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Data-driven soft sensors are widely used to predict quality indices in propylene polymerization processes to improve the
availability of measurements and efficiency. To deal with the nonlinearity and dynamics in propylene polymerization processes,
a novel soft sensor based on quality-relevant slow feature analysis and Bayesian regression is proposed in this paper. The
proposed method can handle the dynamics of the process better by extracting quality-relevant slow features, which present
both the slowly varying characteristic and the correlations with quality indices. Meanwhile, a Bayesian inference model is
developed to predict the quality indices, which takes advantages of a probability framework with iterative maximum likelihood
techniques for parameter estimation and a sparse constraint for avoiding overfitting. Finally, a case study is conducted with
data sampled from a practical industrial propylene polymerization process to demonstrate the effectiveness and superiority of

the proposed method.

1. Introduction

As modern process industries become larger scale and more
integrated, pivotal key performance indices about product
quality, process safety, and pollution reduction should be
closely monitored [1-4]. Besides, real-time measuring of
quality indices is important for process monitoring, control,
and optimizing products [5-7]. Thermoplastic polymers
such as polypropylene are important materials and have
been used in various sectors. The melt index (MI) which
determines the grade of the polymer product is considered
one of the most crucial indicators in quality control for
industrial propylene polymerization (PP) processes. Up to
date, an accurate first-principle MI model is still not avail-
able. The MI is usually evaluated offline with an analytical
procedure in the laboratory which takes 1.5-2h to complete.
This can result in a delay in the quality control system as
there is no available quality indicator at this time. In the
absence of an economical or effective online measurement,
soft sensors could serve as an alternative solution [8-14].
Additionally, with the wide availability of process data in

PP processes, increasing data-driven soft sensors have been
adopted to predict the ML

Data-driven approaches are used as an alternative to the
mathematical model. The data reading from sensors can
often contain a large number of variables that describe the
same process phenomena. When encountering high-
dimensional data, it is useful to project the data into the
latent space, which is more compact than the original space.
For MI prediction, the principal component analysis (PCA)
[15] and partial least squares (PLS) [16] have been applied.
Unfortunately, as the model is linear, it is inadequate when
the soft sensing variables are nonlinear. To this end, nonlin-
ear modeling methods are used in MI prediction, such as
artificial neural networks (ANNs) [17], support vector
machines (SVMs) [18], Gaussian process regression (GPR)
[19, 20], and relevance vector machine (RVM) [21]
[22-25]. Recently, Liu et al. proposed an adversarial transfer
learning- (ATL-) based soft sensor [26] and a domain
adaptation transfer learning soft sensor for product quality
prediction [7]. As classical methods, PCA and PLS have
achieved great successes with respect to quality prediction
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by extracting latent variables (LVs) [27-29]. However, they
can only be used to extract static LVs, which are unsuitable
for modeling dynamic processes because they are limited
by containing temporally related process information.

In practical chemical processes, frequent fluctuations of
equipment characteristics with time always result in
dynamic processes. For soft sensing of quality indices,
dynamic data characteristic could play an important role in
regression, the result of which may highly influence the per-
formance for the quality control system. A new merged
unsupervised algorithm, slow feature analysis (SFA) [30], is
applied in our work for its remarkable ability to extract
slowly varying and temporally related features for modeling
dynamical processes. SFA has been extensively used for
various reasons, such as blind source separation [31], signal
processing [32], and process monitoring [33-36]. Unlike the
static models generated by PCA or PLS, SFA-based models
can better describe process temporal behaviors through the
extraction of slowness of LVs. When used for modeling,
the extracted slowly varying LVs will be termed as process
intrinsic properties, and the fast-varying LVs are seen as
process noise inversely. Up to now, some SFA-based
methods have been applied in prediction modeling. Shang
et al. [37] proposed probabilistic slow feature analysis
(PSFA) based a soft sensor model for quality prediction.
Fan et al. [38] proposed a robust PSFA- (RPSFA-) based
regression model that models outliers in the observation
data using Student’s ¢-distribution. Zhong et al. [39] put
forward an online quality prediction method based on mod-
ified regularized SFA (ReSFA). Jiang et al. [40] proposed a
real-time semisupervised predictive modeling strategy for
industrial continuous catalytic reforming process using
SFA. However, traditional slow features are calculated only
considering slowness of process variations, while their corre-
lations with quality indices are neglected for feature extrac-
tion. Slow features are extracted and then used for quality
prediction by performing regression using the ordinary least
square, which means that they may not describe nonlinear
relationship among variables well. Considering the nonline-
arity of the propylene polymerization process, using nonlin-
ear regression modeling method is quite necessary.

Hence, to deal with the nonlinearity and dynamics in PP
processes, a soft sensor based on quality-relevant slow
feature analysis and Bayesian regression is proposed in this
paper. First, the quality-relevant slow feature analysis
(QSFA) is adopted to extract slow features which present
both the slowly varying characteristic and the correlations
with quality indices. Then, the extracted quality-relevant
slow features (QSFs) are sorted according to the correlation
index and selected for regression modeling by the cross-
validation method. Based on the selected QSFs, a Bayesian
inference framework named relevance vector regression
(RVR) is developed to predict the quality variable, i.e., MI
for the polypropylene products. It takes advantages of a
probability framework with iterative maximum likelihood
techniques for parameter estimation and a sparse constraint
for avoiding overfitting. Finally, the effectiveness of the pro-
posed method (QSFA-RVR) is confirmed through real data
obtained from industrial propylene polymerization plants.
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The rest of the paper is organized as follows. Section 2
presents the methods for the development of the proposed
soft sensor. First, a brief introduction of the traditional
SFA is presented. Then, the formulation for the QSFA-
RVR prediction model is presented, which contains the
QSFA method, the relevance vector regression, and the qual-
ity prediction method based on QSFA-RVR. Experiment
results on real data from practical industry processes are
analyzed and discussed in Section 3. Finally, the conclusion
is drawn in Section 4.

2. Methods

2.1. Overview of Slow Feature Analysis. SFA is an unsuper-
vised algorithm proposed by Wiskott and Sejnowski [30],
which extracts invariant features from quickly varying
signals. The slow variations are always termed as intrinsic
features of signals. Meanwhile, rapid variations often allude
to measurement noise. The detailed methodology of SFA is
illustrated as follows [41].

Given a J-dimensional input signal X, SFA is aimed at
finding mapping functions from input to slow features s; =

i
9;(X), j€[1,2,]] that minimize

min A(s;) = <s12>, (1)

5]'(')
under the constraints
(sj) = 0(zero mean),

2 . .
<sj > = 1(unit variance),

{90}

Vi#j, (s;s;) = 0(decorrelation and order),

(2)

where (-) denotes time averaging and denotes the first-
order derivative of s; with respect to time.

To simplify this optimization problem, it is assumed that
the SFs are a linear combination of input variables. The
linear mapping is

s;=Xw;. (3)

The optimization problem in (1) can be solved by two

steps of singular value decomposition (SVD) [42], which is

tantamount to a numerical solution to the generalized eigen-
value decomposition (GED) problem in

AW = BWQ, (4)

where A = (XXT> denotes the covariance matrix of the first-
order derivative of X and B = (XX”) denotes the covariance
matrix of X; W = [w}, Wy, W] " is the matrix of generalized
eigenvectors, which are coefficient vectors of linear map-

pings; and Q = diag {A;,"+,A;} is a diagonal matrix with A,
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= <s]2> being generalized eigenvalues, which are arranged in
an ascending order.

By performing a first SVD on B with equation (5), the
original input X is whitened as Eq. (6).

B =UAU", (5)

Z =AU, (6)

where U is an orthogonal matrix, A is a diagonal matrix, and
cov (Z) = (ZZ") =1,. Then, a second SVD on the covariance
of the first-order derivative of Z yields

<ZZT> =pTQP, (7)

where P is an orthogonal matrix.
Thus, the weighting matrix W can be calculated, and the
slow features s can be obtained using equation (3).

2.2. Quality-Relevant Slow Feature Analysis. Conventional
SFA only considers slowness of process variations when
extracting slow features. SFA’s competence to retain process
information containing quality indices is limited. An intui-
tion is presented to integrate the relationships between slow
features and quality indices into SFA’s optimization prob-
lem. In this way, an improved SFA algorithm, named
quality-relevant slow feature analysis (QSFA), can extract
quality-relevant slow features (QSF) from a process, and
these slow features can better reveal the essence of the pro-
cess. Moreover, a new objective function for SFA should be
designed to enable the QSFA that considers both slowness
of process variations and their correlations with quality
indices. Given the normalized process variables X and the
quality index y, a new objective function J(w) composed of
three subobjective functions is designed. The first subobjec-
tive function J; which considers that the QSF should change
slowly is given as follows:

min J,(w) = A$) = (Xw) " (Xw), (8)

where s is the QSF and w is the corresponding weighting
vector. Considering that the QSF should be highly correlated
with the quality index, the second subobjective function J, is
aimed at maximizing the correlation between s and y, which
is given as follows:

Ty T TooT
max J,(w) = syys _ (Xw)yy (Xw). 9)

- \/mr (S) \/(XW)T(XW)

The third subobjective function J; is used to maximize
the variance of s which represents the variation information
of the process.

max J5(w) = y/var (s) =/ (Xw)T (Xw). (10)

Thus, a new optimization problem of QSFA can be
described as

max J(w) = ];—{3 = (Xw)Tny(Xw),
st (kw)' (kw) =1 an
wiw=1.

By introducing Lagrange multipliers A and 6, equation
(14) can be easily obtained. Obviously, the value of the
objective function J(w) is equal to (A +9).

L(w)=w'X"yy"Xw -1 (wTXTXw - 1) - 5(WTW - 1) ,
(12)

L . .
d 8(w—) =2X"yy Xw - 20X Xw - 20w =0, (13)
A

w XTyyTXw=21+6, (14)

Therefore, we can rewrite the solution of equation (13)
as the following GED problem [43]:

Xy Xw = (AXTX + 81) w, (15)

where I is a J-dimensional identity matrix.
By performing SVD decomposition on the covariance

matrix XTX, we have
XX =UAU". (16)

The whitening transformation with the whitening matrix
H is described as follows:

Z=A"UTX" =H'X". (17)
Obviously, it holds that ZZ" = HTX'XH = I. Thus, find-
ing a weighting vector w is identical to finding a vector He

that satisfies s = XH¢. The GED problem in equation (15)
can be reformulated as

X yy"XHe = (AXTX + 81) He. (18)

Left multiplying both sides of equation (18) by H” and
substituting H'X XH =1 and HTH = A™', we obtain

H'X"yy"XHg = (AL + A7) ¢. (19)

It is an eigenvalue decomposition problem, and the

eigenvector @ is calculated. Finally, the QSF s can thus be

computed as

s = Xw = XHe = XUA 2¢. (20)



2.3. Relevance Vector Regression. After the QSFs have been
extracted and selected, a sparse Bayesian framework named
relevance vector regression (RVR) is developed for the
prediction model. Given a database {x,,t,} , with the
input data x, and the corresponding target, the target can
be expressed as follows [44, 45]:

tﬂ =y(x}’l) + 871’ (21)

where ¢, ~ N(0,0%). The function y(x) is defined as follows:

y(x) = Z @K (x, x;) + wy = Z w; i (%) (22)

where ¢,(x) = K(x,x;) is the kernel function and w = [w,,
wy, - wy] is the weighted parameter vector of the kernel
function.

The targets is given as p(t,|x,)=N(t,|y(x,),c?).
The likelihood function of target values t=[t;,t,, -ty]
is written as

p(tIx w,0%) = (27102)_N/2 exp {—2}‘2 |t—(Dw||2}, (23)

where @ is a design matrix consisting of kernel functions.
A zero-mean Gaussian distribution is used to constrain
the weight parameters w:

N
plwla)= [[N(w 10,0, (24)

i=0
where « is a vector of hyperparameters (a = [0, ot San] D).

Then, the posterior distribution overweights can be
calculated through the Bayesian rule:

p(tlw,0*)p(w|a)
p(tla o0?)

= (2m) D exp {; (@-4)" Y (0 u)},

(25)

ploltao’)=

where the posterior mean and covariance are given by
=030, (26)
= (020 D+ A)7, (27)
with A = diag (ag, 07,70ty

For a new test sample x, and the corresponding target
t,, the predictive distribution is given by

Pt %0 %t dyp, 03pp) = [P(t* 1%, 0,03p)p(@ %, 1, aypp, 0 deo,

(28)

where ay;p and 0% are most probable values for hyper-
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parameters and variance, respectively. Using equations
(23) and (25), the predictive model is presented as

Pt 1 =N(t, |4 ¢(x,),0%), (29)

where the variance is 02 = 02, + ¢(x, )" Z¢(x, ).

Thus, a Bayesian prediction model is developed. The
sparseness of the model is guaranteed by the constrained
weights that follow zero-mean prior distribution. The «
and o? are estimated by maximizing p(t|a, o) given by
tipping [44]:

p(tlao?) = Jp(uw,UZ) - p(o] a)dew

(30)
1
= (2m) N2 |CI T exp {EtTC_lt},

where the covariance is given by C = 0T + @A™ @T.
Values of « and o? can be calculated by the iterative
method:

1-oa;2;
ui

new
o =

> (31)

j-ouP
N-YY (1-a%,)

(32)

(@)=

2.4. Quality Prediction Method Based on QSFA-RVR. As
plenty of data have been sampled from the propylene poly-
merization process, a soft sensor model based on quality-
relevant slow feature analysis and Bayesian regression is
constructed to predict the MI value for quality monitoring.
The model extracts quality-relevant slow features from the
sampled data and built a conditional probability distribution
over sparse weight parameters; then, MI values are predicted
according to the Bayesian inference. The parameters of the
model are estimated by a recursive expectation maximum
technique. It is recognized that different QSFs may have
different significances and only some of them are critical to
quality prediction. The noncritical QSFs should be
removed from model development to avoid undesirable
disturbance. Here, the cross-validation method is adopted
to determine the retained QSFs for Bayesian regression.
The flowchart of the QSFA-RVR soft sensing approach
for quality prediction is shown in Figure 1. The step-by-
step procedures for constructing the quality prediction
model are described as follows:

Step 1. Classify the modeling data into two groups, namely,
the training dataset {X,,,y, } and testing dataset {X,,y,.}-

Step 2. Normalize the training dataset {X,,,y, } with X,, -
ulo to obtain {X,,,y,}, where u and ¢ are the mean and

standard deviation of X,,.
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Normalize the training dataset

v

Conduct quality-relevant slow
feature analysis to obtain QSFs

v

Sort the QSFs in descending order
by the correlation index R(i)

2
Newly sampled
testing data

A

Determine the retained QSFs S;, by
cross-validation and the corresponding
weighting matrix w

|

Initialize the parameters & and o
of quality prediction model

v

Compute the posterior mean g and
covariance ) of the model

'

Update the model parameters
a and o?

o and o are converged
to their optima?

Normalize data with the mean and
variance of training dataset

‘
Calculate QSFs of testing data
Ste = XpeW

‘
Calculate the predicted value y
using the prediction model

End

FiGURre 1: Flowchart of the QSFA-RVR soft sensing approach for quality prediction.

Step 3. Conduct quality-relevant slow feature analysis with
{Xi» ¥y} and obtain a series of QSFs s={s , 8y, Sy, }

according to equations (15)-(20).

Step 4. Sort the QSFs s={s; .Sy, =8} in descending
order evaluated by the correlation index R(i):

T
stri Y

R(i) = (33)

var (s, )/ var (y)
For brevity, the sorted QSFs are still noted s = {s,, , s, ,
++-8, }» and the corresponding weighting matrix is saved

as w.

Step 5. Determine the retained QSFs s, = {s,, S, , "8, }
for regression modeling using the cross-validation method,
where M is the number of retained features. The corre-
sponding weighting matrix is saved as w.

Step 6. Initialize the parameters a and o® of the quality
prediction model.

Step 7. Given the values of parameters a and o? and
the training set {s,,y,}, compute the posterior mean

u and covariance ¥ of the model according to equa-
tions (26) and (27).

Step 8. Given the values of posterior statistics ¢ and X,
determine the model parameters « and o® by equations
(31) and (32).

Step 9. If values of parameters a and o2 are converged to their
optima, continue to Step 10. Otherwise, go back to Step 7.

Step 10. For the testing data X,,, it is normalized as X,,
according to the mean and variance of the training dataset.

Step 11. Calculate the corresponding QSFs s, = {s; , Sic»**>
Sie, | by projecting the normalized X, onto the weighting
matrix w, that is, s, = X, ,w.

Step 12. A quality prediction model is formulated by equa-
tion (29) with input s,.. An estimated value of quality index
¥ could be obtained by the prediction model.

To quantify the prediction accuracy, five performance
indices are used for comparisons, namely, the mean absolute
error (MAE), the mean relative error (MRE), the root mean
square error (RMSE), Theil’s inequality coefficient (TIC),
and standard deviation of absolute error (STD). The error
indicators are defined as follows:
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Polypropylene powder
Catalyzer
Hydrogen '
Hydrogen Hydrogen \
Propylene
FIGURE 2: Schematic diagram of the industrial propylene polymerization process.
TaBLE 1: Process variables in the propylene polymerization process used for modeling.

No. Measured variables No. Measured variables
1 Temperature in the first CSTR 6 Flow rate of feedstock in the first FBR
2 Pressure in the first CSTR 7 Concentration of hydrogen in the first CSTR
3 Liquid level in the first CSTR 8 Flow rate of the main catalyst
4 Flow rate of propylene in the first CSTR 9 Flow rate of the second catalyst
5 Flow rate of feedstock in the second CSTR

18
MAE= 31y, - (34)
i=1
MR Z D=3l s 1000, (35)
i:1 )’,
(36)
(37)
(38)

where ¢; =y, -y, e=1/n) e, y; is the real MI value, ¥, is
the predicted MI value, and y is the mean value of the out-
put. The MAE, MRE, and RMSE confirm the prediction
accuracy of the prediction models. The smaller the value of
these indicators is, the higher the accuracy of the prediction
model is. The STD indicates the stability of the prediction
model. The smaller the value is, the more stable the predic-
tion model is. The TIC indicates a good level of agreement
between the proposed model and the studied process.

3. Results and Discussion

The proposed QSFA-RVR model is applied to predict the MI
in an industrial propylene polymerization process located in

China. Figure 2 shows the schematic diagram of the indus-
trial process. The process consists of four reactors in series:
the first two continuous stirred tank reactors (CSTR) and
the last two fluidized-bed reactors (FBR). The feed to the
reactor is comprised of propylene, hydrogen, and the
Ziegler-Natta catalyst. In the first two reactors, the polymer-
ization reaction takes place in a liquid phase, and in the third
and fourth reactors, the reaction is completed in the vapor
phase to produce the powdered polymer products. The MI,
which depends on the catalyst properties, reactant composi-
tion, reactor temperature, and so on, can determine different
brands of the products. To develop a prediction model to
estimate the MI, a total of nine process variables are chosen
as input variables according to the workers’ experience and
reaction mechanism analysis. The selected variables are
listed in Table 1, including the flow rates, temperature, and
pressure. The MI is analyzed at a sampling time of 2 hours
in the laboratory, and the dataset of nine process variables
is acquired from the distributed control system of the
polypropylene process. There are 170 datasets, and they
are divided into training and testing datasets. The first
119 datasets (about 70%) are used for training, and the
remaining 51 datasets (about 30%) are used for testing.
It should be noted that the current MI data are from the
same grade of polypropylene production, which is a slowly
varying dynamic process. The data are filtered to discard
abnormal situations and to improve the quality of the
prediction results. The variables are normalized with the
method of statistical normalization.

First, QSFs are extracted based on the proposed method.
To provide a visual picture of extracted QSFs, Figure 3 visu-
alizes all QSFs extracted on the training set for the PP
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FIGURE 4: Correlation and slowness of QSFs using training data with respect to ML

process. It is observed that the first six QSFs change more
slowly and the slowness decreases. To investigate these QSFs
in detail, two quantitative indices are defined, one of which
measures the slowness of each QSF and the other measures
the correlation with quality. The slowness index is calculated
as S(i) = A(S;), which has been defined in equation (10). The
correlation index R(i) defined in equation (38) is used to
evaluate the correlation between a QSF and a quality index.
Then, the slowness of QSFs and correlation coefficients with
respect to the quality index, i.e, MI, are calculated and
shown in Figure 4. These QSFs are sorted in a descending
order and their values of slowness are correspondingly
arranged. As can be seen from the figure, the slowness of
QSFs is consistent with their quality interpretation. In par-
ticular for the first three QSFs, as the correlation weakened,
the slowness increased. Compared to the first seven QSFs,
the 8th and the 9th QSFs are fast time-varying features and
almost irrelevant to the quality index. It reveals that the
MI is almost all determined by slowly time-varying QSFs.
Thus, a good prediction performance can be achieved based
on the extracted QSFs which present both the slowly varying
characteristic and the correlations with MI.

For prediction purpose, the cross-validation method is
adopted to determine the retained QSFs for Bayesian regres-
sion. The number of retained features is M =5. Then, the
proposed QSFA-RVR model is built based on the selected
QSFs. At the same time, the RVR model, the quality-
relevant slow feature regression (QSFR) model, and the
PCA-based RVR (PCA-RVR) model have also been devel-
oped in comparison with the proposed model. Performances
of different models for predicting MI values on the testing
dataset are shown in Figure 5. The analytic values obtained
from the laboratory are marked with points, and prediction
values of RVR, QSFR, PCA-RVR, and QSFA-RVR are
marked with triangle, asterisks, squares, and pentagrams,
respectively. As can be seen from the figure, the proposed
QSFA-RVR model performance is the best among all
models. It not only can achieve more satisfactory expected
results but also can trace process variations well.

Moreover, another qualitative comparison is displayed
in Figure 6. The scattered plots give exhibition on how the
predicted values gather around the real values. If the plots
are on the black diagonal line, the predicted results are more
accurate and vice versa. As illustrated in Figure 6, the
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proposed QSFA-RVR model has less dispersion of the
prediction than the other three models. It generates more
precise estimated values as these estimated values almost
stay around the black diagonal line.

For comparison, the traditional feature selection method
LASSO is considered for soft sensing. The prediction results
of different models on the testing dataset are listed in
Table 2. It is obvious that the QSFA-RVR model has the best
performance over all. In detail, the QSFR model obtains an
MAE of 0.0168, an MRE of 0.64%, a RMSE of 0.0189, a
TIC of 0.0036, and a STD of 0.0139. The PCA-RVR model
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TaBLE 2: Quality prediction results of different models on the
testing dataset.

Model MAE  MRE (%) RMSE TIC STD

LASSO 0.0187 0.71 0.0233  0.0045 0.0212
RVR 0.0174 0.66 0.0219  0.0042  0.0217
QSFR 0.0168 0.64 0.0189  0.0036  0.0139
PCA-RVR 0.0119 0.45 0.0144  0.0027  0.0126
QSFA-RVR  0.0051 0.19 0.0069 0.0013  0.0069

gives an MAE of 0.0119, an MRE of 0.45%, a RMSE of
0.0144, a TIC of 0.0027, and a STD of 0.0126. The QSFA-
RVR model shows even better results. The MAE, MRE,
RMSE, TIC, and STD are 0.0051, 0.19%, 0.0069, 0.0013,
and 0.0069, respectively. The error measurement of the pro-
posed model has percentage decreases of 69.6%, 70.3%,
63.5%, 63.9%, and 50.4% compared to the QSFR model
and percentage decreases of 57.1%, 57.8%, 52.1%, 51.9%,
and 45.2% compared to the PCA-RVR model. The compar-
ison results prove that the soft sensor based on the QSFA-
RVR model can achieve a good performance in the MI
prediction for the propylene polymerization process.

The above experiments are performed on a personal
computer with the configuration shown as follows: operating
system: Windows 10 (64-bit); CPU: Intel Core i5-7200U
(2.70 GHz); RAM: 8.00 GB; and MATLAB 2017b software.
The computation time of the QSFR, PCA-RVR, and
QSFA-RVR models is 0.965s, 1.65s, and 1.94s, respectively.
The prediction time for testing data only needs less than
2. Since the sampling time of the industrial MI prediction
is about 2h, the proposed method qualifies the online soft
sensor for the MI prediction. The time lags of MI in the form
of average residence time do exist and have been considered
in our research work.

4. Conclusions

In this paper, a novel soft sensor based on quality-relevant
slow feature analysis and Bayesian regression is proposed
for quality prediction in industrial PP processes. The pro-
posed method can handle the dynamics of the process better
by extracting quality-relevant slow features and deal with the
nonlinearity by introducing the Bayesian inference model. A
case study about the MI prediction in a real industrial PP
plant is carried out to evaluate the performance of the pro-
posed QSFA-RVR method. For comparison, the RVR
model, the QSFR model, and the PCA-RVR model are also
developed and evaluated. The application of the proposed
model to the testing dataset demonstrates its superiority.
The QSFA-RVR model predicts the MI with an MRE of
0.19%, which is much more accurate than the PCA-RVR
model with an MRE of 0.45%, while much better than the
QSFR model with an MRE of 0.64%. The research results
reveal the prediction accuracy and validity of the proposed
model, which indicate that the QSFA-RVR modeling
approach can be a promising and efficient methodology for
industrial MI prediction.
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