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Traffic sign detection is extremely important in autonomous driving and transportation safety systems. However, the accurate
detection of traffic signs remains challenging, especially under extreme conditions. This paper proposes a novel model called
Traffic Sign Yolo (TS-Yolo) based on the convolutional neural network to improve the detection and recognition accuracy of
traffic signs, especially under low visibility and extremely restricted vision conditions. A copy-and-paste data augmentation
method was used to build a large number of new samples based on existing traffic-sign datasets. Based on You Only Look Once
(YoloV5), the mixed depth-wise convolution (MixConv) was employed to mix different kernel sizes in a single convolution
operation, so that different patterns with various resolutions can be captured. Furthermore, the attentional feature fusion (AFF)
module was integrated to fuse the features based on attention from same-layer to cross-layer scenarios, including short and long
skip connections, and even performing the initial fusion with itself. The experimental results demonstrated that, using the
YoloV5 dataset with augmentation, the precision was 71.92, which was increased by 34.56 compared with the data without
augmentation, and the mean average precision mAP_0.5 was 80.05, which was increased by 33.11 compared with the data
without augmentation. When MixConv and AFF were applied to the TS-Yolo model, the precision was 74.53 and 2.61 higher
than that with data augmentation only, and the value of mAP_0.5 was 83.73 and 3.68 higher than that based on the YoloV5
dataset with augmentation only. Overall, the performance of the proposed method was competitive with the latest traffic sign
detection approaches.

1. Introduction

Under severe weather conditions such as fog and snowy,
traffic accidents occur frequently due to distracted driv-
ing, inattentiveness, or poor visibility [1]. To decrease
the risk of accidents and improve the driving experience
of drivers, traffic sign recognition systems (TSRS) have
been developed and played an important role in autono-
mous driving and road network maintenance [2]. Traffic
sign recognition systems can be categorized into two sub-
tasks, i.e., detection and classification, the former aiming
to identify the target objects from the images, and the
latter aiming to classify the detected traffic signs into sub-
classes [3].

An important step for the full automation of traffic sign
recognition is using the automatic method to replace the
manual method in localizing and recognizing traffic signs
[4]. With the fast development of computer vision, especially
the support of convolutional neural network (CNN), the
detailed information from raw images can be extracted [5],
and therefore, the traffic sign recognition has obtained great
attention [4].

However, traffic sign recognition still faces the following
challenges:

(i) Under different weather conditions such as foggy,
snowy, and rainy days, the captured traffic sign
images may contain a lot of noises and distortions [6]
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(ii) Under different viewing angles and viewing distance,
the traffic sign images may appear distortions of
shape and color [6]

(iii) The complicated road environment can lead to
complex background of the traffic signs [1]

(iv) Under different light conditions, color distortion or
saturation may impact the quality of captured
images [1]

(v) Traffic signs may be partially hidden by trees, snow
in some conditions

In order to address the above challenges, scholars have
performed extensive studies. However, the traditional traffic
sign recognition methods are not robust enough and have
poor performance. For this reason, Girshick et al. firstly pro-
posed the two-stage object recognition with significantly
improved performance [7, 8]. In this method, some generic
object proposals were calculated first, and then these candi-
dates were classified [9]. The typical models also include Fast
R-CNN [10], Faster R-CNN [11], and R-FCN [12].

One-stage detector was proposed to improve calculation
efficiency. The one-stage detector does not have a regional
proposal stage; instead, it predicts the object’s class and
position and obtains the final result through single stage.
The most representative models are YOLO [13–18], SSD
[19], and RetinaNet [20]. The one-stage traffic sign recogni-
tion model has high efficiency but insufficient accuracy [1].

The purpose of this study is to develop a high recognition
accuracy method for traffic recognition system which can
handle special situations such as severe weather and bad light
conditions. In this paper, a new traffic sign recognition
method based on YoloV5 was proposed. The main contribu-
tions can be summarized as follows:

(i) The detection and recognition of traffic signs under
extreme conditions is one of the technical bottle-
necks of automatic driving and intelligent transpor-
tation. Through experimental research and test, this
paper provided a scientific means and framework
for accurate recognition of traffic signs, which can
significantly increase the driving safety, especially
under extreme conditions.

(ii) About 1000 images under severe weather conditions
in Shandong were captured and annotated, greatly
enriching the dataset. The copy and paste data aug-
mentation was used to construct a large number of
new samples based on existing traffic-sign instances,
which allows the training and learning for small
dataset and also improves the variability of the traffic
sign data samples. Meanwhile, images with different
weather conditions were captured and augmented as
well, solving a lot of problems such as noises and dis-
tortions in the images.

(iii) Based on YoloV5, the TS-Yolo model was proposed.
MixConv [21, 22] was used which could do the
convolutional operation with mixed kernel sizes, so

that different patterns with various resolutions can
be easily captured. Thus, in different viewing angles
and distances, even if the traffic signs appear
distorted in shapes and colors, they still could be
detected

AFF [23] module was also used to fuse features based on
attention which came from same-layer or cross-layer, includ-
ing short and long skip connections, and even perform the
initial fusion with itself. Therefore, under complex road
conditions or different light conditions, even sometimes the
traffic signs were partially hidden, and using the enhanced
model, images can be recognized and localized more
accurately.

(iv) Experimental results on public datasets demon-
strated that the proposed approach had comparable
accuracy with the latest traffic sign detection
methods. Therefore, the proposed method can be
applied in practical use for driving assistance

The rest of the paper is organized as follows: Section 2
reviews the related work about traditional traffic sign recog-
nition technology and deep neural networks; Section 3
describes the proposed method and TS-Yolo model in detail;
Section 4 describes dataset and experiment setup; Section 5
presents the experiment results and the analysis results;
Section 6 summarizes the conclusions and our findings;
Section 7 looks at the future research prospects and
suggestions.

2. Related Work

2.1. Traditional Traffic Sign Recognition Technology. The
traditional recognition algorithms are aimed at locating the
region of interest and identifying the classification [1]. In
the study by Zhou and Deng [24], color and spaces were
combined so that the traffic sign colors can be treated as
one class. Li et al. [25] developed a new traffic sign detection
method by integrating the image segmentation based on
color invariants and the shape matching based on pyramid
histogram of oriented gradients (PHOG) features. Based on
support vector machines (SVM), Maldonado-Bascón et al.
[26] proposed an automatic road-sign detection and recogni-
tion system. Salti et al. [5] addressed the problem of traffic
sign detection in mobile mapping data by combining solid
image analysis and pattern recognition techniques. The pro-
posed method was based on the extraction of interest regions
instead of sliding window detection. Lillo-Castellano et al.
[27] proposed a three-stage system, which included seg-
mentation of chromatic and achromatic scene elements
using L ∗ a ∗ b ∗ and HSI spaces, discarding noninterest
regions in postprocessing, and sign-shape classification
using Fourier descriptors.

2.2. Traffic Sign Recognition Based on Deep Neural Networks.
In recent years, deep neural networks (DNNs) have received
great attention in pattern recognition and computer vision
research [28] and have been widely used in both object
detection and recognition [29–35].
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Belghaouti et al. [36] proposed an automatic road sign
recognition system based on LeNet model and got 99%
accuracy in German traffic dataset. Yang et al. [37] developed
a novel end-to-end deep network, which used a two-stage
adjusting strategy to extract region proposals. Song et al.
[38] proposed an efficient convolutional neural network
(CNN), which can significantly reduce the redundancy,
reduce the parameters, and improve the speed of the net-
works. In the study by Alghmgham et al. [39], automatic
Arabic traffic sign (AATS) recognition system was designed
using convolutional neural networks (CNN). Arcos-García
et al. [40] presented a two-stage traffic sign recognition
system with high efficiency. In the system, a LINX Mobile
Mapper system was firstly used to acquire and process 3D
point cloud data. Then, a deep neural network was used to
classify the point cloud projection on RGB images. Zhou
et al. [41] proposed an ice environment traffic sign recogni-
tion benchmark (ITSRB) and detection benchmark (ITSDB)
marked in the COCO2017 format. In addition, a high-
resolution traffic sign classification (PFANet) based on
attention network was proposed, and ablation research was
performed on the design parallel fusion attention module.
Pei et al. [42] proposed Multiscale Deconvolution Networks
(MDN), which can integrate multiscale convolutional neural

network and deconvolution subnetwork. On that basis, a
localized traffic sign recognition model training with high
efficiency and reliability can be obtained. Zhu et al. [43]
proposed a novel framework for object classification, which
contained two deep learning components, i.e., fully convolu-
tional network (FCN) and deep convolutional neural network
(CNN). Chaudhari et al. [44] put forward an approach to
recognize traffic signs using small-scale deep convolutional
neural networks (CNN), which can be applied to different
applications. Franzen et al. [45] used neural networks for traf-
fic sign recognition. Compared with existing works, our
method is unique in that the traffic sign recognition is per-
formed in the frequency domain instead of the spatial domain.

The above approaches have achieved high accuracy for
traffic sign recognition based on different datasets. However,
the recognition rates largely depend on the application
context, regardless of the severe weather conditions.

3. Proposed Method

3.1. Overall Architecture. The overall architecture is shown in
Figure 1. As the figure shows, the system is composed of
backbone, neck, and detector. In order to detect the position
and class of an object, it is necessary to extract features from
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Figure 1: Overall architecture of the proposed approach.
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the image and capture the features using backbone for
positioning and classification. MixConv [22] was used which
could do the convolutional operation with mixed kernel
sizes, so that different patterns with various resolutions can
be captured.

With the initial output features of backbone, neck fuses
features and adapts size, thus, improving the overall perfor-
mance of the architecture. AFF [23] was used in neck layer
to fuse the features which came from same-layer or cross-
layer based on attention, including short and long skip con-
nections, and even performs the initial fusion inside itself.
The detector receives the three outputs from neck network
and outputs the prediction of bounding box position, object
confidence, and object classes for each feature map output
layer. With the help of high-quality feature maps of each
layer, the detection can be more accurate.

3.2. Backbone Network. The backbone was composed of
Focus, Convolution with Batch normalization and LeakyRelu
(CBL), Mix Convolution (MixConv), Cross Stage Partial
Network (CSP), and Spatial Pyramid Pooling (SPP). The
size of the input image was 512 × 512 × 3, among which
512 × 512 represented the width and height in pixels,
respectively, and 3 represented 3 channels. After the focus
module, the size was changed to 256 × 256 × 64. After the
following CBL module, the size became 128 × 128 × 128.

The following MixConv module and CSP1_1 module
did not change the size, and the image size was still 128 ×
128 × 128 after these two modules.

The next step was a CBL module, which changed the
image size to 64 × 64 × 256. Then, the Mix Convolution
module did not make any change to the image, and the size
was still 64 × 64 × 256. After that, the CSP1_3 module did
not change the output size. Thus, the output with the size
of 64 × 64 × 256 was recorded as P1.

The next step was a CBL module, which changed the
output size to 32 × 32 × 512. Then, a MixConv module did
not make any changes to the size, and the CSP1_3 module
in the following step did not change the size either. The out-
put here with the size of 32 × 32 × 512 was recorded as P2.

The next step was a CBL module, which changed the size
to 16 × 16 × 1024. Then, the MixConv module and the SPP
module in the following step did not change the output size.
The output here with the size of 16 × 16 × 1024 was recorded
as P3.

3.3. Neck Network. The neck was composed of CBL, CSP,
Upsampling, and AFF. The outputs of backbone, namely,
P1, P2, and P3, were used as the input.

First, the output P3 with the size of 16 × 16 × 1024 was
input into the CSP2_1 module, and the image size was still
16 × 16 × 1024. Then, the CBL module in the next step chan-
ged the size to 16 × 16 × 512. The output here was recorded
as N1.

Then N1 was input into the Upsampling module, and the
size was changed to 32 × 32 × 512. Both output from Upsam-
pling and the output P2 from backbone had the same size of
32 × 32 × 512 and were used as the inputs to the AFFmodule.
The output of AFF had a size of 32 × 32 × 1024. Then, the

output was input into the CSP2_1 module, and the size was
changed to 32 × 32 × 512. A CBL module in the next step
changed the size to 32 × 32 × 256. The output here was
recorded as N2.

The next step was an Upsampling module, which
changed the output size to 64 × 64 × 256. The output from
Upsampling and the output P1 from the backbone network
both had the size of 64 × 64 × 256 and were used as the inputs
to the AFF module. The output of the AFF module had a size
of 64 × 64 × 512. Then, the CSP2_1 in the next step changed
the size to 64 × 64 × 256. The output here was recorded
as D1.

The next step was a CBL module, which changed the out-
put size to 32 × 32 × 256. The output from the CBL module
and the previous output N2 both had the size of 32 × 32 ×
256 and were used as the inputs to the AFF module. The out-
put of the AFF module had a size of 32 × 32 × 512. The
CSP2_1 in the next step did not make any change to the size.
The output here with the size of 32 × 32 × 512 was recorded
as D2.

The next step was a CBL module, which changed the size
to 16 × 16 × 512. The output of CBL and the previous output
N1 both had the size 16 × 16 × 512, so they were used as two
inputs to the AFF module. The output of the AFF module
had a size of 16 × 16 × 1024. The CSP2_1 module in the next
step did not make any change to the size. The output here
with the size of 16 × 16 × 1024 was recorded as D3.

3.4. Detector. The detector received the three outputs from
neck network, which were D1 (64 × 64 × 256), D2 (32 ×
32 × 512), and D3 (16 × 16 × 1024). Each output was input
into a CBL unit to adjust the output channels; then, the
prediction box position, confidence, and object classes of
every grid point for each feature map output layer were
obtained. The position of the top left point of the predicted
box was denoted as ½xmin, ymin�, and the position of the bot-
tom right point was denoted as ½xmax, ymax�. Confidence refers
to whether the bounding box has the target object; object
classes refer to the probability that the target belongs to each
class inside the grid box. In this case, the object classes
can be calculated as 4 ðposition pointsÞ + 1 ðconfidenceÞ +
221 ðtraffic sign classes + backgroundÞ = 226. There were
3 anchor boxes for each position, so the output channel
was 678.

3.5. Components of Backbone and Neck. The focus module is
depicted in Figure 2. The focus module took the input image
with the size of 512 × 512 × 3 and performed slicing opera-
tion. This operation retrieved every other pixel from an
image, similar to downsampling. Then, 4 images were
obtained from an input image, the 4 images were comple-
ment with each other, and thus, there was no data missing.
After that, the width information and height information
were concatenated into the channel space, and the input
space was expanded 4 times. Therefore, the concatenated
image had 12 channels while the original image had only 3
channels. Finally, the new image was convolved to produce
two downsampling feature maps without any data missing.
In this case, a feature map with the size of 256 × 256 × 12
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was obtained. As shown in the bottom right in Figure 2, after
image slicing operation, the image with the size of 4 × 4 × 3
was changed to a feature map with the size of 2 × 2 × 12.
After convolution with the channel of 64, the output with
the size of 256 × 256 × 64 was obtained. Focus module can
help reduce the computational workload of downsampling,
but it will not introduce any data missing. Therefore, the
focus module can retain more complete picture downsam-
pling data for the following feature extraction.

As shown in Figure 3(a), CBL in backbone was composed
of a convolution function with Batch normalization and
LeakyRelu. Residual unit (ResUnit) was used in CSP. As
shown in Figure 3(b), ResUnit was composed of two CBL
units, which were connected continuously. The original
input and the output of the 2nd CBL performed the vector
addition function as the output.

CSP1_X is depicted in Figure 3(c). The original input of
CSP1 went through a CBL module and X modules of ResU-
nit. It finally performed a convolutional function to obtain
the temporary output of the main path. Meanwhile, the orig-
inal input performed another convolutional function, went
through another path, and then concatenated with the output
of the main path. The result went through batch normaliza-
tion, LeakyRelu, and CBL.

CSP2_X is described in Figure 3(d), and the structure is
slightly different from CSP1_X. In CSP2_X, the main path
consisted of 2 ∗ X times CBL units instead of ResUnit in
CSP1_X. The original input of CSP2_X went through 2 ∗ X
CBL units and then a convolutional function, to obtain the
temporary output of the main path. Meanwhile, the origi-
nal input performed another convolutional function, went
through another path, and then concatenated with the
output of the main path. The result went through Batch
normalization, LeakyRelu, and CBL.

In summary, the main idea of Cross Stage Partial Net-
work (CSP) is to produce two paths for the input. The main
path has CBL or ResUnit, another path will perform convolu-
tional function, and the results from the two paths will be
merged. This strategy can reduce the computational costs.
In detail, the CSP improves the learning capability of the
convolutional neural network, reduces the computational

complexity, ensures the high accuracy and light weight, and
reduces the memory cost. CSP can integrate the gradient
changes into the feature map from the beginning to end,
which can reduce the computational costs while ensuring
the accuracy.

Spatial Pyramid Pooling (SPP) [46] is used to realize the
integration of local features and global features, thereby
improving the representation ability of the feature map.
SPP module is depicted in Figure 4. The input went through
a CBL and then through three separate paths. The three max
pooling functions had kernel sizes of 5, 9, and 13. The three
outputs will be merged and then obtain the image with the
same size as the input. Finally, the obtained merged output
was input to a CBL to obtain the final output with the same
size as the input.

MixConv [22] mixed different kernel sizes (3 × 3, 5 × 5,
and 7 × 7) in a single convolution operation, so that different
patterns with various resolutions can be easily captured. Mix-
Conv is described in Figure 5. The input tensor has the shape
of ðh,w, cÞ, and it is denoted as Xðh,w,cÞ, where h is the height,
w is the width, and c is the channel size. A depth-wise convo-
lutional kernel can be denoted asWðk,k,c,mÞ, where k × k refers
to the kernel size, c refers to the input channel size, and m
refers to the channel multiplier.

In order to simplify the analysis, in this study, we
assumed that the kernel had the same width and height (k).
With this assumption, the same shape ðh,wÞ and multiplied
output channel size m∙c were obtained for the output tensor
Y ðh,w,c•mÞ. The feature map of each output can be calculated
by the following equation (1) [22]:

Ŷ
t
x,y,z = 〠

−kt/2≤i≤kt/2,−kt /2≤j≤kt/2
X̂
t
x+i,y+j,z/m · Ŵt

i,j,z ,∀z = 1,⋯,m · ct:

ð1Þ
As shown in Figure 5, the channels were divided into

several groups by MixConv, and different kernel sizes were
applied to different groups. More specifically, the input
tensor was divided into g groups of virtual tensors, i.e.,
<X∧ðh,w,c1Þ,⋯, X∧ðh,w,cgÞ > . The spatial height and width
of all virtual tensors were the same, which were h and
w, respectively. In addition, the total channel size of
these virtual tensors was the same as the original input
tensor, i.e., c1 + c2 +⋯ + cg = c. Similarly, the convolutional
kernel was also partitioned into g groups of virtual kernels
<W∧ðk1,k1,c1,mÞ,⋯,W∧ðkg ,kg ,cg ,mÞ > .

The corresponding virtual output for the t-th group of
virtual input tensors and kernels can be calculated by
equation (2):

Ŷ
t
x,y,z = 〠

−kt/2≤i≤kt/2,−kt /2≤j≤kt/2
X̂
t
x+i,y+j,z/m · Ŵt

i,j,z ,∀z = 1,⋯,m · ct:

ð2Þ
The final output tensor can be obtained by concatenat-

ing all virtual output tensors:

Yx,y,zo = Concat Ŷ
1
x,y,z1 ,⋯, Ŷg

x,y,zg

� �
: ð3Þ

Slice Slice Slice Slice

Concat 1 2 1 2

3 4 3 4

1 2 1 1 1

1 1
2

3 4 3 4

CBL

Focus

Slicing operation

Figure 2: Focus module.
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The channel size of the final output is zo = z1 +⋯ +
zg =m · c.

MixConv mixed different kernel sizes (3 × 3, 5 × 5, and
7 × 7) in a single convolution operation, so that different
patterns with various resolutions could be easily captured.

As shown in Figure 6, multiscale channel attention mod-
ule (MS-CAM) [23] is an important part of AFF. The local
and global features in CNNs are combined by MS-CAM,
and the multiscale feature contexts inside the attention

module are fused to generate the spatial attention. It poses
the scale problem in channel attention and implements it
by pointwise convolution instead of different size of kernels.
The local and global feature contexts inside the channel
attention module are aggregated by MS-CAM. The local
channel context can be calculated by equation (4) [23]:

L Xð Þ =B PWConv2 δ B PWConv1 Xð Þð Þð Þð Þð Þ, ð4Þ

where PWConv1 has the kernel size of C/r × C × 1 × 1, and
PWConv2 has the kernel size of C × C/r × 1 × 1, B means
Batch Normalization, and δ means activation function.

Global channel context can be calculated as follows [23]:

g Xð Þ =B W2δ B W1 g Xð Þð Þð Þð Þð Þ, ð5Þ

where gðXÞ = 1/H ×W∑H
i=1 ∑

W
j=1 X½:,i,j�, which means the

global average pooling (GAP).
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Assuming global channel context is gðXÞ and local chan-
nel context is LðXÞ, the refined feature X ′ ∈ℝC×H×W can be
obtained by MS-CAM, as shown in the following equation:

X ′ = X ⊗M Xð Þ = X ⊗ σ L Xð Þ ⊕ g Xð Þð Þ: ð6Þ

Here, MðXÞ ∈ℝC×H×W refers to the attentional weights
produced by MS-CAM, ⊕ refers to the broadcasting addi-
tion, ⨂ refers to the element-wise multiplication.

MS-CAM aggregates the multiscale contexts along the
channel dimension, thus, simultaneously emphasizing large
objects distributed more globally and highlighting small
objects distributed more locally. Therefore, MS-CAM can
facilitate network identification and detection of objects at
extreme scale variations.

Assuming that the two feature maps X, Y ∈ℝC×H×W ,
based on the multiscale channel attention module M, the
expression of attentional feature fusion (AFF) is shown in
equation (7) [23]:

Z =M X ⊎ Yð Þ ⊗ X + 1 −M X ⊎ Yð Þð Þ ⊗ Y : ð7Þ

The AFF is illustrated in Figure 7, where Z ∈ℝC×H×W is
the fused feature, and ⊎ is the initial feature integration.
The dashed line denotes 1 −MðX ⊎ YÞ. It should be noted
that the fusion weights MðX ⊎ YÞ are in the range of 0 to 1,
so are the 1 −MðX ⊎ YÞ, which enable the network to per-
form soft selection or weighted averaging between X and Y .

AFF module fuses the features from the same-layer sce-
nario to the cross-layer scenario based on attention, includ-
ing short and long skip connections, and even performs the
initial fusion inside itself. The features of the targets can be
obtained with high resolution, thereby improving the recog-
nition accuracy.

4. Dataset and Experiment Setup

4.1. Dataset. Several traffic sign datasets are currently avail-
able for public use, such as German Traffic Sign Detection
Benchmark (GTSDB) [47] and Tsinghua-Tencent 100K [9].

In GTSDB, natural traffic scenes from different types of
roads (freeway, highway, rural, and urban) are recorded at
daytime and twilight under various weather conditions [2].
The signs are divided in four different categories, i.e., manda-
tory, prohibitory, danger, and others. However, in GTSDB,

the traffic sign occupies most of the image, and the algo-
rithms can only determine which subcategory the sign
belongs to. Furthermore, no negative samples exist which
can disrupt the classification [9]. And most importantly, the
four categories are too coarse-grained to determine the
exactly accurate traffic sign.

In Tsinghua-Tencent 100K datasets, there are 100,000
images, which contain 30,000 traffic-sign instances. The illu-
minance and weather conditions in these images are largely
variable. The images are collected from Tencent Street Views,
covering about 300 Chinese cities and the corresponding
road networks [9]. These images are classified into 220 clas-
ses (as partly shown in Figure 8), and each class has a unique
name. The more fine-grained categorization can help distin-
guish the traffic sign and give the right instructions to the
driver. However, among the 100,000 images, only about
10,000 images contain the traffic signs, and the remaining
90,000 images do not contain any traffic signs. Due to the
big dataset, a low percentage (10%) of the images that can
contribute to the training, and a large number of negative
samples, the training will take a very long time.

To address the above challenges, 1000 additional images
were captured by cameras in Shandong, China. In order to
focus on analyzing the special weather conditions, these
images with traffic signs were taken on rainy, sunny, snowy,
and foggy days. In addition, some images contained partly
hidden traffic signs. The software named LabelImg was used
to annotate the images. For each traffic sign, a bounding
rectangle was drawn, and the corresponding category was
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manually provided. The annotated image can be automati-
cally saved as an additional JSON file, which contained the
top left and bottom right positions of the bounding rectangle
in the image and the assigned class. Therefore, the images
were annotated and ready for training.

4.2. Data Augmentation. Although there were 10,000 images
from Tsinghua-Tencent 100K with traffic signs and 1000
images captured and annotated in Shandong, the training
samples were still not sufficient due to the large number
(millions) of learnable parameters in the model. To address
this issue, we constructed many new samples based on
existing images with traffic signs.

In order to create additional synthetic traffic-sign
instances, we modified the segmented training samples from
the real world [4]. First, the traffic signs were segmented from
the annotated images by bounding box, and then the seg-
mented images with only one traffic sign were distorted to
simulate more realistic noises. The distortions included
Gaussian blurring, resizing, brightness adjustment and
contrast adjustment, and adding salt and pepper noises.
Finally, the distorted traffic signs were copy-pasted into the
Tsinghua-Tencent images without any traffic signs. Using
the first two steps, many segmented and distorted traffic signs
were ready to use. First, 9 traffic signs were randomly selected
for the empty image in Tsinghua-Tencent without any traffic
sign. Then, the selected 9 traffic signs were pasted in the
empty image one by one. It should be noted that the pasted
objects should not overlap with each other, and the distance
between the pasted object and the image boundaries should
be equal to or larger than five pixels [48]. Figure 9 shows
the obtained image with traffic signs by copy-pasting signs
in an empty image without any traffic signs.

Additionally, 14,000 augmented images were produced
with copy-paste method. Together with the 10,000 images
from Tsinghua-Tencent 100K with traffic signs and the
1000 images captured in Shandong, a total of 25,000 anno-
tated images were included in the dataset. In the combined
dataset, 5000 samples were randomly selected and used as
the test set to assess the performance of the designed network
model. The rest 20,000 samples were divided into two
groups, i.e., a training group with 15,000 samples and a
validation group with 5000 samples.

4.3. Experiment Setup. The experiment was conducted on a
CPU Intel Core i7-6700K @4.00GHz, a GPU GTX1080Ti,
12GB of video memory, the Ubuntu Linux operating sys-
tem, and a deep learning framework PyTorch 1.6. In addi-
tion, Python 3.7 and Open CV 3.41 were used for data
augmentation.

The proposed TS-Yolo model was trained using a back-
propagation learning algorithm with CIoU (Complete-IoU)
as the loss function and the stochastic gradient descent
(SGD) as the optimizer. In the training, the learning rate
was set to 0.001, the weight decay was 0.0005, and 600 epochs
were executed for each training. CIOU Loss [49] contained
three parts, i.e., object loss, classification loss, and box loss.

The proposed model was compared with the existing
state-of-art one-stage object detection models, such as Reti-
naNet, SSD, YoloV3, YoloV4, and YoloV5. These models
were trained with the above-augmented dataset and validated
with the validation dataset.

4.4. Performance Metrics. In this study, the proposed model
was evaluated by different metrics. Mean average precision
(mAP) is a commonly used metric to evaluate visual object
detectors [4]. We used two types of mAPs here, i.e.,
mAP_0.5 and mAP_0.5:0.95. In both metrics, to be consid-
ered as a true positive, the intersection-over-union (IoU)
overlap between the detection and the ground truth needs
to exceed the defined minimal value. In addition, in order
to capture the trade-off between the miss rate and the false-
positive rate, the average precision (AP) was computed by
calculating the area under the precision-recall curve. AP
was calculated independently for each category, and the final
metric included the average AP values of all categories. In
mAP_0.5, the value of IoU overlap was fixed, while in
mAP_0.5:0.95, the value was the average of the IoU overlap
values. The reported values were averaged in 0.05 increment
within the IoU overlap range of [0.5 : 0.95].

Precision and recall values were also used in this study.
Precision (P) was used to evaluate how many percentages
of the predictions from the results were correct. P = 100%
indicated there were no errors. Recall (R) was used to
evaluate how many positive samples were detected correctly.
R = 100% meant there were no missing targets. FPS (frames
per second) was also used to evaluate the model inference
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Figure 8: Typical traffic sign categories in Tsinghua-Tencent 100K.
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speed, and it indicated that how many frames the trained
model could make prediction.

5. Results and Analysis

5.1. Evaluation on Augmented Tsinghua-Tencent Dataset.
The results of the proposed TS-Yolo and other advanced

methods were obtained on the augmented Tsinghua-
Tencent dataset at the above experiment settings. The results
are shown in Table 1.

From Table 1, the proposed TS-YOLO model had the
best performance in the augmented Tsinghua-Tencent
100K dataset. Using the proposed TS-YOLO model, the pre-
cision was 74.53, the recall was 84.01, mAP_0.5 was 83.73,

Figure 9: Empty image and obtained image with signs after the copy-pasting operation.

Table 1: The recognition results of different models.

Model Precision (%) Recall (%) mAP_0.5 (%) mAP_0.5:0.95 (%) FPS

Faster RCNN 74.12 87.95 85.84 77.95 24

R-FCN 76.69 89.16 87.19 85.28 28

SSD 70.41 76.05 75.11 71.6 80

RetinaNet 69.83 75.71 75.02 71.5 82

YoloV3 70.16 77.4 76.92 72.97 102

YoloV4 69.71 78.5 78.05 73.93 90

YoloV5 71.92 80.31 80.05 75.63 88

TS-YOLO 74.53 84.01 83.73 78.66 83
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Figure 10: Train loss (object loss, class loss, and box loss).
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and mAP_0.5:0.95 was 78.66. Compared with YoloV5, the
precision was increased by 2.61, the recall was increased by
3.7, mAP_0.5 was increased by 3.68, and mAP_0.5:0.95 was
increased by 3.03, but FPS was decreased by 5% which did
not affect too much. Comparing with two-stage detectors,
Faster RCNN and R-FCN models, the TS-YOLO model
provides only competitive performance in recognition preci-
sion; however, in terms of FPS, it is almost three times faster
in the inference speed, which is of great significance in real
engineering.

More details for TS-YOLO experiments results (training
and validation loss) are shown in Figures 10–14 and Table 2.

Figure 10 shows that the loss (object loss, class loss, and
box loss) values are large in the initial training stage of the
model. However, as the training process progresses, the loss

value shows an overall decreasing trend. The decreasing
curve is very smooth, and there are no spikes during all the
iterations. The loss stabilized when the training step reached
6000 steps. After finishing the training with 600 epochs, the
final training model was obtained.

Figure 11 shows that the validation loss (object loss, class
loss, and box loss) is very large in the initial training stage.
However, as the training process progresses, the loss value
shows an overall decreasing trend. The curves are very
smooth, and there are no spikes during all the iterations.
When the training was finished at 600 epochs, the loss also
reached the minimum, and the trained model had good
performance.

The trends of the recall and precision with the training
epochs are shown in Figure 12. At the beginning of the
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Figure 11: Validation loss (object loss, class loss, and box loss).
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training, both recall and precision rapidly increased due to
the fast adaption of the model. As the training proceeded,
both values started to grow with a stable step, but they still
increased gradually. When the training was finished at 600
epochs, the recall and precision also reached the maximum
values.

Figure 13 shows the trends of mAP_0.5 and mAp_
0.5:0.95 with the training epochs. At the beginning of the
training, both mAP_0.5 and mAP_0.5:95 rapidly increased,
but mAP_0.5 had a higher value than mAP_0.5:95. As the
training proceeded, the training was getting into stable state,
in which both mAP_0.5 and mAP_0.5:95 were increased

gradually. When the training was finished at 600 epochs,
mAP_0.5 and mAP_0.5:95 both reached the maximum
values, which indicated the trained model achieved an
optimized status.

Table 2 shows some validation results (precision, recall,
mAP_0.5, and mAP_0.5:0.95) for different categories of
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Figure 13: mAP_0.5 and mAP_0.5:95 during the training.
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Table 2: Validation results of different traffic sign categories.

Type Count P R mAP_0.5 (%) mAP_0.5:0.95 (%)

i1 99 0.994 0.99 98.5 98

i10 130 0.952 0.969 96.5 96.2

i11 100 0.991 1 99.5 99.2

i12 130 0.969 0.992 99.5 99.3

i13 106 0.974 0.991 99.5 99.2

i14 105 0.973 1 99.5 99.5

i15 110 0.993 1 99.5 99.5

i2 188 0.8 0.91 93.9 82.6

i3 114 1 0.99 99.5 99.4

il100 30 0.543 0.9 90.6 71.3

il110 3 0.0941 0.667 68.9 58.2

il50 106 0.978 0.991 99.4 98.8

il60 80 0.711 0.975 95.8 72.5

il80 50 0.588 0.94 88.2 71.8

il90 18 0.403 0.944 73.3 58.2

io 162 0.563 0.883 86 62.1

ip 181 0.797 0.972 97.5 86

p1 124 0.918 0.968 97.4 95.7

p12 143 0.855 0.979 98.2 91.2

p13 126 0.99 0.992 99.5 99.5

p14 121 0.989 0.959 98.2 95.4

p15 124 0.993 0.992 99.5 99.3

p16 98 0.931 0.99 98.5 98.4

p17 140 0.948 1 99.5 98.6
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traffic signs. It can be seen from the table that the model has
good performance in precision, recall, mAP_0.5, and mAP_
0.5:0.95 for most of the traffic signs. However, some catego-
ries such as il100, il110, il60, il80, and il90 had only less than

100 training samples, which were not sufficient for training.
Thus, mAP_0.5:0.95 for these categories was less than 0.8.
By contrast, p12, p13, p14, and p15 had more training sam-
ples, and both mAP_0.5 and mAP_0.5:0.95 had high scores.
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Figure 15: Street view images and detection results from TS-Yolo. ((a) Cloudy; (b) snowy; (c) dimly at night; (d) shadow occlusion).
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In the PR curve, the recall was plotted on the X axis and
precision was plotted on the Y axis. A point in a PR curve
represents the corresponding recall and precision values of
the classification results at a certain threshold. In detail, at
the specific threshold, the model will predict the result
greater than the threshold as positive, and the results less
than the threshold as negative. The PR curve was generated
by moving the threshold from high to low.

Figure 14 shows the PR curve of TS-Yolo with an aug-
mented Tsinghua-Tencent dataset. The blue line shows the
precision-recall curve for all the classes when the threshold
changes from 0 to 1. The PR curve of all classes is close to
the top right corner of the box, which indicates that both pre-
cision and recall values are close to 1. Thus, the obtained
results of TS-Yolo for classification are relatively good. But
for some classes, the PR curve is close to the bottom left cor-
ner of the box, which indicates that both precision and recall
are close to 0. Thus, the prediction performance for these
classes is poor, which is mainly because that these classes
don’t have enough training samples. For these classes, the
learning performance can be improved by adding more
training samples.

Figure 15 shows the street views with traffic signs and the
detection results from TS-Yolo. These figures show different
severe weather conditions. Figure 15(a) shows a road scene in
cloudy condition. Figure 15(b) shows a road scene on snowy
days, Figure 15(c) shows a dim road scene at night, and
Figure 15(d) shows a road scene with shadow occlusion traf-
fic signs. It can be seen from the figures that TS-Yolo per-
forms well and is able to detect all the traffic signs correctly.

5.2. Ablation Study. In order to illustrate the improvements
brought by different methods introduced in TS-Yolo, we
conducted comparison experiments to assess the effects of
data augmentation, MixConv, and AFF.

As shown in Table 3, the results with 10,000 images from
the Tsinghua-Tencent traffic sign dataset without any data
augmentation were used as the baseline. Using this dataset,
YoloV5 had poor performance, the precision was 37.36,
and mAP_0.5 was only 46.94. After applying data augmenta-
tion, the number of images increased to 25,000, the precision
was 71.92, which was increased by 34.56, and mAP_0.5 was
80.05, which was increased by 33.11. When MixConv was
applied on YoloV5 with the augmented dataset, the precision
was 72.27, which was increased by 0.35, but mAP_0.5 was
quite similar. If AFF was applied instead, the precision was
73.88, which was increased by 1.96, and mAP_0.5 was
81.92, which was increased by 1.87. Finally, the TS-Yolo

model was evaluated when all the methods including data
augmentation, MixConv, and AFF were applied. In this sce-
nario, the precision was 74.53, which was 2.61 higher than
the scenario with data augmentation only, and mAP_0.5
was 83.73, which was 3.68 higher than the scenario with data
augmentation only. Therefore, data augmentation contrib-
uted most in improving the performance of the model,
because high quality and sufficient training data was the most
important factor for the model. In addition, the application
of MixConv and AFF also improved the accuracy (by 2.61)
and mAP (by 3.68), which can benefit the accurate traffic sign
detection in severe weather condition.

6. Summary and Conclusions

This paper proposed a CNN-based model, named TS-Yolo,
for accurate traffic detection under severe weather condi-
tions. First, the data augmentation was conducted using
copy-paste strategy, and a large number of new samples were
constructed based on existing traffic-sign instances. Based on
YoloV5, MixConv was also used to mix different kernel sizes
in a single convolution operation, so that different patterns
with various resolutions can be easily captured. AFF module
was also used to fuse features from the same-layer scenario to
cross-layer scenarios based on attention, including short and
long skip connections, and even perform the initial fusion
inside itself. The application of the AFF module contributed
to capture the features of the targets with high resolutions.
The summary and main findings are as follows:

(i) With data augmentation, the number of images was
significantly increased. The copy-pasting operation
was used to paste the distorted traffic signs to the
street view images without any traffic sign. Thus, a
large amount of annotated training samples were
generated. After data augmentation, the precision
was 71.92, which was increased by 34.56, and
mAP_0.5 was 80.05, which was increased by 33.11

(ii) Based on YoloV5, MixConv was used in backbone to
mix different kernel sizes in a single convolution
operation, so that the patterns with different resolu-
tions can be captured. AFF was used in neck layer to
fuse the features from the same-layer scenario to
cross-layer scenarios based on attention, including
short and long skip connections, and even perform
the initial fusion inside itself. When both MixConv
and AFF were in TS-Yolo model, the precision was
74.53, which was 2.61 higher than the test scenario

Table 3: Ablation study results.

Methods Precision (%) Recall (%) mAP_0.5 (%) mAP_0.5:0.95 (%)

YoloV5 (no data augmentation) 37.36 47.87 46.94 35.09

YoloV5 + data augmentation 71.92 80.31 80.05 75.63

YoloV5 + data augmentation +MixConv 72.27 80.38 80.03 75.7

YoloV5 + data augmentation + AFF 73.88 82.5 81.92 77.4

YoloV5 + data augmentation +MixConv + AFF 74.53 84.01 83.73 78.66
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with only data augmentation, and mAP_0.5 was
83.73, which was 3.68 higher than the test scenario
with only data augmentation

(iii) With the augmented Tsinghua-Tencent 100K data-
set (including images under extreme conditions),
the accuracy of traffic signs detection under extreme
conditions is improved, which will eventually bring
benefits to intelligent driving and transportation
systems and help reduce the traffic accident rate
and improve transportation safety

Overall, to the best of our knowledge, this research is the
first attempt to employed a CNN-based model to be a tenta-
tive solution of traffic sign recognition and recognition in low
visibility and complex visual environment. The TS-Yolo
model integrates into MixConv, and the AFF module can
improve the recognition accuracy of traffic signs in extreme
adverse environment to a certain extent, which will provide
a possible solution for automatic driving and intelligent
recognition

7. Suggestions for Future Research

Suggestions for future research on this topic are as follows:

(i) In the future, more real-world traffic sign images
should be captured and annotated to enrich the data
set. More abundant data platforms and datasets
should be established, and the detection and recog-
nition should be analyzed in various scenarios, such
as dust, haze, and tunnel environment. An attempt
should be made to use images from video resource
so that the images are consecutive frames from it

(ii) Other CNN object detection models, such as Center-
Net and EfficienDet, should be tried to deepen the
adaptability of extended model. Furthermore, based
on the attention mechanism, a new image recogni-
tion architecture should be constructed, so that the
implementation of the architecture depends more
on the image feature extraction, and then a series
of attention guidance modules can be introduced
to improve the image recognition accuracy under
more extreme conditions

(iii) The integration of different driving behaviors and
traffic sign recognition technology should be studied
through experiments and field research, and the
basic integration of image acquisition hardware
and transmission equipment should be considered
to achieve the high integration of automatic driving
technology

Data Availability

The (https://github.com/wanhaifengytu/TSYolo/tree/main/
data/trafficsigns) data used to support the findings of this
study have been deposited in the Git Hub repository
(https://github.com/wanhaifengytu/TSYolo).
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