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Burning of coal in power plants produces excessive nitrogen oxide (NOx) emissions, which endanger people’s health. Proven and
effective methods are highly needed to reduce NOx emissions. This paper constructs an echo state network (ESN) model of the
interaction between NOx emissions and the operational parameters in terms of real historical data. The grey wolf optimization
(GWO) algorithm is employed to improve the ESN model accuracy. The operational parameters are subsequently optimized via
the GWO algorithm to finally cut down the NOx emissions. The experimental results show that the ESN model of the NOx
emissions is more accurate than both of the LSTM and ELM models. The simulation results show NOx emission reduction in
three selected cases by 16.5%, 15.6%, and 10.2%, respectively.

1. Introduction

The energy statistics in China show that 59.2% of electrical
energy comes from thermal electricity. This figure is just
one percentage point lower than it was a year ago. The pro-
portion of nonfossil energy sources (such as wind power,
photoelectricity, and nuclear power) have increased recently,
accounting now for nearly 41% of the total energy. In fact, the
rapid development of new energy sources greatly affects the
modes of operation of thermal power plants. Because of the
uncertainty in energy supplies from wind and solar sources,
thermal power plants must compensate for any failure in
meeting grid demand. However, constant load changes pose
a great challenge for energy conservation and emission
reduction. According to new environmental standards in
China, the emission of nitrogen oxide (NOx) pollutants from
boilers fueled by burning coal must be below 50 milligrams
(mg) per standard or normal cubic meters (Nm3) with a ref-
erence oxygen (O2) content of 6%. Therefore, a new opera-
tion mode for reducing NOx emissions should be proposed.
Most of the coal-fueled power plants have already been
equipped with selective catalyst reduction (SCR) modules.
With the help of a catalyst, such modules turn NOx into

diatomic nitrogen (N2) and water (H2O). However, too little
catalytic material will not adequately reduce the emissions,
while too much catalytic material will increase ammonia
escape and even block the air preheater [1]. Alternatively,
combustion optimization is typically used as a key process
for guaranteeing lower NOx emissions with no additional
modifications. Generally, an optimization method consists
of two parts: constructing a prediction model and optimizing
the operational parameters. However, the NOx emissions are
interrelated with many operational parameters because of the
complexity of the combustion process. Accurate modeling of
NOx emissions can be hardly established with conventional
methods. Fortunately, the emergence of machine learning
techniques presents an alternative effective way for building
NOx emission models. Several NOx modeling methods have
been recently proposed. For instance, Zhou et al. [2] created
a NOx emission model utilizing artificial neural networks
(ANNs) and genetic algorithms (GA) for a pulverized coal-
fired boiler of a large capacity. Ilamathi et al. [3] combined
ANN and GA techniques and optimized the operational
parameters for NOx emission prediction and reduction in a
pulverized coal-fired boiler of a 210MW capacity. Chu
et al. [4] established an ANN model that enabled a reduction
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of NOx production. Unfortunately, an ideal ANN model
should be trained with highly diverse examples, and ANN
is vulnerable to overfitting and poor generalization. Three
decades ago, support vector regression (SVR) methods
started to compete with the ANN ones in modeling. In par-
ticular, the least-square support vector machines (LSSVM)
emerged as a more effective variant of the standard support
vector machines (SVM). In recent years, SVM and the
LSSVM methods have been introduced as effective tools for
modeling NOx emissions. Wu et al. [5] employed SVR for
modeling the emissions of nitrogen oxides as well as carbon
burnout of a coal-fired boiler of a 300MW capacity. Tang
et al. [6] employed the LSSVM for modeling the emissions
of nitrogen oxides and utilized particle swarm optimization
(PSO) to improve model accuracy. Lv et al. [7, 8] introduced
a novel LSSVM model for NOx emission prediction and
obtained results showing that this LSSVM model maintains
good prediction accuracy. Li et al. [9] applied the SVM to
establish a NOx emission prediction model, whose parame-
ters were optimized by an enhanced PSO algorithm. Wang
et al. [10] employed a LSSVM to model the emissions of
nitrogen oxides for a 1000-MW once-through boiler. Fan
et al. [11] fused a continuous restricted Boltzmann machine
(CRBM) with SVR to model NOx emissions. Zhen et al.
[12] addressed this modeling problem by integrating the
LSSVM with a whale optimization algorithm (WOA). The
WOA is used to optimize the kernel function width and pen-
alty factor of the LSSVM. The simulation results showed that
this method had stable, high-precision simulation perfor-
mance. Apart from ANNs and SVMs, extreme learning
machines (ELMs) have also been employed for modeling
the emissions of nitrogen oxides. Li et al. [13] introduced
ELMs as a tool for building a model for the emissions of
nitrogen oxides, and they proposed an enhanced algorithm
of teaching-learning-based optimization (I-TLBO), in order
to fine-tune the ELM parameters and improve the modeling
accuracy. Dong et al. [14] proposed the combination of par-
tial least squares (PLS) and ELMs to assess NOx emissions of
a 1000-MW once-through boiler. Recently, deep learning has
been applied in image diagnosis [15], human activity recog-
nition [16], and 5G networks [17]. The emergence of deep
learning has led to the use of the long short-term memory
(LSTM) architectures in modeling NOx emissions. Yang
et al. [18] adopted the LSTM neural network to predict
NOx emissions. Compared with the recurrent neural network
(RNN) model, the LSTM model generally demonstrated a
higher accuracy. Tan et al. [1] applied the LSTM approach
for dynamic modeling of the NOx emissions of a 660-MW
coal-fired boiler. They asserted that the LSTMmodel outper-
forms the SVM approach. Xie et al. [19] introduced a novel
LSTM method with a new attention mechanism to model
the NOx emissions, and the results demonstrated a superior
prediction accuracy of the NOx emissions.

Additionally, any desirable combustion optimization
algorithm should exhibit rapid convergence and high-
quality solutions. Indeed, the past two decades witnessed a
dramatic increase in the popularity of metaheuristic optimi-
zation techniques, and especially the application of these
techniques in combustion optimization. For example, Zhou

et al. [20] employed a PSO algorithm to optimize the param-
eters of a SVR model of NOx emissions. The emissions could
be reduced by 32.67% and 16.3%, respectively, when the
model was exploited with and without optimization. Wei
et al. [21] utilized quantum genetic algorithms (QGA)
together with simulated-annealing genetic algorithms
(SAGA) for the optimization of the operating parameters,
and hence the reduction of the emissions of nitrogen oxides.
An improved flower pollination algorithm (IFPA) [22] was
used to optimize hyper-parameters. An artificial bee colony
(ABC) algorithm [23, 24] was also used for modeling and
optimization of coal-fired boilers.

Notwithstanding the dramatic success achieved so far by
methods for combustion optimization in lowering the emis-
sions of nitrogen oxides, more improvements are still needed.
A candidate for achieving such improvements is a novel var-
iant of recurrent networks, namely, the echo state networks
(ESNs). These networks enjoy the advantages of simplicity
and high accuracy, which enable them to find diverse appli-
cations such as the prediction of the remaining useful life
(RUL) [25], energy prediction [26], and anomaly detection
[27]. Nevertheless, ESNs have been hardly applied for model-
ing the emissions of nitrogen oxides. Moreover, the grey wolf
optimization (GWO) method has been introduced and sub-
sequently employed in tackling real-world optimization
problems [28–30]. In this work, the GWO method is used
to optimize both the ESN model parameters and the opera-
tional parameters with the target of lowering the emissions
of nitrogen oxides.

In summary, we introduce a combustion optimization
method to lower the emissions of nitrogen oxides for a coal
boiler that has a 1000-MW capacity. We introduced the
ESN for modeling the NOx emissions and compared the
ESN model against the ELM and LSTM ones. Meanwhile,
we used the GWO algorithm for optimizing the operational
parameters and lowering the emissions of nitrogen oxides
based on an earlier NOx emission model. For validating the
proposed method, we selected three typical values of the
boiler maximum continuous rating (BMCR), namely, 100%,
90%, and 80%, for optimization by the GWO algorithm.

2. Methodology

2.1. Echo State Networks. An echo state network (ESN) is a
variant of recurrent neural networks (RNN), basically distin-
guished via its dynamic reservoir (DR) within its sparsely
connected hidden layer. The purpose of this reservoir is to
allow the input sequence to expand nonlinearly. The ESN
essentially has an RNN architecture, where the input and
output layers are detached from each other by recurrent con-
nected units. The network is trained through an initial ran-
dom choice of both the input and the reservoir weights,
followed by fixing these weights through the overall training
process. Any feedback signals from the outputs to the reser-
voir are initially set randomly and then kept fixed in a similar
fashion. The supervised training of the network updates only
the readout weights. The basic architecture of an ESN is
depicted in Figure 1.
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We use the symbolsW in,W, andW fb to denote the back-
ward weight matrices of the input, the reservoir, and the out-
put of the ESN, respectively. We also use the symbols W inout

and Wout to refer to the readout matrices, and employ uðtÞ,
xðtÞ, and yðtÞ to designate the ESN inputs, reservoir states,
and outputs, respectively. The number of training patterns
is denoted by t. The following two equations define the gen-
eral dynamics of a standard echo state network.

x t + 1ð Þ = f W inu t + 1ð Þ +Wx tð Þ +W fby tð Þ
� �

, ð1Þ

y t + 1ð Þ = f out Woutx t + 1ð Þ +W inoutu t + 1ð Þ� �
: ð2Þ

The two functions, f and f out, are activation functions
that can be either of the hyperbolic tangent (tanh) or linear
types. As we have formerly asserted, the backward weights
and those of the input and the reservoir are initially set ran-
domly and then kept fixed. In order to define these weight
matrices, we should consider certain metrics. In particular,
we should carefully define the input scaling and the connec-
tivity rate from the outset. Here, the term “input scaling”
refers to the weight value range, while the term “connectiv-
ity” indicates how many connections we need to define for
each matrix. We can guarantee that the network will not be
driven by the internal or reservoir dynamics, provided the
aforementioned factors are well set.

2.2. Grey Wolf Optimizer. The grey wolf optimizer (GWO) is
a nature-inspired algorithm that mimics the hierarchy of
leadership and the mechanism of hunting in grey wolves
[31]. These wolves are apex predators that live in packs of
four possible types: alpha, beta, delta, or omega. The leaders
of the pack (called alphas) make decisions about daily activ-
ities for the entire pack. The alpha or dominant wolf is distin-
guished by the best management skills rather than the
strongest body. As the second-ranking wolf in the pack hier-
archy, the beta wolf provides feedback and helps the alpha
one in decision-making. An omega wolf has the lowest rank

in the pack, but it has a key role in maintaining the domi-
nance structure. A delta wolf is inferior to both the alpha
and beta ones but superior to the omega wolf in the afore-
mentioned hierarchy. The delta wolves might be scouts, sen-
tinels, elders, hunters, or caretakers. Group hunting in wolf
packs has three major stages: tracking or searching, prey
encirclement, and prey attack. The GWO algorithm is
designed based on this hierarchy of leadership and mecha-
nism of hunting. The prey encirclement behavior can be
mathematically expressed as

D
!
= C ⋅ X

!
p tð Þ − X

!
tð Þ

���
���, ð3Þ

X
!

t + 1ð Þ = Xp
�!

tð Þ − A ⋅D
!
: ð4Þ

The symbol t denotes the present iteration, Xp
�!

denotes

the prey position vector, and X
!
designates the wolf position

vector, while A and C stand for two coefficients, whose values
are computed via

A = 2a ⋅ r1 − a, ð5Þ

C = 2 ⋅ r2: ð6Þ
The value of a is iteratively decreased in a linear fashion

from 2 to 0, and r1 and r2 are numbers randomly generated
from the unit interval [0,1]. Equations (3) and (4) describe
how grey wolves update their positions, while still encircling
their preys.

The wolf pack hunting pattern is led by the alpha wolves
and often also by the beta and delta ones. These patterns can
be mathematically modeled as follows:

Dα
�! = C1 ⋅ Xα

�! − X
!���
���,

Dβ
�! = C2 ⋅ Xβ

�! − X
!���
���,

Dδ
�! = C3 ⋅ Xδ

�! − X
!���
���,

ð7Þ

X1
�! = Xα

�! − A1 ⋅ Dα
�!���

���,

X2
�! = Xβ

�! − A2 ⋅ Dβ
�!���

���,

X3
�! = Xδ

�! − A3 ⋅ Dδ
�!���

���,

ð8Þ

X
!

t + 1ð Þ =
X1
�! + X2

�! + X3
�!� �

3 :
ð9Þ

2.3. A Hybrid Optimization Technique Integrating ESN and
GWO. For applying the ESNmodel, we must properly specify
network parameters and designations such as the infrastruc-
ture of the reservoir, and also the network weights and con-
nections. However, even if we apply the settings
recommended by Jaeger [32] for the reservoir initialization
stage, we cannot guarantee that the ESN model will suit the

ESN model

Input

Reservoir

Output

win

wout

wfbw

winout

Figure 1: Architecture of an ESN.
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intended application. We should realize that the ESN perfor-
mance is essentially associated with the reservoir design, and
if we conceive this well, then we can aspire to obtain satisfac-
tory results. Wemight repeat the tests hoping to acquire good
design scenarios. However, we can never be certain about
achieving optimal scenarios. Anyhow, the design procedure
should involve a few parameters, including the number of
neurons within the network (NN), the connectivity rate of
the network (RR), the feedback rate (FR), and the input con-
nectivity rate (IR). Meanwhile, since not all the weights are
being updated as part of the training process, pretraining is
needed to suit the targeted task. The GWO algorithm should
be used in such a way that it serves as an optimization algo-
rithm. Figure 2 shows a flowchart of the proposed model
for nitrogen oxide emissions. The following steps describe
the specific modeling procedure:

Step 1. Enter the input data.

Step 2. Initialize the a, A, and C parameters of the GWO
algorithm.

Step 3. Set the initial architecture parameters including NN,
RR, FR, and IR.

Step 4. Use the architecture parameters to establish the ESN
model.

Step 5. Calculate the emissions of nitrogen oxides for differ-
ent architecture parameters and use the mean absolute error
as the corresponding fitness measure.

Step 6.Obtain the minimum fitness values for all architecture
parameters.

Step 7. If the obtained minimum fitness values satisfy the
requirements of model accuracy, then jump to Step 9. Other-
wise, continue.

Step 8. Use Equation (9) to update the positions, increment
the counter for the number of iterations, and then return to
Step 4.

Step 9. Output the parameters of the optimal architecture.

Step 10. Initialize a, A, and C parameters in the GWO and
ESN weights.

Step 11. Select the weights to be optimized.

Step 12. Train the ESN model.

Step 13. Compute the error.

Step 14. If the error satisfies the model accuracy requirement,
then jump to Step 16. Else, continue.

Step 15. Use Equation (9) to update the positions, increment
the counter for the number of iterations, and then return to
Step 12.

Step 16. Output the ESN model.

2.4. Optimizing the Operational Parameters Using GWO.We
seek to establish a model for nitrogen oxide emissions,
through which we can assess how the operational parameters
are relevant to these emissions. As a bonus, emission reduc-
tion can be achieved by fine-tuning the operational parame-
ters of the aforementioned model. We selected two of the
most sensitive sets of operational parameters herein as candi-
dates for potential change. These are parameters of the sepa-
rated overfire air (SOFA) flow rate (four parameters) and the
secondary air-damper opening percentage (six parameters).
We carefully identified ranges for possibly adjusting these
changeable parameters. We based our range selections on
the standard operation habits and the accumulated experi-
ence of the operators and engineers. The following steps
describe our procedure in detail:

Step 1. Enter the input data.

Step 2.Obtain the initial values for the a,A, and C parameters
in the GWO algorithm.

Step 3. Generate the initial operational parameters.

Step 4. Calculate the nitrogen oxide emissions for the differ-
ent operational parameters and the corresponding errors.

Step 5. If the minimum error values satisfy the production
requirements, then jump to Step 7, or else continue.

Step 6. Use Equation (9) to update the positions, increment
the counter for the number of iterations, and then return to
Step 4.

Step 7. Produce the optimal operational parameters as the
final output.

3. Experimental Setup, Results, and Discussion

We obtained more than 5,000 patterns from the distributed
control system (DCS) of the coal-fueled boiler (the power
plant) and employed a sampling interval of 1 minute.
Table 1 lists the properties of the coal fueling the power plant.

The model employed twenty variables that can be
detailed as follows: unit load, total coal flow rate, total airflow
rate, feed-water flow, main steam pressure, main steam tem-
perature, water coal ratio, boiler tail flue temperature, sepa-
rated overfire air (SOFA) flow rate (four variables),
secondary air damper opening percentage (six variables), flue
gas oxygen content, and NOx emissions. The input variables
were selected according to basic boiler knowledge and the
engineers’ suggestions. In this work, all data of nitrogen oxide
emissions is presented on the basis of a dry gas at 6% O2.
Data preprocessing was conducted prior to the modeling
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Figure 2: A flowchart of the proposed NOx modeling approach.
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process. First, noise and outlier removal operations were con-
ducted to enhance the quality of the coarse or raw sampling
data. Then, we removed all operational variables that do
not experience any change during sampling. We also calcu-
lated the average values for variables with multiple
measurements.

3.1. Performance Indices. To evaluate the developed model of
nitrogen oxide emissions, we utilized four standard indices:
the mean absolute error (MAE), the mean absolute percent-
age error (MAPE), the root-mean-square error (RMSE),
and the coefficient of determination (R2). These indices are
defined as follows:

MAE = 1
M

〠
M

j=1
yj − ŷ j
���

���, ð10Þ

MAPE = 1
M

〠
M

j=1

yj − ŷ j
yj

�����

�����, ð11Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

〠
M

j=1
yj − y∧j

� �2
vuut , ð12Þ

R2 = 1 −
∑M

j=1 yj − y∧j

� �2

∑M
j=1 yj − �yj
� �2 : ð13Þ

3.2. Modeling of NOx Emissions. Figure 3 illustrates both the
predicted and measured training data samples for the emis-
sions of the nitrogen oxides according to the established
ESN model. The dotted red straight line is the perfect line
which indicates the equivalence of the predicted and mea-
sured values. The blue points indicate the ESN prediction
results, associated with the measurements. All data points
are almost distributed or scattered along the perfect line.
Based on our calculations, the MAPE for the training dataset
was only 4%, while the coefficient of determination (R2) was
0.91. This shows that the ESN is highly suitable for modeling
the nitrogen oxide emissions.

After we trained the NOx model on a part of the dataset,
we employed the remaining part of the dataset to assess the

performance of the model. Figure 4 presents the prediction
results of 1000 test cases. Like the situation in Figure 3, the
points in Figure 4 are also nearly aligned with the perfect line.
This means that the prediction results are in good agreement
with the measurements. Figure 5 shows the ESN-based distri-
bution of the relative test errors. Among 1000 test samples,
74% of the relative errors were below 5%. The RMSE and
R2 were also calculated and were found to be 10.527 and
0.86, respectively. These results enable us to conclude that
the proposed ESN model is accurate in its NOx emission
prediction.

3.3. Performance Comparison with LSTM and ELM. To fur-
ther demonstrate the superiority of the performance of the
ESN model, we compared the ESN model outcomes with
those of the widely used ELM model and the LSTM model.

The ELMmodel is an effective machine learning method,
which generally demonstrates superior accuracy and general-
ization performance in comparison with the conventional
SVM and LS-SVM methods. To realize the actual modeling
process, we employed a Matlab implementation of the ELM
algorithm with a sigmoidal transfer function. A trial-and-
error scheme was followed to set the number of neurons.
The LSTM architecture is a RNN variant, which includes a
single input layer, a single hidden layer, and also a single out-
put layer, such that the dropout is set after the hidden LSTM
layer.

Figures 5 and 6 and Table 2 provide a brief outline of the
performance of each of the aforementioned three different
models. Figure 6 asserts that each of the three prediction
curves follows the real-data direction and that each of the
three algorithms can be employed to successfully predict
the emissions of nitrogen oxides. However, the results in
Table 2 suggest that the prediction accuracy of either LSTM
or ESN exceeds that of ELM. This indicates that the RNN
prediction accuracy strongly exceeds that of a conventional
model. Figure 5 illustrates the relative test error distributions,
showing that the majority of the ESN errors are within 5%.
Table 2 lists the MAPE, MAE, RMSE, and R2 indicators for
the test dataset with different models. The ELMmodel, which
represents a conventional machine learning approach, is
clearly underperformed by the ESN and LSTM models.
Indeed, the ELM produces the most inaccurate results on
three of the four criteria. The MAPE, MAE, and R2 of the
LSTM are better than those of the ELM, but the RMSE of
the LSTM is slightly inferior to the RMSE of the ELM. The
MAPE, MAE, RMSE, and R2 criteria of the ESN model are
better than the performance indices of the other two models.
This indicates that the ESN model is a promising alternative
for achieving the required accuracy when dealing with
models of nitrogen oxide emissions.

3.4. Combustion Optimization with the GWO Algorithm. In
this paper, we selected three standard optimization cases
according to the boiler maximum continuous rating
(BMCR). The values for this rating were 100% BMCR (Case
1), 90% BMCR (Case 2), and 80% BMCR (Case 3). The orig-
inal nitrogen oxide emissions for these three selected cases
were, respectively, 303, 270, and 216mg/Nm3. We also

Table 1: Coal properties.

Explanation Unit Value

Carbon % 61.7

Oxygen % 8.56

Hydrogen % 3.67

Nitrogen % 1.12

Sulfur % 0.60

Ash % 8.80

Moisture % 15.55

Volatile component % 26.50

Quantity of produced heat KJ/kg 23442

6 Journal of Sensors



selected two sets of parameters (namely, the secondary air
damper opening percentage (x1, x2, x3, x4, x5, x6) and the
SOFA flow rate (x7, x8, x9, x10) as design variables to be opti-
mized by the GWO algorithm. We determined these vari-
ables and their ranges to be conforming to the regular
operation habits and the accumulated experience of opera-
tors and engineers. Figure 7 illustrates the search process
employed in Case 1. This search process is a convergent

one with an extremely fast speed of convergence. The simu-
lation results indicate that the predicted emissions of nitro-
gen oxides were lowered to approximately 253, 228, and
194mg/Nm3 from their original values of 303, 270, and
216mg/Nm3, respectively. Therefore, the ratios of reduction
amounted to percentages of 16.5%, 15.6%, and 10.2%, respec-
tively. Table 3 lists both the original and optimized parame-
ters. In order to verify the GWO performance, we
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compared the widely used PSO algorithm and the present
GWO algorithm. To achieve this comparison, we repeated
both algorithms thirty times with an eye to optimize Case
1. Figure 7 indicates that both the PSO and GWO algorithms
can dramatically lower the emissions of the nitrogen oxide
pollutants. On average, the GWO optimization results are
superior to those of the PSO one. This means that the
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Figure 5: Relative test error distributions for the considered models.
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Table 2: Comparison results with different evaluation criteria.

Model MAPE MAE RMSE R2

ESN 0.0353 8.052 10.527 0.868

LSTM 0.0559 12.89 16.042 0.867

ELM 0.0589 13.23 15.853 0.735
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GWO algorithm can offer solutions of a higher quality and
better stability. In short, the GWO algorithm may offer a bet-
ter alternative for combustion optimization.

4. Conclusions

We consider two important steps towards optimizing com-
bustion processes to achieve low emissions of nitrogen
oxides. These steps are modeling of NOx emissions and opti-
mization of the pertinent operational parameters. In this
work, we introduce a novel approach, which combines the
ESN and GWO algorithms to model the emissions of nitro-
gen oxides and optimize the pertinent operational parame-
ters in a coal-fueled boiler of a 1000MW capacity. We
utilized the ESN algorithm to model the NOx emissions of
this boiler and, further, utilized this model to optimize the
relevant operational parameters through the application of
the GWO algorithm. We finally managed to lower the nitro-
gen oxide emissions through the adjustment of the pertinent
parameters to their optimal values. We found the values pre-
dicted by the ESN model for the NOx emissions to be consis-
tent with their measured values. We obtained a mean
absolute error (MAE) of the test data that was as low as

3.5%. In comparison with the LSTM and the ELM algo-
rithms, the ESN algorithm is more successful in the modeling
of nitrogen oxide emissions due to its strong generalization
capability. We selected a secondary opening percentage and
a separated overfire air (SOFA) flow rate from three typical
cases for optimization by the GWO algorithm. Our simula-
tion results for the three selected cases indicated that the
nitrogen oxide emissions were lowered by 16.5%, 15.6%,
and 10.2%, respectively. Compared with the widely used
PSO, our approach lowers the nitrogen oxide emissions
within any specified time and increases the solution stability.
In summary, our proposed combination of the ESN and
GWO algorithms can model and lower the emissions of
nitrogen oxides for coal-fired boilers. Our approach is more
powerful and effective than other modeling approaches such
as the LSTM and ELM algorithms and other optimization
approaches such as the PSO algorithm.

Data Availability

The data employed in creating our model pertain to a
1000MW ultra-supercritical once-through boiler with vari-
able pressure and octagonal-inverse double tangential firing.
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Figure 7: The search process by the two competing algorithms for 100% BMCR (Case 1).

Table 3: The initial and optimized operational parameters and the concentrations of the emissions of nitrogen oxides.

x1 (%) x2 (%) x3 (%) x4 (%) x5 (%) x6 (%) x7 (t/h) x8 (t/h) x9 (t/h) x10 (t/h) NOx (mg/Nm3)

Case 1
Original 14 59 37 60 41 70 101 95 129 77 303

Optimized 15 53 38 66 42 75 127 110 147 90 253

Case 2
Original 14 65 31 65 32 72 141 101 141 82 270

Optimized 14 54 28 79 39 86 204 137 186 116 228

Case 3
Original 14 79 49 79 49 79 153 128 173 105 216

Optimized 15 73 50 84 54 81 179 139 181 114 194
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