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A critical task of structural health monitoring is damage detection and localization. Lamb wave propagation methods have been
successfully applied for damage identification in plate-like structures. However, Lamb wave processing is still a challenging task
due to its multimodal and dispersive characteristics. To address this issue, data-driven machine learning approaches as artificial
neural network (ANN) have been proposed. However, the effectiveness of ANN can be improved based on its architecture and
the learning strategy employed to train it. The present paper proposes a Multiple Particle Collision Algorithm (MPCA) to
design an optimum ANN architecture to detect and locate damages in plate-like structures. For the first time in the literature,
the MPCA is applied to find damages in plate-like structures. The present work uses one piezoelectric transducer to generate
Lamb wave signals on an aluminum plate structure and a linear array of four transducers to capture the scattered signals. The
continuous wavelet transform (CWT) processes the captured signals to estimate the time-of-flight (ToF) that is the ANN inputs. The
ANN output is the damage spatial coordinates. In addition to MPCA optimization, this paper uses a quantitative entropy-based
criterion to find the best mother wavelet and the scale values. The presented experimental results show that MPCA is capable of
finding a simple ANN architecture with good generalization performance in the proposed damage localization application. The
proposed method is compared with the 1-dimensional convolutional neural network (1D-CNN). A discussion about the advantages
and limitations of the proposed method is presented.

1. Introduction

In safety-critical systems, failure detection and prognostic
(FDP) approaches are essential to avoid catastrophic failures.
The two main tasks of FDP methods are incipient failure
detection and remaining useful life estimation through prog-
nostics techniques [1]. The FDP approaches can be applied in
different critical systems as wind turbine [2], gas turbines [3],
power systems [4, 5], and transmission lines [6].

Structural health monitoring (SHM) investigates the
damage detection and prognostic in structural components
of critical systems such as aircraft and bridges. The SHM sys-
tem provides an online solution for performing in-service

structural analysis reducing maintenance costs [7]. The
SHM approaches have been developed for mechanical,
aerospace, and civil engineering applications [8]. The most
important task of the SHM strategy is the damage identifica-
tion procedure that can be classified into four levels: detec-
tion, location, quantification, and prediction [9].

SHM systems perform structural inspection in real time
using embedded sensors [10]. A usual sensor and actuator
option is piezoelectric (PZT) transducers [11–15]. The
advantages of PZT transducers are small size, light weight,
and low power consumption [16].

Predominant PZT-based SHM methods are vibration,
electromechanical impedance, and guided wave [12, 17].
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The vibration methods compare vibration signatures of
damaged and undamaged structures. Usually, a vibration
signature is obtained through modal analysis [8]. The elec-
tromechanical impedance methods are based on the electro-
mechanical impedance signature [12]. The guided wave
methods are based on propagation properties of the acoustic
wave as Lamb waves. The Lamb waves are guided waves that
propagate in thin-walled structures, and they can propagate
long distances with low attenuation and have high sensibility
to detect small damages [18, 19]. Therefore, Lamb waves
have been a promising tool for damage detection and locali-
zation in plate-like structures.

The SHM methods can be divided into two main
approaches: physical-based or data-driven [20]. The physical-
based approaches require a detailed model of the structure
while the data-driven approaches are based on database analy-
sis. Phased-array and directional filter [21–23], subspace
approach [24–26], time reversal [27, 28], and ellipse-based
image [16, 29, 30] are methodologies based on the physical
model of Lamb wave propagation. It is a challenging task due
to its multimodal and dispersive characteristics [18, 27].

The data-driven approaches are machine learning and
deep learning [8, 31, 32]. Machine learning techniques are
data-driven approaches that learn patterns found in the data-
base and can be classified into supervised learning and unsu-
pervised learning [27, 33]. The most common supervised
learning methods are the artificial neural network and sup-
port vector machine [33]. Some advantages of these tech-
niques are low computational cost and high generalization
capability. Deep learning is a subbranch of machine learning,
and it has the capability to deal with a large dataset [20, 33].
Recent studies have proposed the 1-dimensional convolu-
tional neural network (1D-CNN) for structural damage
detection and localization [8, 10, 13, 20]. The main advantage
of 1D-CNN is automatic feature extraction performed
through its initial convolutional layers [10, 13, 34]. However,
CNN has a high computational cost, and its architecture
design is a difficult task [35].

Several strategies using ANN for damage localization and
classification in plate-like structures have been proposed. Lu
et al. [36] implemented an inverse method based on the feed-
forward artificial neural network for damage identification
using PZT transducers. The ANN configuration (the number
of hidden layers and the number of neurons in each layer)
was determined using a rule of thumb. The discrete wavelet
transform was applied to signal denoising before feature
extraction. Yelve and Mulla [37] proposed damage detection
in an aluminum plate using ANN and PZT transducers. The
ANN inputs were damage indexes obtained from twelve
actuator sensor paths, and the specific software selected the
ANN architecture automatically. Feng et al. [30] presented
two methods for damage detection in anisotropic woven-
fabric carbon fiber reinforced polymer plate using PZT trans-
ducers. The first method was a probabilistic approach by
constructing a probability matrix, and the second method
was an ANN. The ANN inputs were the time-of-flight of
the wave acquired by PZT transducers, and a try-and-error
method selected the ANN configuration. Hesser et al. [38]
proposed an ANN and support vector machine to locate

low impact in the aluminum plate. An ANN with one hidden
layer was proposed, and the number of neurons was found
through a try-and-error method. However, these approaches
do not use any method to find an optimized ANN topology.
The best choice of neural network topology, weight values,
and activation function for a particular application is a diffi-
cult task. ANN topology has a high impact on its perfor-
mance. A small number of neurons may reduce the ANN
learning capacity, but an excessive number of neurons may
reduce its generalization capacity [39].

In this context, the metaheuristic approach formulates
the ANN parameter identification task into an optimization
problem. The most common method is ANN weight optimi-
zation where the metaheuristic algorithm searches for the
weight values that minimize a cost function. This approach
focuses on the ANN training process where the metaheuristic
algorithm provides a way to escape from local minimums,
which is the main problem in standard gradient-based
methods. Several metaheuristic algorithms have been proposed
to improve the ANN training process, such as genetic algo-
rithm [40, 41], particle swarm optimization [42], and grasshop-
per optimization [43]. However, to improve the ANN
performance, the cost function needs to balance the weight
values, ANN topology, and learning parameters. The genetic
algorithm is the commonmetaheuristic method of ANN archi-
tecture optimization [44–47].

The Multiple Particle Collision Algorithm (MPCA) is a
metaheuristic that minimizes a mono-objective function pro-
viding the simplest neural network topology (lowest number
of neurons and faster convergence during the training phase)
with the best performance (lowest error) [48]. The MPCA
optimization algorithm takes into account all relevant ANN
parameters as the number of hidden layers, the number of
neurons in each hidden layer, the weight values, the learning
rate, the momentum constant, and the activation function
[49]. MPCA has been successfully applied to climate predic-
tion applications [39]. The present paper proposes an opti-
mized ANN for damage detection in a plate-like structure
using the MPCA. For the first time in the literature, the
ANN optimized by MPCA is applied to find damages in
plate-like structures. The ANN inputs are the time-of-flight
of the Lamb wave reflection captured by four piezoelectric
transducers, and the ANN output is the damage localization.

In the damage localization methods using ANN, a com-
mon approach is to use four PZT transducers placed in the
corner of the inspected plate region [30, 36, 37]. The damage
position is estimated using the time-of-flight information.
This configuration is similar to a pitch-catch method finding
damages in the delimited area by the transducers. In the pres-
ent paper, a linear array of PZT transducers is investigated.
The transducer placement is similar to a phased-array config-
uration, so the damage location information is strongly
related to the time-of-flight and the time delay between adja-
cent transducers [18]. Using a linear array of transducers is
possible to inspect a large area of the plate.

In the proposed damage localization method, due to the
importance of the ToF estimation, the continuous wavelet
transform is implemented to improve the arrival time mea-
surement of the scattered wave from damage. The mother
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wavelet is the main CWT parameter, as it may significantly
influence the performance of the transformation. Recent
works have proposed wavelet transform for damage detec-
tion and localization [4, 6, 30]. However, these works do
not investigate a quantitative approach for mother wavelet
selection. The present work uses a quantitative criterion,
based on the Shannon entropy calculation, to select the best
mother wavelet function [50]. The Shannon entropy crite-
rion selects the most relevant scale values, reducing the
CWT calculation.

The proposed new method combines two optimization
approaches: optimized ANN by MPCA and optimized
CWT by entropy criterion. The experimental verification of
the proposed method is performed on an aluminum plate
structure. A mass of lead is employed to simulate several
damage scenarios, providing a database for training the
ANN and 1D-CNN. The performance of the proposed
method is compared with two 1D-CNN. The first 1D-CNN
uses as input the ToF features extracted using CWT, and
the second 1D-CNN performs feature extraction directly
from raw data acquired from PZT transducers. A discussion
about the advantages and limitations of the proposed method
is presented.

2. Background

2.1. Continuous Wavelet Transform. Continuous wavelet
transform CWT is a linear transformation that decomposes
the input signal xðtÞ over the scaled and translated versions
of the mother wavelet ψðtÞ, as shown by the following
equation [51]:

CWT s, τð Þ = 1ffiffi
s

p
ð∞
−∞

x tð Þψ∗ t − τ

s

� �
dt, ð1Þ

where s is the scale, τ is the translation parameter, and ð∗Þ
indicates the complex conjugate of mother wavelet function
ψðtÞ. Using a proper scale-to-frequency relationship, CWT
provides a time-frequency analysis similar to the short-time
Fourier transform. However, CWT is more effective in
representing nonstationary signals in the time-frequency
domain [52, 53].

A challenge in using wavelet transform is to establish a
criterion to select the mother wavelet. A usual qualitative
approach is a method based on a similarity between the
mother wavelet and the analyzed signal.

A suitable quantitative approach is Shannon entropy-
based optimization. This criterion consists of calculating
the normalized Shannon entropy of the CWT coefficients
as defined by [50]:

Sh sð Þ = 〠
N

n=1

CWT s, n · Tsð Þ
A

· ln
CWT s, n · Tsð Þ

A

� �� �
, ð2Þ

A = 〠
N

n=1
〠
M

a=1
CWT s að Þ, n · Tsð Þ, ð3Þ

where s is the scale vector with M elements, Ts is the sample
time, andN is the number of samples of the xðtÞ signal. Shan-
non entropy measures the CWT randomness in the time-
scale domain, where a low entropy value indicates high
energy concentration. Therefore, the best mother wavelet
has the lowest value of Shannon entropy (Sh).

2.2. Hilbert Transform. The Hilbert transform FHiðtÞ of the
real signal xðtÞ can be represented by the equation below [54]:

FHi tð Þ =
−1
πt

∗ x tð Þ: ð4Þ

The Fourier transform of the FHiðtÞ signal is expressed as

FHi ωð Þ = i · sgn ωð Þð Þ · X ωð Þ, ð5Þ

where sgn ðωÞ is the sign function, XðωÞ is the Fourier trans-
form of input signal xðtÞ, and i is the imaginary number.
According to Equation (5), the Hilbert transform is a filter in
which the amplitudes of spectral components of the input sig-
nal xðtÞ are left unchanged, but their phases are shifted by 90
degrees (see [54] page 359). This property can be used to cal-
culate the instantaneous amplitude, or envelope, of signal xðtÞ.
The RðtÞ envelope of signal xðtÞ is given by [52, 54]

R tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x tð Þ2 + FHi tð Þ2

q
: ð6Þ

2.3. Artificial Neural Networks. Artificial neural networks are
computational methods that emulate the human brain learn-
ing process. The simple processing units, known as artificial
neurons, compose the ANN and are organized through several
layers. Typically, the ANN has one input layer, one or more
hidden layers, and one output layer. The synaptic weights inter-
connect the neurons and store the ANN knowledge [39, 55].

Multilayer Perceptron Neural Network (MLP-NN) is a
feed-forward model used mainly as a classifier, associative
memory, or regression. Figure 1 shows an MLP neural net-
work with just one hidden layer, where

(i) z
! = ðz1, z2,⋯, zMÞ is the ANN input vector

(ii) x! = ðx1, x2,⋯, xNÞ is the ANN hidden layer vector

(iii) y! = ðy1, y2,⋯, yKÞ is the ANN output vector

Equations (7) and (8) describe the neuron xn of the hid-
den layer and the neuron yk of the output layer, respectively,

xn = g1 〠
M

m=1
vnm · zm + bxm

 !
, ð7Þ

yk = g2 〠
N

n=1
ωkn · xn + byn

 !
, ð8Þ

being bαβ (α = x, y and β = n,m) the bias, vnm and ωkn the
weight matrices of the connection between the neuron xn
and the neuron zm, and yk with the neuron xn. The neuron
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activation function g1,2ð·Þ is a nonlinear and smooth function
[55]. The frequently used activation functions are sigmoid
and hyperbolic tangent.

ANN training is the neuron’s weight adjustment process
and can be supervised or unsupervised. For an MLP-NN, the
gradient-based and stochastic-based approaches are the main
supervised training methods [43]. Among gradient-based
methods, the frequently used is back-propagation. The
back-propagation algorithm calculates the new weights using
two steps: forward and backward [39]. In the first step, the
input data is applied to the MLP-NN input, starting the data
processing. The MLP-NN forward calculations propagate the

results layer-by-layer producing the MLP-NN output. The
network output yk is subtracted from an expected output of
dk to produce an error value [55]:

Etrain = 〠
K

k=1
dk − ykð Þ2: ð9Þ

After that, this error is backward propagated from the
MLP-NN output to the input. Finally, the neuron weights
are adjusted using the delta rule for minimizing the calcu-
lated error.
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Figure 2: 1D convolutional neural network.
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The delta rule can be expressed as [55]:

Δvnm = −η
∂Etrain
∂vnm

n = 1, 2,⋯,N ,m = 1, 2,⋯,Mð Þ, ð10Þ

Δωkn = −η
∂Etrain
∂ωkn

k = 1, 2,⋯, K , n = 1, 2,⋯,Nð Þ, ð11Þ

where Δvnm and Δωkn are the weight correction factors and η
is the learning rate parameter.

The feed-forward neural networks are popular mainly
because of their generalization capability. The generalization
refers to the ANN ability to correctly process data that is not
part of training data. Therefore, the generalization perfor-
mance can be estimated by

Egen = 〠
P

p=1
dp − yp
� �2

: ð12Þ

The P data elements are not part of the K data
elements—those ones were used to train the ANN [49].

2.4. 1D Convolutional Neural Networks. Convolutional neu-
ral networks (CNN) were inspired by the mammalian
nervous system. The usual applications of CNN are
regression and classification problems [34]. Typically, a
CNN is composed of three types of processing layers:
convolutional layers, pooling layers, and fully connected
neural network (FCN) layers. Figure 2 shows an example
of 1D-CNN.

A convolutional layer extracts relevant features from the
input data. Equation (13) describes the convolution opera-
tion between layers l and l − 1:

ylk = f blk + 〠
Nl−1

i=1
Conv1D ωik

l−1, sl−1i

� � !
, ð13Þ

where ylk is the output, b
l
k is the bias of the k

th neuron at layer
l, sl−1i is the output of the ith neuron at layer l − 1, ωik

l−1 is the
kernel from the ith neuron at layer l − 1 to the kth at layer l,
and Conv1Dð·Þ is the 1D discrete convolution without zero
padding [34]. The pooling layer performs a downsampling
operation resulting in a dimensional reduction. Pooling

1: procedure MpcaOptimization (integer Np)
2: Generate an initial solution: Old-Config
3: Best-Fitness = Fitness(Old-Config)
4: Update Blackboard
5: for n = 1⟶Np particles do
6: for m = 1⟶Mi iterations do
7: Update Blackboard
8: Perturbation()
9: if Fitness(New-Config) > Fitness(Old-Config) then
10: if Fitness(New-Config) > Best-Fitness then
11: Best-Fitness = Fitness(New-Config)
12: end if
13: Old-Config = New-Config
14: Exploration()
15: else
16: Scattering()
17: end if
18: end for
19: end for
20: return New-Config
21: end procedure

Algorithm 1: Pseudocode for MPCA.

T0

S12 S11 S10 S9

S8 S7 S6 S5
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Figure 3: Aluminum plate representation.
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could be max-pooling or average pooling. The fully con-
nected layer corresponds to MLP-NN.

2.5. Optimal Neural Network Architecture by Multiple
Particle Collision Algorithm. The identification of the best
ANN configuration for a given application and data is a chal-
lenging task. One standard procedure is to do several exper-
iments with different ANN configurations for getting
acceptable results. The specialist changes the values of ANN
parameters for each trial and compares the results with the
observed values until finding a set of the most suitable
parameters in his judgment [49]. An alternative approach is
to formulate the task of identifying the best ANN topology
as an optimization problem [56].

The goal of optimization problems is finding the suitable
hyperparameters of a set that maximizes or minimizes a
function, defined as an objective function or cost function.
The objective function used in this work is given by [57]

f obj = penalty ×
ρ1 × Etrain + ρ2 × Egen

ρ1 + ρ2

� �
, ð14Þ

penalty = C1 × e neurons2ð Þ + C2 × epochsð Þ + 1: ð15Þ

The first term of Equation (14) is the penalty factor, and
the second term is the weighted mean of two errors: train
error Etrain and generalization error Egen. Equation (15)
shows the penalty term to evaluate the number of neurons
and the epochs to perform the training [49]. The parameter
values used in this work are ρ1 = 1, ρ2 = 0:1, C1 = 5 × 10−8,
and C2 = 5 × 10−5.

The MPCA optimization strategy must find the ANN
configuration that minimizes the objective function
(Equation (14)).

The ANN parameters taken into account by MPCA are
the number of hidden layers, the number of neurons in each
hidden layer, the weight values, the learning rate η, the
momentum constant α, and the activation function [49].

The MPCA is a version of the particle collision algorithm
(PCA). The PCA is a stochastic optimization algorithm

inspired by the neutron travelling in a nuclear reactor, where
two main phenomena can occur: scattering and absorption.
The MPCA is a modified version of the particle collision
algorithm that uses several particles to explore the search
space [48]. Algorithm 1 shows the MPCA pseudocode.

The MPCA starts with a random ANN configuration
(Old-Config). The Fitness() function calculates Equation
(14) that evaluates the ANN configuration performance
and updates the Best-Fitness information. For each particle,
a stochastic perturbation (function Perturbation()) generates
a new ANN configuration (New-Config) closer than the pre-
vious one, and the Fitness() function calculates the fitness of
it. If New-Config is better than Old-Config, this new config-
uration is absorbed (the New-Config becomes an Old-Config
for the next iterations). The function Exploration() generates
small perturbations on closer positions. However, if New-
Config is worse than Old-Config, the function Scattering()
sends the particle to a different location of the search space
trying to escape the local minimum [56]. The blackboard

Table 1: ANN input parameters.

ANN inputs Sensor Frequency

Input 01 R0 12 kHz

Input 02 R1 12 kHz

Input 03 R2 12 kHz

Input 04 R3 12 kHz

Input 05 R0 16 kHz

Input 06 R1 16 kHz

Input 07 R2 16 kHz

Input 08 R3 16 kHz

Input 09 R0 20 kHz

Input 10 R1 20 kHz

Input 11 R2 20 kHz

Input 12 R3 20 kHz

Table 2: ANN architecture—MPCA.

Parameter Value

Hidden layer 1

Hidden layer neuron 5

Learning rate η 0.4

Momentum α 0.3

Activation function Tanh

Mean squared error 0.002

Table 3: 1D-CNN-CWT architecture.

CNN layers

Conv1D filters = 10, kernel = 3, activation = ReLUð Þ
AveragePooling1DðÞ
FlattenðÞ
Dense 60, activation = ReLUð Þ
Dense 60, activation = Tanhð Þ
Dense 2, activation = ReLUð Þ

Table 4: 1D-CNN-RAW architecture.

CNN layers

Conv1D filters = 10, kernel = 90, activation = ReLUð Þ
Conv1D filters = 5, kernel = 10, activation = ReLUð Þ
MaxPooling1DðÞ
FlattenðÞ
Dense 60, activation = Tanhð Þ
Dense 2, activation = ReLUð Þ
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strategy provides the coordination between the multiple par-
ticles sharing the Best-Fitness information.

3. Experimental Setup and Results

The validation scenario of the proposed damage detection
method is an aluminum plate (500mm × 500mm × 1mm)
with four PZT transducers bounded on its surface, as repre-
sented by Figure 3. These transducers, which have a 20mm
diameter, are arranged with a space of 5mm and labeled as
R0, R1, R2, and T0. Figure 3 shows twelve square sectors
(50mm sides) that delimit the damage scan region. The
Lamb wave excitation signal is produced by transducer T0
and received by the other four transducers (R0, R1, R2, and
R3).

Figure 4 shows the experiment setup. The DE1-SoC
(System-on-Chip) Development board has a hardware
design platform which combines the dual-core Cortex-A9
embedded cores with FPGA (Field Programmable Gate
Array). This board is programmed to generate a Gaussian
window five cycles sine tone burst through a look-up table
implemented in programmable logic and using a DAC
(10 bits) converter. The DAC signal is amplified by the
power circuit; then, the output signal generates the Lamb
waves through the PZT transducer T0. The sine signal is gen-
erated with three different frequencies: 12 kHz, 16 kHz, and
20 kHz. The Lamb waves propagate through the aluminum
board, and they are captured by the PZT transducers R0,
R1, R2, and R3. The 12-bit ADC converts the analog voltage
from the PZT transducers into digital signals. The sampling
rate is set to 400 kHz.

Two signals received by sensor R0 are plotted in
Figure 5(a). The first signal (black color) corresponds to the
undamaged condition, and the second signal (red color) rep-
resents the signal received when damage occurs on sector S5.
The excitation arrow indicates the direct wave received from
the T0 transducer, and the damage arrow indicates the
reflected wave by the damage, as shown in Figure 5(a).
Figure 5(b) shows the difference signal, corresponding to
the damage signal subtracted from the undamaged signal.

In the next step, the continuous wavelet transform of the
difference signal is performed using six different mother
wavelets. Figure 6 presents the normalized Shannon entropy
of the CWT coefficients. The selected mother wavelet is the
mexh (Mexican hat) which has the minimum entropy.

The resultant scalogram is plotted in Figure 7(b). The
CWT minimum entropy signal, shown in Figure 7(c), is con-
structed from the scalogram by getting the CWT coefficients
which scale has the minimum entropy value. The Hilbert
transform of the CWTminimum entropy signal makes it pos-
sible to obtain the peak position as presented in Figure 7(c).

Table 1 shows the ANN inputs. The peak position of the
minimum entropy CWT coefficient obtained for each sensor
R0, R1, R2, and R3 is the ANN inputs. The ANN output is the
damage coordinate (x, y).

Amass of lead is employed to simulate damage in the alu-
minum plate. The training and validation databases are gen-
erated by placing the mass of lead in the center of each sector
defined in Figure 3. A total of 3600 samples, 300 samples by
sector, is used to train the networks. The total number of
samples is randomly divided into three sets: 2520 samples
are selected for training, 540 samples for validation, and
540 samples for generalization. The training set is used to
update the ANN weights and biases. The validation set eval-
uates the ANN generalization performance during the train-
ing phase (cross-validation process). A poor generalization
performance is signaled by the raising of the validation error
[56]. The generalization set is used to evaluate the ANN gen-
eralization performance after the training process.

Table 2 presents the ANN parameters found by the
MPCA optimization algorithm. The parameters used in the
MPCA are 10 particles using a multiprocessing machine
(one particle per processor) and 30 iterations (a scheme used
to explore a better solution around the new particle location),
and the stopping criterion is the maximum of 300 objective
function evaluations.

TheMPCA-ANN results are compared with two 1D-CNN.
The 1D-CNN-CWT uses the same dataset applied to MPCA-
ANN. This dataset corresponds to the features extracted using
the CWT as defined in Table 1. The 1D-CNN-RAW uses the
raw signals acquired by the PZT sensors. The mean square

Table 5: Damage experiments for training.

Sector (x, y) (mm) RMSE MPCA-ANN RMSE 1D-CNN-CWT RMSE 1D-CNN-RAW

S1 (175, 125) 1.1mm 1.7mm 1.9mm

S2 (125, 125) 2.2mm 1.6mm 2.4mm

S3 (75, 125) 2.4mm 2.4mm 3.2mm

S4 (25, 125) 1.5mm 2.5mm 1.5mm

S5 (175, 75) 1.4mm 1.4mm 1.9mm

S6 (125, 75) 1.8mm 1.5mm 2.3mm

S7 (75, 75) 2.2mm 1.8mm 2.0mm

S8 (25, 75) 2.4mm 1.3mm 1.1mm

S9 (175, 25) 2.3mm 2.2mm 1.2mm

S10 (125, 25) 0.6mm 1.7mm 0.9mm

S11 (75, 25) 1.4mm 1.8mm 0.9mm

S12 (25, 25) 0.7mm 2.3mm 1.1mm
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error is used as a loss function with the Adam optimization
algorithm. The 1D-CNNdesign is developed using TensorFlow
and Keras environment. TensorFlow is a platform developed

by Google and dedicated to deep learning applications. Keras
is a Python high-level deep learning library that runs on top
of TensorFlow [8].

Table 6: Damage experiments to verify the generalization.

Damage (x, y) (mm) RMSE MPCA-ANN RMSE 1D-CNN-CWT RMSE 1D-CNN-RAW

V01 (50, 100) 17.2mm 11.7mm 10.8mm

V02 (100, 100) 14.4mm 12.8mm 8.3mm

V03 (150, 100) 10.3mm 10.5mm 4.8mm

V04 (50, 50) 17.4mm 9.3mm 12.1mm

V05 (100, 50) 10.2mm 3.3mm 8.3mm

V06 (150, 50) 6.6mm 8.5mm 11.0mm
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Figure 8: MPCA-ANN training performance: (a) training data (X coordinate); (b) validation data (X coordinate); (c) generalization data
(X coordinate); (d) training data (Y coordinate); (e) validation data (Y coordinate); (f) generalization data (Y coordinate).
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A batch size of 32, learning rate of 1e − 4, and 1200
epochs are the training parameters of 1D-CNN-CWT.
Table 3 shows the 1D-CNN-CWT architecture.

For 1D-CNN-RAW, the training parameters are batch
size of 32, learning rate of 1e − 4, and 200 epochs. Table 4
shows the 1D-CNN-RAW architecture.

Table 5 shows the dataset division by sector. The damage
is simulated placing the mass in the center of the sector indi-
cated by the first column of Table 5. The second column of
Table 5 presents the damage location represented by
Cartesian’s coordinates which origin is the corner of sector
S12. The last three columns of Table 5 present the root-
mean-square error (RMSE) of the estimated damage position
by MPCA-ANN, 1D-CNN-CWT, and 1D-CNN-RAW,
respectively. Equation (16) calculates the RMSE of the
damage positions, where ðxannðnÞ, yannðnÞÞ is the damage
position estimated by ANN and ðxðnÞ, yðnÞÞ is the real dam-
age position:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2 ·Nð Þ〠
N

n=1
xann nð Þ − x nð Þð Þ2 + yann nð Þ − y nð Þð Þ2

s
:

ð16Þ

Figure 8 shows the MPCA-ANN performance. The real
damage position (the mass position in the aluminum board)
is represented by blue color, and the estimated damage posi-
tion by ANN is represented by red color.

In order to evaluate the MPCA-ANN generalization
capability, experiments were performed with mass placed in
the vertices of sectors S6 and S7. The second column of
Table 6 presents each vertex location represented by Carte-
sian’s coordinates which origin is the corner of sector S12.
200 experiments were performed for each vertex. The last
three columns of Table 6 present the RMSE of the estimated
damage position by MPCA-ANN, 1D-CNN-CWT, and 1D-
CNN-RAW, respectively.

Figure 9 shows the damage position estimated by MPCA-
ANN for each case of Table 6. Each plot of Figure 9 repre-
sents the physical aluminum board; the red points show the
estimated damage position and the blue cross the real dam-
age position.

4. Discussion

The minimum Shannon entropy selected the Mexican hat as
the best choice for the mother wavelet as shown by Figure 6.
The CWT performance can be visualized by Figures 7(b) and
7(c). The results presented by these figures indicate that the
CWT can be evaluated only on the scale with minimum
entropy value, where more energy concentration exists. The
comparison between Figures 7(a) and 7(b) shows that the
CWT using the Mexican hat as the mother wavelet, calcu-
lated in the scale with minimum entropy, can estimate the
peak position of the Lamb wave reflection signal.

The MPCA algorithm found the ANN architecture shown
in Table 2. The ANN training performance result, presented in
Figure 8, indicates that the ANN can find the correct damage

150
(a) Damage V01

100

Y 
(m

m
)

S4

S8

S12 S11 S10 S9

S7 S6 S5

S3 S2 S1

50

0
0 50 100 150 200

150
(b) Damage V02

100

S4

S8

S12 S11 S10 S9

S7 S6 S5

S3 S2 S1

50

0
0 50 100 150 200

150
(c) Damage V03

100

S4

S8

S12 S11 S10 S9

S7 S6 S5

S3 S2 S1

50

0
0 50 100 150 200

150
(d) Damage V04

100

Y 
(m

m
)

X (mm)X (mm) X (mm)

S4

S8

S12 S11 S10 S9

S7 S6 S5

S3 S2 S1

50

0
0 50 100 150 200

150
(e) Damage V05

100

S4

S8

S12 S11 S10 S9

S7 S6 S5

S3 S2 S1

50

0
0 50 100 150 200

150
(f) Damage V06

100

S4

S8

S12 S11 S10 S9

S7 S6 S5

S3 S2 S1

50

0
0 50 100 150 200

Real damage position
Estimated damage position by ANN

Figure 9: MPCA-ANN generalization performance: (a) damage V01; (b) damage V02; (c) damage V03; (d) damage V04; (e) damage V05; (f)
damage V06.
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position. Table 5 shows the training results for the MPCA-
ANN, 1D-CNN-CWT. and 1D-CNN-RAW. The ANN-
MPCA presented a good performance in comparison with
the two versions of 1D-CNN. The results of Table 6 show
the good generalization capability of MPCA-ANNwhen com-
pared with the 1D-CNN-CWT and 1D-CNN-RAW.

A metric termed mean normalized distance (MND) [13]
is used to compare the global result of the generalization per-
formance. The distance values are normalized with length of
the inspected board region. Equation (17) describes the
MND metric:

MND =
∑N

n=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xnann nð Þ − xn nð Þð Þ2 + ynann nð Þ − yn nð Þð Þ2

q
N

, ð17Þ

where ðxnann, ynannÞ is the normalized damage position found
by ANN, ðxn, ynÞ is the real normalized position of damage,
and N is the number of samples. The normalized coordinate
xn corresponds to the division of x by 200mm (length of
inspected area), and the normalized coordinate yn corre-
sponds to the division of y by 150mm (length of inspected
area). Table 7 shows MND values for the three algorithms,
with errors of order Oð10−1Þ, and the best performance was
the 1D-CNN-RAW.

The MND results presented in Table 7 show that 1D-
CNN-RAW with features extracted directly from raw data
presents the same generalization performance in comparison
with the 1D-CNN-CWT. This result shows the good damage
localization information contained in ToF features extracted
using the CWT optimized by entropy calculation. Normally,
the CWT performs several convolutional operations using
different scale values. The CWT operation has high computa-
tional cost. However, the entropy method limits the CWT
just to optimum scale value reducing the computational cost
of the CWT operation. Therefore, the 1D-CNN-CWT has
the same performance as 1D-CNN-RAW but with a low
computational cost. The 1D-CNN-RAW uses two convolu-
tional layers, while 1D-CNN-CWT uses just one convolu-
tional layer. Table 8 shows an estimated computational cost
comparison between MPCA-ANN, 1D-CNN-CWT, and
1D-CNN-RAW. The computational cost is indirectly esti-
mated by the number of convolutions, the number of neurons,
and the number of weights.

Both 1D-CNNmethods presented a better generalization
performance in comparison with MPCA-ANN. This result
confirms the great 1D-CNN capability to extract relevant fea-
tures from input data. However, the 1D-CNN structure has a
high computational cost. The 1D-CNN-CWT architecture,
presented in Table 3, has two fully connected layers with 60
neurons, while the 1D-CNN-RAW architecture, presented
in Table 4, has one fully connected layer with 60 neurons.
The generalization performance of MPCA-ANN with only
one hidden layer and five neurons was close to the complex
1D-CNN structures. An estimated computational cost is pre-
sented in Table 8. The lowest computational effort is linked
to the MPCA-ANN, due to the design based on searching
the simplest neural architecture. Such low neural network
complexity shows the adequacy for embedded applications,
with limited computational capacity, or to be implemented
in a hardware processing device, maintaining a good general-
ization capability.

5. Conclusion

In this paper, an optimized artificial neural network is
proposed to locate damages into plate-like structures. The
Multiple Particle Collision Algorithm finds the most ade-
quate ANN architecture for the considered dataset. The
experimental results of damage detection and localization
in an aluminum plate validate the effectiveness of MPCA in
finding a simple and optimized ANN architecture with good
generalization capability. The generalization performance of
MPCA-ANN was compared with two 1D-CNN. The results

Table 8: Estimated computational cost comparison.

RMSE
MPCA-ANN

RMSE 1D-
CNN-CWT

RMSE 1D-
CNN-RAW

Number of
convolutions

CWT
convolution

12 12 —

Convolutional
layer 1

— 10 120

Convolutional
layer 2

— — 50

Total 12 22 170

Number of
neurons

Hidden
layer 1

5 60 60

Hidden
layer 2

— 60 —

Output layer 2 2 2

Total 7 122 62

Number of
weights

Convolutional
layer 1

— 40 10810

Convolutional
layer 2

— — 505

Hidden
layer 1

65 3060 7560

Hidden
layer 2

— 3660 —

Output layer 12 122 122

Total 77 6882 18977

Table 7: Mean normalized distance error.

Algorithm MND

MPCA-ANN 0.124

D-CNN-CWT 0.082

D-CNN-RAW 0.081
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show that MPCA-ANN has a good performance in compar-
ison with complex 1D-CNN structures.

The continuous wavelet transform processes the Lamb
wave reflections and improves the time-of-flight estimation.
The Shannon entropy-based criterion finds the best mother
wavelet and scale values for detecting the Lamb wave reflec-
tions. The experimental results validate the effectiveness of
the proposed optimized CWT. In future works, this method
will be extended to more complex plate-like structures such
as composite structures.
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