) and obtain

y =Φx =Φψα =Θα: ð3Þ

In the formula, Φ is the measurement matrix, while Θ
=Φψ is the sensing matrix; both are matrix M ×N . The
sampled signal y obtained is the linear combination of the
column of matrix Θ. The linear combination coefficient is
that in the corresponding original signal α.

Since measurement matrix dimension M≪N , the pro-
cess of solving formula (1) is pathological and it is impossi-
ble to obtain original signal x directly from y. However, as α
is sparse, the estimated signal bα could be obtained almost
perfectly through the compressed sensing reconstruction
algorithm by the known sensing matrix Θ, and then the
original signal could be approximated with x̂ = φbα .

To ensure that K coefficients can be accurately recovered
from M measurements, that is, to ensure that the algorithm
is convergent, theΘ in formula (3) must satisfy the restricted

equidistance (RIP) criterion [5]; that is, for the matrix Θ of
size M ×N and M≪N , if there is a constant δk ∈ ð0, 1Þ,
make all submatrices Θk ∈ RM×k for any vector s ∈ Rjkj and
Θ, that is,

1 − δkð Þ sk k22 ≤ Θksk k22 ≤ 1 + δkð Þ sk k22: ð4Þ

It is said to satisfy the k-bound isometric property (K-
RIP).

3.1.3. Reconstruction Algorithm.WhenΘ satisfies the limited
equidistance property, the known perceptual matrix Θ can
be used to solve formula (3) through the l0 norm.

min αk kl0 s:t:y =Θbα: ð5Þ

Thus, the estimated signal bα is obtained. However, since
the solution of Equation (5) is an NP-hard problem, litera-
ture shows that under certain conditions, the minimum
norm of l1 and the minimum norm of l0 are equivalent,
and the same solution can be obtained [23]. Then, Equation
(5) can be transformed into an optimization problem of the
minimum norm of l1.

min αk kl1 s:t:y =Θbα: ð6Þ

The original signal is then approximated by x̂ = φbα .
However, the algorithm for solving the minimum norm of
l1 is slow. Therefore, new reconstruction algorithms such
as OMP [27], CoSaMP [28], and GOMP [29] have been pro-
posed and achieved good results.

3.2. Algorithm Flow. The algorithm is divided into three
steps. In the first step, the data obtained by the soil moisture
sensor is not sparse, so the partial Fourier Transform
(Permute Fast Fourier Transform (PFFT)) is adopted for
sparse representation. The second step is to optimize the
selection method of the sparse random observation matrix
as the observation matrix suitable for this study to obtain
the number and optimal location of sensors. Third, OMP,
GOMP, and CoSaMP reconstruction algorithms were used
to reconstruct the compressed data and compared with the
original data, and it was found that OMP was more accurate
in calculating the distribution of soil moisture data.

3.2.1. Introduction and Evaluation of the Original
Observation Matrix. The sparse random observation matrix
construction method [30] first generates an M ×N all-zero

Signal x

Start

Sparse transformation of
orthogonal basis θψTx

The observation vector is obtained
through the observation

matrix y = Фx

Reconstructed signal
min| |ψTx| |0, s.t. θψTx

End

Figure 1: The compressed sensing framework.
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matrix, and M≪N in the matrix Φ of each column vector,
randomly selected d positions; in the selected location
assignment 1, d values are generally d ∈ f4, 8, 10, 16g and
have little effect on the reconstruction results [31]. M is the
observed value, and the number of sensors is shown herein.

When d = 4, the expansion of the matrix multiplication
is as follows:

Y =ΦX =

y1

y2

y3

⋮

yM−1

yM

2
66666666666664

3
77777777777775

=
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,

ð7Þ

where Y is anM × 1matrix and X is anN × 1matrix. The col-
umn vector selects four positions of 1 so that each row vector
is likely to have many 1’s, and the row position of the elements
in the different row vectors is different. The result Y may be
related to all the elements in X, that is, Y ∉ X.

The idea of this paper is to select a part of the sensors to
collect data in the original sensor layout. That is, in the
matrix X, select a part of the elements to form the Y matrix
to meet Y ∈ X. The above observation matrix cannot be sat-
isfied, and it is necessary to optimize the observation matrix.

3.2.2. Observation Matrix Optimization. The sparse random
observation matrix is changed twice. First, the randomly
selected object is the row vector of the matrix Φ. Second,
only one position is selected in each row vector to assign it
to 1. Make sure that the optimized observation matrix has
only one element value per line.

The improved method for constructing a sparse random
measurement matrix is as follows. Firstly, generate an iden-
tity matrix Φ ∈ onesN×N . Secondly, randomly select M row
vectors from the generated matrix to form a matrix of M
×N . Since the identity matrix is an orthogonal matrix, the
partial identity matrix of M ×N size obtained after taking
M rows from it still has a strong noncorrelation and partial
orthogonality. It satisfies the RIP theorem and ensures that
the observation matrix will not combine two different sparse
data mapped to the same collection.

When d = 4, after improving the measurement matrix,
Y =ΦX corresponds to the expanded form of matrix multi-
plication as follows:

Y =ΦX =
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ð8Þ
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Y ½m, 1� =Φ½m, n� ∗ X½n, 1�, when Φ½m, n� = 1 and Y ½m,
1� = X½n, 1�. If the element 1 in Φ is in the m rows and n col-
umns, themth sensor position after sampling corresponds to
the position of the nth sensor in X.

Compared with the gridded dense sensors, M sensors
should be selected based on N sensors for sampling; that
is, for the observation matrix Φ of M ×N , each row has an
only one value of 1, and each column has at most one value
of 1; that is, the M sensor should be deployed at the element
position with the M row vector of 1.

4. Experiments

4.1. Data Acquisition. The soil humidity sensors numbered
successively with 1, 2,⋯, 64 are placed evenly at 10 cm
below the soil surface of a 40m × 40m farmland as shown
in Figure 2. Experimental data is the soil moisture value
measured by all sensors on June 1, 2015, solstice, and
November 30, 2015.

Through data analysis, it is found that farmland soil
moisture has strong spatial and temporal differences, so it
is necessary to deploy more sensors to accurately monitor it.

Firstly, the soil moisture data of farmland have spatial
differences. Figure 3 shows the soil moisture surface at
21:00 on May 31, 2015, obtained by the bilinear interpola-

tion method. The maximum value of moisture at point ð8,
4Þ is 32.91, and the minimum value at point ð7, 8Þ is 25.52,
with a difference of 22.5%.

Secondly, the soil moisture data of farmland varies with
time. Figure 4 shows the soil moisture curves of 10 sensors
at 100 time points during June 1, 2015, solstice, and June
30, 2015. For sensor number 10, the maximum humidity at
point ð10, 83Þ is 34.36, and the minimum humidity at point
ð10, 1Þ is 17.5, with a difference of 49.07%.

4.2. The Evaluation Indexes. To analyze the performance
index of sensor layout optimization in different compressive
sampling conditions, an indicator of absolute error is pro-
vided in this paper. The formula is as follows:

mean absolute error : a = ∑n
i=1 xi − x̂ij j

n
,

average relative error : r = ∑n
i=1 xi − x̂ij j/xið Þ

n
,

ð9Þ

where xi represents the original soil moisture data, x̂i repre-
sents the reconstructed soil moisture data, i represents the
number of the sensor in Figure 2, and n represents the num-
ber of soil moisture data. The unit of a is %, which indicates
the relative moisture content value.

4.3. Selection of the Reconstruction Algorithm. In this exper-
iment, the soil moisture distribution image composed of 64
sensor points is relatively simple; OMP, CoSaMP, GOMP,
and other algorithms are suitable for a relatively simple
image selected point compression. Therefore, OMP, GOMP,
and CoSaMP algorithms are used for comparative analysis.

Compare the three kinds of reconstruction accuracy of
the algorithm (OMP, GOMP, and CoSaMP). The data of soil
moisture measured by all sensors in a set of dry soil (23:00
on May 28, 2015) and a set of irrigated soil (6:00 on July
15, 2015) were selected. The number of original sparse sig-
nals is N = 64, the observed values are 0 <M < 64, and the
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Table 1: Comparison of different reconstruction algorithms.

Soil type
Reconstruction

algorithm
Observed
value M

Average
relative error

Dry soil

OMP 41 3%

GOMP 41 5%

CoSaMP 41 6%

Moist soil after
irrigation

OMP 39 9%

GOMP 39 11%

CoSaMP 39 12%
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sparsity is K ∈ f3, 7, 9, 13g. The observation matrix is an
optimized sparse random measurement matrix. Each
observed value was simulated 500 times to determine the
probability of accurate recovery. OMP, GOMP, and
CoSaMP algorithms were compared to determine the rela-
tionship between the recovered data and the observed value
M and the sparsity K under a given sparsity. The experimen-
tal results are shown in Table 1.

For the two sets of data, under the same upper limit of
residual error and the same observed value M, the average
relative error of the OMP algorithm is only 3%-9%, which
is better than that of the GOMP algorithm (5%-11%) and
CoSaMP algorithm (6%-12%). Therefore, among the three
reconstruction algorithms, the OMP reconstruction algo-
rithm has a better effect. In the following experiments, the
OMP algorithm is used to reconstruct data.
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Figure 5: Error-sparsity variation curve.

0

8

Optimal sensor placement (M = 10)

9 10

8
6

5
4

3
4

2

2

2
4

8
6

1So
il 

de
pt

h/
cm

6

7

–5
–10

(a) Position of 10 sensors

20
16

11

4

4

97
0

–5
–10

So
il 

de
pt

h/
cm

3
1

6

6

8

8

10

19 18
17

15 8

6

4

2

13 12

5
2

2

Optimal sensor placement (M = 20)

(b) Position of 20 sensors

0

8
6

4
2 2

4

6

8–5
–10

So
il 

de
pt

h/
cm

Optimal sensor placement (M = 20)

(c) Position of 40 sensors

Figure 6: Error-sparsity variation curve.

6 Journal of Sensors



4.4. Sparsity Selection. When original data is converted to a
sparse vector through PFFT, the number of nonzero ele-
ments in the sparse vector is denoted as the sparsity degree
K . For the determined reconstruction algorithm and M,
the errors vary with the value of K . With the soil humidity
value at 21 o’clock on July 30, 2015, under the conditions
M1 = 10, M2 = 20, and M3 = 40, respectively, we change the
value of K and take an iteration of 500 times for each spar-
sity to average the errors and observe the variation of errors
with K . The simulation results are shown in Figure 5.

When the observed value M = 10 or M = 20 and K = 3,
the mean absolute error is the minimum, while when M =
40, sparsity K should be 13, to minimize the mean absolute
error. Therefore, in the following experiments, we all
adopted the optimal sparsity.

4.5. Reconstruction of Soil Water Spatial Distribution. Soil
humidity at 21 o’clock on July 30, 2015, is selected as exper-
imental data. With the OMP reconstruction algorithm,
under the circumstances of M1 = 10 plus K1 = 3, M2 = 20
plus K2 = 3, and M3 = 40 plus K3 = 13, respectively, multiple

iterations are used to get a minimum of errors to determine
the location of corresponding sensors. The locations under
the 3 circumstances are shown in Figure 6.

Consider three cases, and the refactoring effect is shown
in Figure 7. The abscissa represents 64 sensors, and the ordi-
nate represents the soil moisture value. When M = 40, the
predicted value almost coincides with the actual value.
When M = 20, the conformance is also good, and the result
is acceptable. However, when M = 10, the predicted value
differs greatly from the actual value and cannot be used.

In the three cases, the distribution of mean absolute
errors at all sampling moments is shown in Table 2.
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Table 2: Comparison of reconstruction effects of different M
values.

M
Mean absolute

error
Least absolute

error
Maximum absolute

error

10 1.68 0.41 3.71

20 0.91 0.37 2.12

40 0.47 0.18 1.14
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When M = 10, the mean absolute error of 80% of the
sampling moments is concentrated below 1.5, the error of
12% of the sampling moments is between 1.5 and 2.5, and
the error of 8% of the sampling moments is between 2.5
and 3.5. When M = 20, the mean absolute error of 85% of
the sampling moments is below 1, the error of about 12%
is between 1 and 1.5, and the error of only about 3% is above
1.5. When M = 40, the errors of all sampling moments are
below 1.14. Therefore, considering the balance between sen-
sor installation cost and reconstruction accuracy, it is recom-
mended to deploy 20 sensor sampling points to obtain more
accurate reconstruction results of soil water distribution.

5. Evaluation of the Effectiveness of
Sensor Placement

It is limited to get the abovementioned sensor arrangement
optimization at a moment. Therefore, the 250 time points
from June 1, 2015, to November 30, 2015, are selected as
the experimental data. The overall error distribution of the
three strategies at different times is shown in Figure 8.

In Figure 8, the rx,y distributions in the three graphs are
relatively concentrated, which proves that the strategies of
optimization sensor placement in this experiment are
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Figure 8: Error distribution at different moments.
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effective and feasible. Most of the rx,y in Figure 8(a) are con-
centrated below 1.5, and the rx,y of about 30 points is
between 1.5 and 2.5, and the rx,y of about 20 points is
between 2.5 and 3.5; the error of Figure 8(b) is mostly below
1, and the error of a few points is above 1; the rx,y of
Figure 8(c) is below 1.134. It can be seen that the rx,y of 10
sensors is maximum, and the placement of 20 sensors and
40 sensors is similar. Considering the cost of the sensor, 20
sensors can be arranged to achieve more accurate
measurements.

In Figure 8(a), there are some errors between ½3, 3:5�.
Choose two of them for detailed analysis, and get Figure 9.

Figure 9 is the 220th time in Figure 8(a). The error is
3.2325. The effect is generally and only part of the data close
to the original data. The placement of the 10 sensors is too
difficult to obtain all the features mainly due to significant
changes in soil characteristics. However, it can be found that
the amplitude of the reconstruction curve is stable, and the
optimization strategy of 10 sensors is not suitable for the
environment with high accuracy or obvious soil characteris-
tic change.

6. Discussion

In summary, the overall error of arranging 20 sensors is
close to that of arranging 40 sensors. Considering the cost
issue, using 20 sensors can get a more accurate acquisition
of soil moisture. Due to the obvious changes in soil moisture
characteristics, the placement of 10 sensors is too small,
resulting in large errors. By observing the data recovery of
10 sensors at a certain moment, it is found that the error is
large at the maximum and minimum values, but the overall
curve fluctuates stably. Therefore, the method of using only
10 sensors is suitable for situations where the data change
range is not large.

7. Conclusions

Aiming at the problems of unreasonable sensor placement
and high cost in the agricultural IoT, this paper proposes
an optimization strategy of sensor placement based on the
compressed sensing theory. By analyzing the soil moisture
data at a certain moment and the optimization of the obser-
vation matrix, three optimal strategies of sensor layout were
obtained and then verified at more time points. Through
experiments, it is found that 1/3 of the original sensor can
be used to measure soil moisture with a lower error. The
purpose of obtaining more accurate data with fewer sensors
is realized. The overall error of 20 sensors is close to that of
40 sensors. Considering the cost, 20 sensors can be used to
obtain soil moisture more accurately. Due to the obvious
change of soil moisture characteristics, the 10 sensors were
too few, resulting in a large error. When observing the data
recovery situation at a certain moment, it was found that
the error was large at the maximum and minimum values,
but the overall fluctuation of the curve was stable, which
was suitable for the situation with a small range of data
changes.

When used, the moisture distribution of the mesh point
can rely on manual multiple measurements, no need to
install the sensor. After several measurements, the sensor
deployment can be determined by this article, and only
about 1/3 of the sensor can achieve a better effect, so the cost
is relatively low.

The shortcomings of the experiment mainly include the
following two aspects: (1) the sensor was numbered in one
dimension, while the two-dimensional spatial correlation
of soil moisture was ignored; and (2) soil moisture data at
different moments were uniformly set to equal sparsity,
resulting in large errors. These will be the focus of future
research.
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