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One of the problems with industrial robots is their ability to accurately locate the pose of the end-effector. Over the years, many
other solutions have been studied including static calibration and dynamic positioning. This paper presents a novel approach for
pose estimation of a Hexa parallel robot. The vision system uses three simple color feature points fixed on the surface of the end-
effector to measure the pose of the robot. The Intel RealSense Camera D435i is used as a 3D measurement of feature points, which
offers a cheap solution and high accuracy in positioning. Based on the constraint of three color feature points, the pose of the end-
effector, including position and orientation, is determined. A dynamic hybrid filter is designed to correct the vision-based pose
measurement. The complementary filter is used to eliminate the noise of image processing due to environmental light source
interference. The unscented Kalman filter is designed to smooth out the pose estimation of the vision system based on robot’s
kinematic parameters. The combination of two filters in the same control scheme contributes to increased stability and
improved accuracy of robot’s positioning. The simulation, experiment, and comparison demonstrate the effectiveness and
feasibility of the proposed method.

1. Introduction

Robots have been used a lot in production today to replace
human labor because of their ability to work quickly, contin-
uously, and accurately, among many other outstanding
advantages. Serial robots, which have an open-loop kine-
matic chain, are the most common in the industry. Its advan-
tage is the large workspace, but the drawback is accumulated
errors, low stiffness, relatively low load performance due to
open kinematic structure, and large weight of actuators.
Unlike serial robots, parallel robots, which have a close loop
kinematic chain, have high stiffness, high speed and acceler-
ation, and high accuracy and carrying capability, making
them a good solution for many manufacturing applications
[1–3]. In this paper, a six-degree-of-freedom parallel manip-
ulator, Hexa parallel robot [4–7], is studied to apply the
proposed control methods.

One of the problems with industrial robots is their ability
to accurately locate the pose of the end-effector. Integrating
absolute encoders in the joints is efficient, but expensive
and difficult to install. Over the years, many other solutions
have been studied including static calibration and dynamic
positioning [8–10]. The authors in [11] used an inertial mea-
surement unit (IMU) and ultrasonic triangulation sensors
for self-calibration of the robot pose. Its advantage is not
complex. However, when using IMU, one of the difficulties
is handling cumulative errors when integrating measure-
ment parameters due to the large noise of IMU. Li et al.
[12] used the sensor frame and some reflectors fixed on
the end-effector of the robot to estimate the relative pose
of the robot. This method can be applied to parallel and
serial robots. It requires a complex setup and calculation.
In [13], the authors used a 3D visual sensor to correct the
pose of the end-effector of the robot. The sensor is attached
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to the end-effector and it is not easy to install for some
applications. FarzanehKaloorazi et al. [14] optimized the
trajectory planning of a robotic work cell by using particle
swarm optimization (PSO). However, the PSO algorithm
needs complex computation and can cause a delay in real-
time execution.

In robot control, many various sources of error can affect
the positioning of the end-effector such as uncertainties of
the model, the nonlinearity of the system, backlash of the
mechanical system, and unknown noises. Solving all sources
of error is not feasible and effective. Therefore, the visual
measurement-based solutions [15] are of interest because
they directly address and correct the pose of the end effector.
Liang et al. [16] used a vision system and a deep convolutional
network human pose estimation algorithm to estimate the 2D
and 3D poses of robots on construction sites. This method
uses a vision system and deep convolutional network algo-
rithms but does not use additional sensors and markers. The
author in [17] proposed a real-time method based on deep
learning to estimate the pose of the robot arm using a vision
system. This method does not need calibration.

In this paper, the pose of a Hexa parallel robot is esti-
mated dynamically by using a 3D vision system. This
method uses three simple color feature points fixed on the
surface of the end-effector. The Intel RealSense Camera
D435i is used as a 3D measurement of the feature points,
which offers a cheap solution and high accuracy in position-
ing. Based on the constraint of three color feature points, the
pose of the end-effector, including the position and orienta-
tion, is determined.

As with other vision-based positioning methods, this
study needs to address noise in image processing, noise
caused by system vibrations while moving, and other
unknown noises. In the previous studies, some authors used
an extended Kalman filter (EKF) or adaptive Kalman filter
(AKF) to stabilize the pose estimation. Wilson et al. [18]
applied an EKF to the pose estimation based on visual servo
control of a 5-DOF robot arm. In [19], the authors used an
AKF to improve accurate pose estimates for visual servoing.
In [20], a dynamic path tracking scheme for industrial
robots using an AKF is proposed. González et al. [21] used
an EKF for the estimation of the camera space manipulation
parameters and applied it to a parallel robot. The authors in
[22] proposed an adaptive robust Kalman filter to correct the
vision-based pose detection of industrial robots. Compared
to EKF and AKF, a new extension of the Kalman filter to
nonlinear systems [23], named unscented Kalman filter
(UKF), uses many sigma points to linearize a nonlinear
model, so it may be more accurate. In [24], the authors pro-
posed a two-stage Kalman filter-based algorithm for pro-
cessing the data from an inertial measurement unit in
order to obtain accurate position estimation over a short
period of time. In [25], the authors proposed a dynamic fil-
tered path tracking control schema for a 3RRR planar, where
the unscented Kalman filter is designed to reduce the errors
of the pose estimation.

Because the pose estimation error can be caused by mul-
tiple sources of noise, this paper proposes a dynamic hybrid
filter to smooth out the pose measurement of the vision sys-

tem. A complementary filter is used to eliminate the noise of
the image processing due to environmental light source
interference. A UKF is designed to correct the pose estima-
tion of the vision system based on robot’s kinematic param-
eters. The combination of two filters in the same control
scheme contributes to increased stability and improved
accuracy of robot’s positioning.

Based on the above discussion and literature review, the
contributions of this study could be summarized as follows:

(1) The pose of a Hexa parallel robot is estimated
dynamically by using a 3D vision system. This
method uses three simple color feature points fixed
on the surface of the end-effector. The Intel Real-
Sense Camera D435i is used as a 3D measurement
of the feature points, which offers a cheap solution
and high accuracy in positioning. Based on the con-
straint of three color feature points, the pose of the
end-effector, including the position and orientation,
is determined

(2) A dynamic hybrid filter is proposed to smooth out
the pose measurement of the vision system. It is
the combination of two filters in the same control
scheme that contributes to increased stability and
improved accuracy of robot’s positioning. The com-
plementary filter is used to eliminate the noise of the
image processing due to environmental light source
interference. The UKF is designed to correct the pose
estimation of the vision system based on robot’s
kinematic parameters

(3) Although there are many applications of Kalman fil-
ters for industrial robots in the literature review,
there are no specific studies on UKF’s application
in the positioning of parallel robots such as the Hexa
robot. This study details how to define the kinetic
expressions of the Hexa robot and how it is applied
to the UKF, as well as presents the establishment of
UKF parameters and key expressions in practical
application. The simulation, experiment, and com-
parison are conducted to verify the effectiveness
and feasibility of the proposed approaches

The remainder of this paper includes the following:
Section 2 introduces the kinematics of the Hexa parallel
robot. Section 3 is the system description, vision-based pose
estimation, and the problem statement. Section 4 presents
the dynamic hybrid filter. Section 5 shows the simulation,
experiment, and comparison. Section 6 is the conclusion.

2. Kinematic Model of the Hexa Parallel Robot

Figure 1 presents the kinematic structure of the Hexa par-
allel robot. The moving plate is connected to the fixed
platform by six identical pairs of arms and rods, which
are divided into three groups spaced 120 degrees around
the center of the fixed platform. The six arms are driven
by six DC motors. In this study, the index i indicates
the ith pair of arm and rod, where i = 1, ::, 6 as presented

2 Journal of Sensors



in Figure 1. Ai is the rotation center of the revolute joint
of the arm. Bi is the center of the universal joint that con-
nects the arm to the rod. Ci is the center of the spherical
joint that connects the rod to the moving plate. R is the
radius of the fixed platform calculated from its center to
the point Ai. r is the radius of the moving plate calculated
from its center to the point Ci.

ϕ is the angle formed by three points A1, A2, and the
center of the fixed platform. φ is the angle formed by three
points C1, C2, and the center of the moving plate. The fixed
coordinate frame fFg is located at the center of the fixed
platform. The X-axis is toward the center point of the edge
A1A2. The Z-axis is perpendicular to the fixed platform in

the upwards direction. The Y-axis is determined by the
right-hand rule. The moving coordinate frame fMg is
centrally located in the moving plate and has axes that are
oriented similar to those of the frame fFg. The length of
the arm is h. The length of the rod is l. θi is the rotation
angle of the ith arm. The rotation state of the arms is speci-
fied by a vector q = ½θ1, θ2, θ3, θ4, θ5, θ6�T . The pose (position
and orientation) of the moving plate is specified by a vector
p = ½x, y, z, γ, β, α�T with respect to the frame fFg, where pt
= ½x, y, z�T is the position of the moving plate and pr =
½γ, β, α�T is the Euler angles around the X-, Y-, and Z
-axes, respectively.
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Figure 1: The kinematic structure of the Hexa parallel robot. (a) 3D model; (b) top view; (c) front view.
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2.1. Inverse Kinematics. The coordinate of the joint Ci with
respect to the frame fFg is calculated as follows:

FCi = pt + F
MH ⋅ MCi, ð1Þ

where F
MH is the homogeneous transformation matrix from

fMg to fFg. MCi is the fixed coordinate of the joint Ci with
respect to the frame fMg and determined as follows:

MCi = r ⋅ cos ψM
i , r ⋅ sin ψM

i , 0
� �T , ð2Þ

with

ψM
1 , ψM

2 , ψM
3 , ψM

4 , ψM
5 , ψM

6
� �

= −
φ

2 ,
φ

2 ,
2π
3 −

φ

2 ,
2π
3 + φ

2 ,
4π
3 −

φ

2 ,
4π
3 + φ

2

� �
:

ð3Þ

The homogeneous transformation matrix F
MH is as

follows:

F
MH =

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

2
664

3
775, ð4Þ

where c and s present cosine and sine.
The coordinate of the joint Bi with respect to the frame

fFg is calculated as follows:

FBi = FAi + ABi, ð5Þ

where FAi is the fixed coordinate of the joint Ai with respect
to the frame \fFg. ABi is the coordinate of the joint Bi with
respect to the joint Ai.

FAi and
ABi are calculated as follows:

FAi = R ⋅ cos ψF
i , R ⋅ sin ψF

i , 0
� �T ,

ABi =
h ⋅ cos λi ⋅ cos θi
h ⋅ sin λi ⋅ cos θi

−h ⋅ sin θi

2
664

3
775: ð6Þ

with

λ1, λ2, λ3, λ4, λ5, λ6½ � = 0, 0, 2π3 , 2π3 , 4π3 , 4π3

� �
,

ψF
1 , ψF

2 , ψF
3 , ψF

4 , ψF
5 , ψF

6
� �

= −
ϕ

2 ,
ϕ

2 ,
2π
3 −

ϕ

2 ,
2π
3 + ϕ

2 ,
4π
3 −

ϕ

2 ,
4π
3 + ϕ

2

� �
:

ð7Þ

The relationship between the joint Bi and the joint Ci is
expressed as follows:

FCi −
FBi

�� �� = l: ð8Þ

By substituting Equations (1) and (5) into Equation (8),
a new equation is obtained in the following format:

ai ⋅ cos θi + bi ⋅ sin θi = ci, ð9Þ

with

ai = FCix ⋅ cos λi + FCiy ⋅ sin λi − R ⋅ cos λi − ψF
i

� �
,

bi = FCiz ,

ci =
d2i + e2i + FC2

iz + h2 − l2

2h ,

di = FCix − R ⋅ cos ψF
i ,

ei = FCiy − R ⋅ sin ψF
i :

ð10Þ

By solving Equation (9), the rotation angles of the arms
can be obtained as follows:

θi = 2 tan−1
bi ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i + b2i − c2i

q
ai + ci

0
@

1
A: ð11Þ

2.2. Kinematic Jacobian Matrix and Singularity Analysis. To
establish the relationship between the velocity of the moving
plate and the angular velocity of the arms, the Jacobian
matrix needs to be determined. Equation (8) can be rewrit-
ten as follows:

FCi −
FBi

� �2 = l2: ð12Þ

Substituting Equations (1) and (5) into Equation (12)
and differentiating the equation will result to

KT
i ⋅ _pt + KT

i ⋅ FM _H ⋅ MCi − KT
i ⋅ A _Bi = 0,

Ki = FCi −
FBi,

ð13Þ

where _pt = ½ _x, _y, _z�T is the velocity vector of the moving plate.
The time derivative of the homogeneous transforma-

tion matrix can be calculated by the skew-symmetry
operator [26]:

F
M
_H =

0 − _α _β

_α 0 − _γ

− _β _γ 0

2
664

3
775 ⋅ FMH: ð14Þ

The time derivative of ABi is as follows:

A _Bi = h ⋅

−cos λi ⋅ sin θi

−sin λi ⋅ sin θi

−cos θi

2
664

3
775 ⋅ _θi: ð15Þ
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Equation (13) can be rewritten as follows:

KT
i ⋅ _pt + F

MH ⋅ MCi

� �
X
⋅ Ki

� �T
_pr =Qi ⋅ _θi,

Qi = KT
i ⋅ h ⋅

−cos λi ⋅ sin θi

−sin λi ⋅ sin θi

−cos θi

2
664

3
775,

ð16Þ

where _pr = ½ _γ, _β, _α�T is the angular velocity vector of the
moving plate. ½·�X is the skew-symmetry operator of a
vector 3 × 1. Suppose F

MH ⋅ MCi = ½w1,w2,w3�T , the skew-
symmetry operator will result to

F
MH ⋅ MCi

� �
X
=

0 −w3 w2

w3 0 −w1

−w2 w1 0

2
664

3
775: ð17Þ

Equation (16) can be rewritten as follows:

Jp ⋅ _p = Jq ⋅ _q, ð18Þ

where

_p = _pTt _p
T
r

h iT
= _x, _y, _z, _γ, _β, _α
h iT

,

_q = _θ1, _θ2, _θ3, _θ4, _θ5, _θ6
h iT

,

Jq = diag Q½ �,
Jp = e1 e2 e3 e4 e5 e6½ �T ,

ei = KT
i

F
MH ⋅ MCi

� �
X
⋅ Ki

� �Th i
:

ð19Þ

Jp and Jq are the forward and inverse Jacobian matri-
ces, respectively. Equation (18) is used to find the system
equation for the UKF in Section 4.2.1.

3. System Description, Vision-Based Pose
Estimation, and Problem Statement

3.1. System Description. Figure 2 is the block diagram of the
hybrid filter for the pose estimation of the Hexa parallel
robot. Block A is the motion control, which includes the
path planning and motion control of the robot. In this paper,
motion control is not covered in detail because it is not the
scope of the study. It is assumed that the desired trajectory
is ready to be set and that the motion controller controls
the motors through all points in the trajectory. Block B is
the image filter, which includes image processing, features
detection, and a complementary filter to stabilize the feature
points. Details will be presented in Sections 3.2 and 4.1.
Block C is the pose estimation, which includes the 3D recon-
struction to calculate the 3D coordinate of the feature points
and through which the pose of the moving plate will be cal-
culated. Details will be presented in Section 3.2. Block D is

the dynamic filter, which includes a UKF to smooth out
the pose estimation. Details will be presented in Section 4.

pd is the desired pose of the moving plate at one point in
the trajectory. qd is the rotation vector of the arms corre-
sponding to pd . The relationship between qd and pd is
described as follows:

qd = Tikp pdð Þ, ð20Þ

where Tikp is the apparent function of the inverse kinematics
problem presented in Section 2.1.

qr is the real rotation vector of the arms. ωd is the desired
angular velocity of the arms. ωr is the real angular velocity of
the arms. qr and ωr are obtained by tracking the encoders of
the motors. pr is the real pose of the moving plate after the
motion control corresponding to pd . There is always an error
between pr and pd due to many reasons such as uncer-
tainties, system nonlinearities, the backlash of the motor
gearbox, and unknown disturbances. In the experiment, pr
is measured by a highly accurate instrument after each
moving point in the trajectory and used as ground truth to
evaluate the results.

ðuj, vjÞ is the coordinate of the jth feature point in the
image plane. pe is the pose of the moving plate after the
vision-based pose estimation. pf is the pose of the moving
plate after using the UKF to smooth out the pose estima-
tion. The filtered value after the dynamic filter is used to
calculate the angles of the arms using the inverse kinemat-
ics problem and compared with the desired value to
compensate for the errors.

3.2. Vision-Based Pose Estimation. Figure 3 presents the
vision system of the Hexa parallel robot using in this study.
The Intel RealSense Camera D435i is located below the fixed
platform, pointing towards the surface of the moving plate
to capture the image of the feature points. fCg is the camera
coordinate system. The feature points are detected by color,
shape, and area using OpenCV 4.3.0, which can be searched
on the internet. After the image processing, the coordinate
ðuj, vjÞ of the jth feature point in the image plane is obtained.

The 3D coordinate of the feature point with respect to
the frame fCg is calculated as follows:

C xj, yj, zj
h iT

= TR uj, vj
� �

,

j = 1, 2, 3,
ð21Þ

where TR is the apparent function of the 3D reconstruction
using Application Programming Interfaces (APIs) for the
Intel RealSense Camera, which is supplied with the device
or can be found on manufacturer’s website.

The 3D coordinate of the feature point with respect to
the fixed frame fFg is calculated as follows:

F xj, yj, zj
h iT

= F
CR ⋅ C xj, yj, zj

h iT
,

j = 1, 2, 3,
ð22Þ
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where F
CR is the homogeneous transformation matrix from

fCg to fFg.
The position of the moving plate with respect to the fixed

frame fFg is calculated as follows:

pt = x, y, z½ �T = x1 + x2 + x3
3 , y1 + y2 + y3

3 , z1 + z2 + z3
3

h iT
:

ð23Þ

To calculate the orientation of the moving plate, the
plane Π passing through the three feature points is defined
as follows:

Π : ax + by + cz + 1 = 0, ð24Þ

with

a = −1
Δ

1 y1 z1

1 y2 z2

1 y3 z3




















b = −1

Δ

x1 1 z1

x2 1 z2

x3 1 z3




















,

c = −1
Δ

x1 y1 1
x2 y2 1
x3 y3 1




















Δ =

x1 y1 z1

x2 y2 z2

x3 y3 z3




















:

ð25Þ

The orientation pr = ½γ, β, α�T of the moving plate is cal-
culated as follows:

(i) The Euler angle β is the angle between the plane Π
and the OYZ-plane, where the OYZ-plane has an
equation of x = 0

(A) Motion control

Motion
control

C
om

p
en
sa
ti
on

3RRR
robot

Intel RealSense
camera D435i

Features
detection

Complementary
filter

3D
reconstruction
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Unscented
kalman filter

(D) Dynamic filter

Inverse kinematics
p
e

p
f

p
d

q
r

(u
j
, v

j
)

(B) Image filter

p
rPath

planning

q
d

𝜔
d

𝜔
r

Figure 2: Block diagram of hybrid filter for the pose estimation of the Hexa parallel robot.

Figure 3: The vision system of the real robot (a) and the vision system on the control software (b).
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(ii) The Euler angle γ is the angle between the plane Π
and the OXZ-plane, where the OXZ-plane has an
equation of y = 0

(iii) The Euler angle α is the angle between the X-axis
and the line passing through the feature point 1
and the center of the plate

Finally, the pose of the moving plate is determined as
follows:

p =
pt

pr

" #
: ð26Þ

3.3. Problem Statement. Two factors may influence the out-
come of the pose estimate in Figure 2:

(i) Feature detection in block B is noisy and has a cer-
tain margin of error in image processing mainly
due to the influence of ambient light sources as
demonstrated in Figure 4. The noise affects the
results of the depth measurement and the calcula-
tion of the 3D coordinates of the feature points
by Equation (21).

(ii) The pose calculation in block C has errors due to
many reasons such as uncertainties, system nonline-
arities, the backlash of the motor gearbox, and
unknown disturbances. The trajectory and speed of
the robot also affect the error

The objective of this study is to design a dynamic hybrid
filter, which is the combination of the complementary filter
in block B and the UKF in block D to smooth out and cor-
rect the pose estimation of the moving plate. The comple-
mentary filter reduces the noise and stabilizes the
measurement of image processing. The UKF smooths out
the pose calculation based on robot’s kinetics. The corrected
value will be used as the feedback of the motion control to
increase the accuracy.

4. The Dynamic Hybrid Filter

4.1. The Image Filter Using a Complementary Filter. In image
processing, the coordinate of feature points in the image
plane may have an error due to noises, mainly light source
noise and vibration when moving the robot. A 1-pixel error
can also lead to a position error of several millimeters after
3D reconstruction as shown in Equation (21). To increase
accuracy, the pixel positions in this study are calculated by
real numbers instead of integers. In this study, a comple-
mentary filter is used to remove the noise and stabilize the
coordinate of the feature points in the image plane.
Figure 4 shows the role of the complementary filter in the
proposed hybrid filter. It can reduce noise significantly.

The formula of the filter is as follows:

u

v

" #k

j

=
α 0
0 α

" #
u

v

" #k−1

j

+
β 0
0 β

" #
�u

�v

" #k

j

,

β = 1 − α,

with initial condition :
u

v

" #0

j

=
0
0

" #
,

j = 1, 2, 3,

ð27Þ

where 0 < α < 1 is the filter gain, which is chosen experimen-
tally to balance smoothness and lag. k − 1 and k are the pre-
vious and current instant, respectively. j is the index of the
feature point. ð�uj, �vjÞ is the coordinate of the feature point
on the image plane calculated by image processing at the

Motion
control

Sigma
points

Prediction Update Output

Vision-based pose
estimation

Figure 5: The process of the unscented Kalman filter.

637.8

637.7

637.6

637.5

637.4

20 40 60
Points

Detected coordinate
Filtered coordinate

80 100 20

324.2

324

323.8

40 60
Points

Detected coordinate
Filtered coordinate

80 100

u
-a

xi
s (

pi
xe

ls)

v-
ax

is 
(p

ix
el

s)

Figure 4: The coordinate of detected feature point before and after applying the complementary filter (100 continuous instants at the
ground truth of u = 637:50 and v = 323:85. The ground truth is obtained by calculating the inverse problem in 3D reconstruction for a
known physical location with exact coordinates).
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current instant. ðuj, vjÞ is the coordinate of the feature point
on the image plane after filtering.

4.2. The Dynamic Filter Using an Unscented Kalman Filter.
The UKF [23] is used to smooth out the pose calculation
based on robot’s kinetics. The corrected value will be used
as the feedback of the motion control to increase the accu-
racy. This process is demonstrated in Figure 5.

4.2.1. The System Equation. Equation (18) can be rewritten
as follows:

_p = Jc ⋅ _q = Jc ⋅ ω,
Jc = Jp−1 ⋅ Jq,

ω = _θ1, _θ2, _θ3, _θ4, _θ5, _θ6
h iT

,

ð28Þ

where Jp is the forward kinematics Jacobian matrix of size
6 × 6 and Jq is the inverse kinematics Jacobian matrix of size
6 × 6. Jp and Jq are calculated by Equation (19). ω is the
angular velocity vector of the arms of the robot obtained
by tracking the encoders of the motors.

Equation (28) is expressed in discrete form as follows:

pk = pk−1 + Jk−1c ⋅ ωk−1 ⋅ Δt, ð29Þ

where k − 1 and k are the previous and current instant,
respectively. Δt is the discrete interval. p is the pose vector
of the moving plate.

4.2.2. Step 1: Design Sigma Points. UKF uses many sigma
points to linearize a nonlinear model. The state variable (the
pose vector p of the moving plate) has a dimensionality of d
= 6, so the number of sigma points will be 2d + 1 = 13. To
start a new instant, the sigma points are calculated as follows:

X0 = p̂,

Xcol = p̂ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d + λð ÞCp

qh i
col
, for col = 1,⋯, d,

Xcol = p̂ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d + λð ÞCp

qh i
col−d

, for col = d + 1,⋯, 2d,

λ = α2 d + κð Þ − d,
ð30Þ

where the sigma points matrixX has the size of 6 × 13. p̂ is the
mean value of p. The covariance matrix Cp has the size of d

× d = 6 × 6. The squared root
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd + λÞCp

q
can be calculated

by using the Cholesky decomposition, which is available on
the Internet (such as the website of Wikipedia). The index co
l denotes the column of the matrix. The initial value of Cp is
set by the estimated standard deviation of elements of p. The
initial value of p̂ is set equal to the desired pose of the moving
plate at the current moving point. For other instants, p̂ and Cp
are the estimation in the update step of the previous instant. α

is the difference between the sigma points around p̂. κ is the
scaling coefficient. In this paper, α = 10 and κ = 0.

The weights are calculated as follows:

wm
0 = λ

d + λ
,

wc
0 =

λ

d + λ
+ 1 − α2 + β,

wm
col =wc

col =
1

2 d + λð Þ , for col = 1,⋯, 2d,

ð31Þ

where wm
col is the weight to calculate the mean associated

with the colth sigma point. wc
col is the weight to calculate

the covariance associated with the colth sigma point. wm

and wchave the size of 6 × 13. β = 2 is the optimal coefficient.

4.2.3. Step 2: Prediction. The predicted mean and covariance
of UKF are determined as follows:

p̂′ = 〠
2d

col=0
wm

col ⋅ Pcol,

Cp′ = 〠
2d

col=0
wc

col ⋅ Pcol − p̂′
� �

Pcol − p̂′
� �T

� �
+Np,

Pcol = g Xcolð Þ, for col = 1,⋯, 2d,

ð32Þ

where the index col denotes the column of the matrix. Np is
the process noise covariance matrix, which has the size of
d × d = 6 × 6. Pcol is mapped associated with the colth sigma
points. gð⋅Þ is the nonlinear function, which is estimated
based on the system kinetics as shown in Equation (29).

4.2.4. Step 3: Update. The Intel RealSense camera measures
the pose of the moving plate and returns a measured pose
vector pM = ½x, y, z, γ, β, α�T . This measurement has a lot of
noise and is not fixed between instants even at the same
moving point. The difference vector Δp between pM and p̂′
is calculated as follows:

Δp = pM − p̂′: ð33Þ

After that, the sigma points are mapped into the
measurement space based on the difference Δp by using a
function hð⋅Þ as follows:

Z = h Pð Þ + υ, ð34Þ

where Z is the mapped sigma points matrix, which has the
size of 6 × 13 associated with P. υ is the measurement noise
signal, which can be assumed to be a zero-mean Gaussian
white sequences noise.

In practice, each column of hðPÞ is calculated as follows:

h Pð Þcol = Pcol + Δp, for col = 1,⋯, 2d: ð35Þ
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The measured mean and covariance of UKF are deter-
mined as follows:

ẑ = 〠
2d

col=0
wm

col ⋅ Zcol,

Cz = 〠
2d

col=0
wc

col ⋅ Zcol − ẑð Þ Zcol − ẑð ÞT
h i

+Ns,
ð36Þ

where the index col denotes the column of the matrix. Ns is
the sequences noise covariance matrix, which has the size of
d × d = 6 × 6.

The cross variance is determined as follows:

Cv = 〠
2d

col=0
wc

col Pcol − p̂′
� �

Zcol − ẑð ÞT : ð37Þ

The Kalman gain is calculated as follows:

K = Cv
Cz

: ð38Þ

Finally, the new state variable and covariance matrix are
updated as follows:

p̂ = p̂′ +K pM − ẑð Þ,
Cp =Cp′ −KCzKT :

ð39Þ

The new state variable and covariance matrix are used
for the next instant from step 1 in Section 4.2.2.

4.3. The Stability of the Unscented Kalman Filter. The stabil-
ity of the UKFs is complicated especially since the measure-
ment of the update step is provided from a vision system.
The study in [27] proved that by choosing some initial con-
ditions of the filter, the estimation error will be bounded,
and the filter will be stable. In this paper, the stability analy-
sis is not performed again but achieved experimentally by
tuning the initial filter parameters.

5. Simulation, Experiment, and Comparison

5.1. Hardware. Figure 3 is the real Hexa parallel robot using
in this study. The Intel RealSense camera D435i is used as a
3D vision system. The simulation is conducted in MATLAB.
The experimental robot control software is written in Visual
C++ by the authors. Table 1 shows the parameters of the 3D
vision system. The real frame rate of the vision system is
20 fps because the process interval of the program is Δt =
50ms. Figure 6 is the block diagram of the simulation in
MATLAB. To verify the performance of the hybrid filter,

in both simulation and experiment, the Hexa robot is moved
by the helix path as shown in Figure 7. The angular velocity
of the arms is set ωd = 0:15π rad/s.

5.2. Initial Parameters of UKF. In Equations (30) and (31),
the coefficients are tuned as α = 10, β = 2, and κ = 0. In Equa-
tion (32), Np = diag ðσp ⊙ σpÞ, where ⊙ is the Hadamard
product, σp is the process standard deviation, and σp = ð1,
1, 1, 0:0349, 0:0349, 0:0349Þ. In Equation (36), Ns = diag ðσs
⊙ σsÞ, where σs is the measurement standard deviation and
σs = ð5, 5, 5, 0:0611, 0:0611, 0:0611Þ. In Equation (30), the
initial covariance matrix is set temporarily Cp =Np, the ini-
tial mean vector p̂ is set equal to the desired pose of the mov-
ing plate at the start point of the UKF process. These values
are tuned in the simulation for best performance, then
applied to the experiment.

5.3. Simulation. The simulation creates the feedback angular
velocity ωr by adding a random noise into the desired angu-
lar velocity ωd . The random noise is controlled in the range.
Consider that the real motor has a maximum error of 2
degrees per revolution; the random noise of angular velocity
is in the range ½−0:00417ωd , 0:00417ωd� rad/s. The feedback
rotation qr is simulated by adding a random noise into the
desired rotation qd . Consider that the real motor encoder
has a maximum error of 3 pulses; the random noise of rota-
tion is in the range ½−0:54, 0:54� degrees. The simulation cre-
ates the measurement for the UKF by adding the random
noise into the desired pose pd at the corresponding instant.
Based on the accuracy of the vision system as shown in
Table 1, the random noise of the measurement is set in the
range ½−2:5, 2:5�mm for the translation and ½−0:06, 0:06�
rad for the Euler angles. The tracking data is recorded at
each moving point.

Figures 8–13 show the tracking data of the first 50 points
of the helix path in the simulation. The dot blue line indi-
cates the pose estimation of the vision system. The vision
system is simulated noise close to the real system. The dashed
green line is the real pose of the plate. The solid red line is the
smoothed estimation after using the UKF. For easy compar-
ison of values, mean squared error (MSE) and mean absolute
error (MAE) of the simulation are summarized in Table 2.
After using the UKF, the vision-based pose estimation is
smoothed out, and the errors are reduced significantly.

5.4. The Experiment. Similar in simulation, the Hexa robot
is controlled to follow the helix trajectory through 101
points as shown in Figure 7. The motion control of the
motor controller board will measure the angular velocity
ωr and rotation qr to use in the UKF process to calculate
the nonlinear function gð⋅Þ in Equation (32). The 3D Intel
RealSense Camera D435i will estimate the real pose of the
plate and use it in the update step of the UKF. The pose

Table 1: The parameters of the vision system.

Resolution Frame rate Depth measurement accuracy Maximum measuring distance Expected accuracy

1080 × 720 30 fps ≤0.5% of measuring distance 500mm 1.25 to 2.5mm
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estimation after smoothing by UKF is used as the feedback
of the motion control to correct the pose of the plate.
When the plate is moved point to point, the UKF is calcu-

lated continuously with a cycle of Δt = 50ms as presented
in Section 5.1. After each movement, the robot is stopped
for a moment to measure the real pose manually by

Figure 6: The simulation in MATLAB SimMechanics.
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Figure 7: The helix path with 101 moving points.
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Figure 8: The tracking data on the X-axis of the first 50 points in the simulation.
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Figure 9: The tracking data on the Y-axis of the first 50 points in the simulation.
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Figure 10: The tracking data on the Z-axis of the first 50 points in the simulation.
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Figure 11: The tracking data on the rotation angle γ of the first 50 points in the simulation.
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Figure 12: The tracking data on the rotation angle β of the first 50 points in the simulation.
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Figure 13: The tracking data on the rotation angle α of the first 50 points in the simulation.

Table 2: The summary of errors in the simulation.

Pose
MAE MSE

Vision UKF Vision UKF

X (mm) 1.258 0.118 2.047 0.019

Y (mm) 1.304 0.139 2.292 0.024

Z (mm) 1.280 0.138 2.219 0.025

γ (degrees) 1.639 0.229 3.647 0.067

β (degrees) 1.952 0.227 4.954 0.067

α (degrees) 1.719 0.206 3.900 0.057
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Figure 15: The tracking data on the Y-axis of the first 50 points in the experiment.
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Figure 14: The tracking data on the X-axis of the first 50 points in the experiment.
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instrument, which is used as the ground truth of the
experiment.

Figures 14–19 show the tracking data of the first 50
points of the helix path in the experiment. The dot blue line
indicates the pose estimation of the vision system. The
dashed green line is the real pose of the plate, which is the
manual measurement. The solid red line is the smoothed
estimation after using the UKF. As showing in the figures,
the hybrid filter corrects the pose measurement very close
to the real pose although the measurement has a big noise
due to the vibration of the real Hexa robot when moving.
If the smoothed estimation is highly accurate, it will help
the closed-loop motion control to be highly accurate. As
stated in Section 3.3, motion control is not the scope of this

paper, so the experiment data is not shown in this result. For
easy comparison of values, mean squared error (MSE) and
mean absolute error (MAE) of the simulation are also sum-
marized in Table 3. After using the UKF, the vision-based
pose estimation is smoothed out, and the errors are also
reduced significantly.

The high accurate result of the vision-based pose estima-
tion using the proposed hybrid filter could be used as feed-
back in the dynamic path tracking control in conjunction
with a position controller. This content will be covered in a
different topic because of article’s limitation.

5.5. The Comparison. Table 4 shows the comparison of the
mean absolute error of different pose estimation methods
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Figure 16: The tracking data on the Z-axis of the first 50 points in the experiment.
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Figure 17: The tracking data on the rotation angle γ of the first 50 points in the experiment.
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Figure 18: The tracking data on the rotation angle β of the first 50 points in the experiment.
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with the proposed approach in this paper. The dynamic
hybrid filter has encouraging results compared to most other
methods. The pose estimation accuracy is inferior to the
method in [20]. However, the method in [20] is applied to
an industrial robot arm and uses a high-quality vision sys-
tem. Meanwhile, the proposed method used a simple and
cheap vision system that is easy to install and use. It also
applies to a laboratory model of a Hexa parallel robot, which
has low mechanical quality. If applied to a professional
industrial robot with good hardware, this proposed
approach may achieve better performance.

6. Conclusions

This paper proposes a novel approach for pose estimation of
a Hexa parallel robot. The vision system using simple color
feature points fixed on the surface of the end-effector and

Intel RealSense Camera D435i offers a cheap solution and
high accuracy in pose estimation. The dynamic hybrid filter
is designed to correct the vision-based pose measurement.
The complementary filter is used to eliminate the noise of
image processing due to environmental light source interfer-
ence. The UKF is designed to smooth out the pose estima-
tion of the vision system based on robot’s kinematic
parameters. The combination of two filters in the same con-
trol scheme contributes to increased stability and improved
accuracy of robot’s positioning. The simulation, experiment,
and comparison results are encouraging. The measurement
error of the vision system is reduced to 9 to 12 percent left
in simulation and 14 to 21 percent left in experiment.
Although the result is not too good if compared to methods
using high-tech hardware, it is a feasible approach for low-
cost robot systems. As a further improvement, EKF, AKF,
and the proposed hybrid filter can be deployed on the same
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Figure 19: The tracking data on the rotation angle α of the first 50 points in the experiment.

Table 3: The summary of errors in the experiment.

Pose
MAE MSE

Vision UKF Vision UKF

X (mm) 1.600 0.236 3.234 0.070

Y (mm) 1.614 0.230 3.458 0.068

Z (mm) 1.476 0.223 2.864 0.066

γ (degrees) 1.917 0.423 4.894 0.227

β (degrees) 2.128 0.396 5.719 0.207

α (degrees) 1.880 0.392 4.813 0.209

Table 4: The summary of the mean absolute error in some pose estimation methods.

Ref Method Robot
Mean absolute error

X (mm) Y (mm) Z (mm) γ (degrees) β (degrees) α (degrees)

[12] Sensor frame, reflectors 6-RSS parallel robot 0.319 0.393 0.360 0.086 0.074 0.043

[19] Vision-based, AKF PUMA 560 1.0 1.1 1.5 0.2 0.4 0.4

[20] C-track 780 vision, AKF KUKA KR 6-2 0.2 0.2 0.2 0.1 0.1 0.1

[21] Vision-based, EKF Delta Parallix LKF-2040 1.79 1.79 1.79 — — —

[28] Vision-based, EKF Robot arm 0.3 0.3 0.6 0.1 0.4 0.4

[29]
Vision-based,

neural network, EKF
Tensegrity manipulator 2.568 2.204 1.663 2. 269 2. 128 2. 054
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Hexa parallel robot for more accurate comparison and eval-
uation of efficiency. The vision-based pose estimation using
the proposed hybrid filter could be used as feedback in the
dynamic path tracking control in conjunction with a posi-
tion controller to analyze the performance in the real appli-
cation. In this paper, the parameters of UKF are determined
by tuning experimentally. In future works, an adaptive
learning controller could be designed to determine those
parameters automatically.
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