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According to the algorithm of time difference and threshold value, this paper selects the more valuable data for motion state
recognition and selects the characteristics, respectively selects the data of the combined acceleration and the combined angular
velocity, and uses the data of the pitch angle and the roll angle more novelly. In the aspect of data preprocessing, the sliding
segmentation window method is used for feature processing, and the time domain and frequency domain features of the data
are extracted. A total of 108 dimensional features are extracted. In order to improve the calculation performance, PCA
technology is used for data dimensionality reduction. In this paper, we collected data on changes in physiological parameters
of 24 experimenters before and after exercise, collected 14 self-evaluated severely fatigued volunteers and self-evaluated severely
stressed volunteers’ resting heart rate and blood pressure data as unhealthy data samples, and collected physiological data of 14
healthy experimenters as unhealthy data samples. For healthy samples, three sets of experiments were set up to analyze the
changes of exercise heart rate, exercise blood pressure and exercise body temperature, and the effectiveness of fusion of
physiological data to improve the performance of exercise recognition and the analysis of the health status of physiological
parameters that introduce exercise interference. The experimental results show that during exercise, monitoring changes in
systolic blood pressure is more meaningful than monitoring changes in diastolic blood pressure; it verifies the effectiveness of
improving the performance of exercise recognition by fusion of physiological parameters. The addition of physiological data
can effectively improve the recognition rate of exercise. The recognition rate has been increased from 93.7% to 96.3%; the
effectiveness and applicability of the algorithm in this paper are analyzed through design experiments, and the results show
that the recognition accuracy of the algorithm in this paper is above 87%. This result has a good classification recognition rate
for a small sample.

1. Introduction

With the continuous improvement of living standards,
people’s living habits and eating habits are also changing.
Excessive diet, intake of high-calorie food, and lack of
exercise due to staying indoors for a long time are increas-
ing, causing the human body to consume too much energy
every day, leading to diseases such as obesity, high blood
pressure, and hyperlipidemia [1]. Developing a healthy
diet and taking an active part in outdoor activities can
not only enhance the body’s immunity but also consume
excess energy, so that the body’s energy supply and

demand can reach a balance [2]. Monitoring the daily
exercise status of the human body can guide people to for-
mulate a healthy and reasonable diet plan, rationally
arrange daily exercise, and improve people’s healthy living
standards [3]. There are many types of daily activities of
the human body, including running, walking, going up
and down the stairs, sitting down, standing, and many
other exercise methods. The energy consumption relation-
ship corresponding to these different daily exercises is also
different. Therefore, it is very important to monitor and
identify these daily exercises, and it is also the main
research topic of many researchers at present [4].
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The acceleration phenomenon has always existed in
human body movement; for example, daily human body
movements such as washing face, brushing teeth, walking,
running, and riding a bicycle will produce corresponding
acceleration. The use of acceleration to monitor human
motion status has received extensive attention from domes-
tic and foreign researchers [5]. The acceleration signal is the
corresponding action signal generated by the body move-
ment in the daily life of the human body. By effectively pro-
cessing this signal, it can be judged what kind of action the
human body has made [6]. With the continuous improve-
ment of microelectronic system technology, acceleration
sensors are becoming smaller and cheaper, and they have
been widely embedded in mobile phone devices, notebooks,
electronic game consoles, etc., and are based on acceleration
sensors [7]. Various studies provide a broader platform. The
human action recognition mechanism and fall detection
algorithm proposed in this paper are based on a single accel-
eration sensor [8]. Most of the current popular smartphones
and other devices have a single acceleration sensor embed-
ded, so the research in this paper has a certain practical
value [9].

Wearable health monitoring devices are often greatly
affected by the state of human movement. Through the iden-
tification and analysis of different exercise states, the real
health conditions contained in the health data can be better
mined. Recognition of human motion status has develop-
ment prospects in many fields such as health field, medical
monitoring, fall monitoring, competitive sports, and indoor
positioning. In daily life, different motion states will produce
different accelerations. Accurate identification of individual
motion states can be achieved by acquiring acceleration sig-
nals in different motion states and performing correspond-
ing preprocessing and feature identification. The rapid
development of artificial intelligence technology provides a
strong support for solving feature recognition and improv-
ing the ability to identify behaviors autonomously. Various
intelligent mobile terminal devices that are widely used con-
tain a wealth of sensors, which provide the possibility for
convenient monitoring of physiological parameters, but the
monitoring data is often greatly affected by the state of
human movement. Through the identification and analysis
of different motion states, the real physiological information
contained in the monitoring data can be better mined.

This paper uses the random forest classification algo-
rithm to classify the movement state. Using variable-scale
sliding window segmentation technology, 27 time-domain
and frequency-domain features of total acceleration, total
angular velocity, pitch angle, and roll angle are extracted,
respectively. A total of 108 features are extracted for each
action, and the PCA algorithm is used to do feature extrac-
tion. This paper collects data from 24 experimenters and
analyzes the changes in exercise heart rate, blood pressure,
and body temperature. The results show that human body
sweat evaporation and other factors lead to insignificant
changes in human body temperature monitoring values.
Exercise blood pressure changes according to a certain rule.
The above reflects the health of the human body. In predict-
ing the health status based on the physiological data of the

monitored human body’s real-time exercise status, the phys-
iological parameter health status analysis that introduces
exercise interference can be used to distinguish the changes
in the physiological parameters caused by the individual
exercise and the changes caused by the abnormal physical
health of the individual. After counting the changes in blood
pressure and heart rate of 24 experimenters, it can be con-
cluded that after 5 minutes of vigorous exercise, most of
the experimenters’ systolic blood pressure will increase to a
certain extent, but the diastolic blood pressure basically
remains unchanged or has a small extent decrease; the heart
rate rises sharply. Therefore, during exercise, it is more
meaningful to monitor changes in systolic blood pressure
than to monitor changes in diastolic blood pressure. Exercise
can lower the body’s diastolic blood pressure. In terms of
diastolic blood pressure monitoring, the overall stability of
diastolic blood pressure of female experimenters is higher
than that of men. Changes in blood pressure during exercise
can reflect the health of the human body to a certain extent,
and the changes are also related to the height and weight of
the experimenter.

2. Related Work

The multisensor strategy is to place acceleration sensors,
gyroscopes, height sensors, air pressure sensors, skin con-
ductivity sensors, heart rate sensors, etc., on the head, wrist,
waist, ankle, sole, or skeletal muscle joints of the human
body. It collects data collaboratively and uploads data to
the analysis platform in real time through data transmission
equipment such as Bluetooth. The advantage of the multi-
point arrangement is that detailed and comprehensive data
can be obtained, and the corresponding algorithm can be
used to accurately identify the complex action process. It is
often used in the fields of game modeling, athlete’s posture
analysis, and training correction. Judging from commercial-
ization results, there are many successful cases [10]. Taking
wearable devices as an example, wristbands with pedometer
functions are all the rage. The main implementation mode of
this type of product does not only analyze the data of the
motion sensor alone but also analyzes the mileage and step
frequency through the GPS function of the mobile phone
to compensate for the step error [11]. Accelerometers, gyro-
scopes, and magnetometers are generally integrated into
mobile phones. In response to the upsurge of motion recog-
nition research, many companies have introduced special
equipment for data sampling, such as Microsoft’s band2
[12].

Relevant scholars observe the impact of a six-week vir-
tual reality exercise experiment on cognitive ability [13]. In
the experiment, six weeks of virtual reality exercises such
as stretching exercises, archery exercises, and balance exer-
cises was used. The 32-lead Brain Vision Analyzer produced
by BP in Germany was used for ERP P300 evaluation. The
results showed that six weeks of virtual reality exercises
was used during exercise. Undergraduates’ cognitive ability
has a certain selective influence, and it is believed that these
selective changes should be adaptive changes to the exercise
style [14]. Related scholars have observed the effect of high-
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intensity interval training on the ability of adolescents to
exercise control [15]. Using six weeks of high-intensity inter-
val training or choosing aerobic continuous training can sig-
nificantly shorten the stroop reaction time of young
children, but the effect of the high-intensity interval training
group is significantly better than that of continuous aerobic
training.

The single-sensor strategy undergoes data processing
and algorithm recognition and outputs the judgment result
of the motion state. The data processing capacity of a single
sensor is relatively small, and although it cannot recognize
complex human movements, the recognition of walking,
running, falling, and other movements can reach a high
degree of accuracy. It is mainly used in the fields of elderly
fall detection, medical rehabilitation, exercise assistance,
and other fields.

In the research of motion recognition, the preprocessing
of accelerometer data mainly includes data transformation,
filtering, and sample collection [16]. The main purpose of
data transformation is to decompose or merge the original
data that is not convenient for analysis to obtain target
values that are beneficial for analysis or feature extraction.
At present, the main analysis object of domestic and foreign
researchers is the resultant acceleration derived from the
three-axis acceleration, and a small number of studies use
the raw data of the three-axis acceleration for comprehen-
sive analysis [17]. For data filtering, some researchers have
analyzed the influence of median filtering, moving average
filtering, and Kalman filtering on the signal [18]. At present,
the windowing method is commonly used at home and
abroad to process acceleration sampling data. Researchers
mainly conduct testing and research on the time length
and overlap ratio of windows to find the best window setting
form [19]. Other data set extraction methods include the key
event cut-off method, which is mainly a supplement to the
continuous recognition of the window method. This method
selects certain feature points as the settlement signal for the
feature value extraction of the window data, such as points
with a higher rate of change.

The motion recognition algorithm is the core of motion
recognition research [20]. The algorithms used by domestic
and foreign researchers mainly include naive Bayes algo-
rithm, K-nearest neighbor algorithm, threshold algorithm,
decision tree algorithm, random forest algorithm, SVM sup-
port vector machine algorithm, and BP neural network [21].
Among them, the decision tree algorithm is actually a tree
topology representation of the threshold algorithm, and the
entropy gain calculation of the split node is more reliable
than a single threshold. The random forest algorithm has
absorbed the naive Bayesian algorithm’s thoughts on the
probability processing of classified events and the advan-
tages of a simple and efficient decision tree algorithm [22].
The naive Bayes algorithm is highly efficient and concise,
and the time complexity and space complexity of the pro-
gram are extremely low. However, the calculation of its prior
probability requires a lot of statistical work. At present, with
the increasing popularity of machine learning and artificial
intelligence, more researchers use the BP neural network.
The BP neural network has many advantages. Related

scholars use context-aware technology to identify feedback
and optimize control of robot motion processes [23]. How-
ever, its algorithm has high complexity, high requirements
for system hardware resources, and slow speed, and the
training results are affected by many factors. At present,
the relevant literature is only seen in laboratory simulations,
and no mature products have been launched [24].

3. Method

3.1. The Overall Architecture of the Monitoring Dynamic
System. According to functional requirements, the system
needs the implementation of the data acquisition module,
low power consumption module, positioning module, sys-
tem alarm module, remote communication module, and
other software. The working mode of the dynamic system
of exercise load status monitoring is shown in Figure 1.

After the system switch is turned on and powered on, in
the main function, initialize the clock, USART, timer 2,
timer 7, IIC, MPU9250, MAX30102, SD card, and open
the MTK serial port to communicate with the remote server.
After the connection is successful, the system obtains the ini-
tial data. If the system detects that the user is not exercising,
the heart rate is normal, and there is no abnormality after
3000 times (30 s) of information monitoring, it will enter
the low power consumption mode, and no exercise status
recognition will be performed at this time; if the user is
detected in motion state, the MPU9250 interrupt pin will
wake up the STM32F4. At this time, the system enters the
high-speed motion mode. According to the acceleration,
angular velocity, attitude angle, and time difference data, it
recognizes the user’s walking, running, sitting, standing, fall-
ing danger, and falling. When the result is recognized, a flag
bit specified by the system will be returned, then send it to
MTK through the serial port, and MTK will broadcast the
corresponding action voice. At the same time, MTK will
package the corresponding signs of the corresponding action
information, positioning information, power, and other
information into the form of BSN data packets and upload
them to the server. The BSN data packet format is a data
transmission protocol defined by humans. If the user has a
fall or an abnormal heart rate, the system will give an alarm
and send its location information to the guardian in order to
get timely help. If the user is rescued in time and the alarm
state is released (press the release alarm button), then the
system will continue to enter the motion monitoring mode
and continue to work. The data package in the upload server
mode is shown in Table 1.

3.2. Feature Extraction and Selection. There are many fea-
tures that can be extracted by motion state recognition,
which are mainly divided into time domain and frequency
domain features. Time domain features (TDF) mainly refer
to the time-related features that the signal has during the
change of the signal with time; frequency domain features
(FDF) are mainly used to find some periodic signals in the
signal, and the frequency domain is mainly calculated by
Fast Fourier Transform (FFT). Taking the resultant
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acceleration data as an example, the features that can be
extracted are shown in Figure 2.

The mean value is often used to identify sitting and
standing states, while the root mean square is used to distin-
guish walking patterns, and the signal amplitude area is used
to distinguish motion to determine when the subject is
engaged in activity and when in static state. Energy and
entropy are used to distinguish different types of daily life
states. The signal amplitude vector is used to indicate the
degree of exercise intensity, and it is an important indicator
of fall detection. Standard deviation has also been widely
used for activity classification.

For a given set of signals: Y = fy1,⋯, yng, we perform
FFT transformation, where Fi is the ith component of the
Fourier transform of Y . The calculation method of each fea-
ture is as follows.

The standard deviation is

std = 1
n
〠
n

i=1
yi −meanð Þ2

" #1/2

: ð1Þ

The energy is

Energy Yð Þ = 1
n

Yn
i=1

F2
i : ð2Þ

The calculation methods of mean uamp, standard devia-
tion бamp, skewness γamp, and kurtosis ηamp of amplitude

Start

Characteristic parameter 
initialization

Is a connection with 
the exercise load

monitoring server 
established?

Obtain inertial 
sensor data

Get heart rate data and 
positioning information

Does the system 
perceive movement?

Dynamic recognition of 
motion state based on time 

difference and threshold

Send BSN packets 
to the server

Make an analysis

Voice broadcast

Is there a state of 
over-exercise load?

Trigger the alarm 
status of the system

Has the system 
alarm status been 

released?

Send a message to 
the guardian Upload exercise data

and heart rate data to 
the server 

End

Yes

Yes

Yes

No

Is there any 
abnormality in the 
exercise load status?

No

System enters low 
power mode

Dynamic system waiting 
to wake up

Is the motion load 
status monitoring 

dynamic system
interrupt pin
awakened? 

Yes
No

No

Yes

Reconnection

No

No

Yes

Figure 1: Work flow chart of the dynamic system for monitoring the exercise load state.

Table 1: Upload data package in server mode.

Frame header BSN

System ID SIM card number

1 Battery voltage level

2 Exercise status

3 GPS positioning information

4 Base station location information

5 WIFI location information

6 Battery voltage

End of frame @
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statistical characteristics are as follows:

uamp = 1
M − 1
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D ið Þ ⋅D i + 1ð Þ½ �, ð3Þ
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M − 1

YM−1
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D ið Þ ⋅D i + 1ð Þ − uamp½ �2

( )1/2

, ð4Þ
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� �3
, ð5Þ
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D ið Þ ⋅D i + 1ð Þ
σamp − uamp − 1

� �2
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This paper extracts the time-domain and frequency-
domain features of the combined acceleration, combined
angular velocity, pitch angle, and roll angle. 27 features are
extracted from each type of data. A total of 108 features
are extracted for each action, and these features are com-
bined into feature vectors. Each row represents a sample,
and each column represents a feature, which constitutes a
data set for motion state recognition.

3.3. Use PCA for Data Feature Extraction. After the data is
preprocessed and feature extracted, it is necessary to reduce
the dimensions of the data features, retain the most impor-
tant features, and input the machine learning algorithm for
training, which can reduce the computational overhead of
the algorithm and make the data set easier to use. Dimen-

sionality reduction is a way to retain some of the most
important features of high-dimensional data and remove
unimportant features and noise, so as to achieve the purpose
of improving the data processing speed.

Principal component analysis is a type of unsupervised
dimensionality reduction method. Its goal is to reduce a set
of N-dimensional vectors to K-dimensional and to ensure
that the variance of any two vectors is as large as possible.
In order to ensure that the two vectors represent as much
of the original information as possible, there should be no
linear correlation between the vectors. This requires the
selection of K orthogonal features, the principal compo-
nents. It is a k-dimensional feature reconstructed on the
basis of the original n-dimensional feature. This is to find a
set of mutually orthogonal principal components in turn
from the original space.

The first principal component selects the direction with
the largest variance in the original data, and the second prin-
cipal component selects the direction with the second largest
variance in the data. For the third principal component, we
choose the plane with the largest variance on the planes
orthogonal to the directions of the first and second principal
components. By analogy, K principal components are
selected.

The variance is mainly contained in the K principal
components, and the variance of the remaining principal
components is almost zero. Therefore, we use K principal
components to transform the original data into a new space,
realizing dimensionality reduction of data features.

Through PCA dimensionality reduction, the percentage
of the total variance of each principal component in the
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Figure 2: Schematic diagram of feature extraction of acceleration data.
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feature matrix can be calculated, that is, the contribution
rate. The percentage of the total variance of the first few
principal components is called the cumulative contribution
rate. In general, the first few principal components whose
cumulative contribution rate reaches 90% are selected to
ensure that all important feature information is included.
In addition, the included noise and irrelevant information
are removed to make the data clearer.

3.4. Recognition of Exercise Load State Based on Random
Forest. This paper chooses the random forest (RF) classifier
as the algorithm of motion state recognition. Random forest
is an ensemble learning algorithm, it belongs to the bagging
type, and the bagging structure is shown in Figure 3. It
mainly combines multiple weak classifiers, and each classi-
fier votes to get the final result. A random forest is actually
a classifier with multiple decision trees, and each decision
tree is not related. When the data to be tested enters the ran-
dom forest, each tree in it will be classified, and the output
category is determined by the mode of the output results
of some trees; the final classification result in all decision
trees is the final classification. Because “random” can make
it have the ability to resist overfitting and “forest” makes it
more accurate, it can achieve a good classification effect.

Suppose that the set S contains n different samples fx1
, x2,⋯, xng. If one sample is randomly selected from the
set S each time and it is sampling with replacement, a total
of n times are drawn, and the new set S ∗ is formed. Then,
the probability that a certain sample xi ði = 1, 2,⋯, nÞ is
not included in the set S ∗ is

p = 1 − 1
n

� �n

: ð7Þ

When n tends to infinity,

limp
n⇒+∞

= lim 1 − 1
n

� �n+1

n⇒+∞

= e−1 ⟶ 0:368: ð8Þ

Therefore, although the total number of samples in the
new set is equal to that in the original set, the new set is
obtained by randomly sampling S samples with replacement
n times, so it may have duplicate samples. If the duplicate
samples are removed, the new set contains 0.63 samples in
the original set.

The random forest algorithm is based on the bootstrap
method of resampling to generate multiple training sets,
and when constructing the decision tree, a method of ran-
domly selecting a split attribute set is used. When inputting
the feature matrix into the classifier, each sample in the
training set and the test set needs to be labeled with a corre-
sponding label for subsequent recognition.

4. System Test and Result Analysis

4.1. Data Preprocessing. The data includes three-axis acceler-
ation, three-axis angular velocity, three-axis magnetometer,
and attitude angle. The motion data used in this article

mainly includes the combined acceleration, combined angu-
lar velocity, pitch angle, and roll angle, which can better
reflect the human body’s movements. However, the data col-
lected is a period of time, and the amount of information is
relatively large, which is not conducive to subsequent feature
extraction. Therefore, window segmentation is required; that
is, given a time series and a limited sample set characterized
by time points, the sample set is divided into segments (win-
dows) of continuous samples between two time points a and
b. These two time points are internally homogeneous for the
program.

How to determine the segmentation window is a key
issue when performing window segmentation. For example,
activities with a relatively short duration, such as sitting
down, cannot be effectively recognized if the window is too
long or too short. In fact, many classification errors in
motion state recognition are caused by improper selection
of the size of the segmentation window. If the window is
too short, it may not cover the span of an action. If the win-
dow is too long, it may overlap two unrelated activities. This
article uses sliding window segmentation technology and
takes different sliding windows F according to different
actions. Each sliding step F/2 means that each window seg-
mentation will have a 50% overlap rate for the previous time
window. This ensures that each action has better integrity. In
this article, according to the different actions and the col-
lected data analysis, the window chooses 100 and 200, such
as falling, sitting, and standing. It takes about 2 s for the
completeness of the data, so the segmentation window is
selected as 200. It takes about 1 s to go upstairs, go down-
stairs, and stand still, so the split window is selected as
100, as shown in Figure 4. It can be seen that when the slid-
ing window is selected as 100, the integrity of the action will
not be destroyed.

4.2. Exercise Heart Rate and Exercise Blood Pressure
Monitoring Test. Before the measurement, the experimenter
should avoid strenuous exercise, keep calm, and conduct the
experiment in a quiet environment. The experimenter needs
to fill in basic personal information, including gender, age,
height, and weight, and needs to clearly inform whether he
has cardiovascular-related diseases and whether he has any
medication records in the near future. After completing the
basic information collection, it needs to wear the collection
equipment correctly. We collect ECG signals, PPG signals,
and blood pressure signals. After wearing the equipment
correctly, first, we ask each experimenter to stay calm and
maintain a resting state for 1 minute. After 1 minute, we
record the physiological data within one minute, in which
blood pressure is measured three times repeatedly, and use
an electronic thermometer to measure the experimenter’s
resting state before exercise.

After the initial data collection is completed, take off the
measurement equipment worn and exercise vigorously for 5
minutes in a running state. After finishing the exercise, the
experimenter wears the measuring equipment again and
immediately starts data collection in the same way as the ini-
tial data collection. We record the changes of data every 2
minutes until the measured values are basically stable.
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This section focuses on the analysis of the changes in the
blood pressure of the experimenter before and after exercise.
A total of 24 experimenter sample data were collected, and
the measurement data of one experimenter was randomly
selected as an example for analysis and explanation.
Table 2 shows the systolic blood pressure, diastolic blood
pressure, and heart rate of the first experimenter before
and after exercise and after recovery. It can be seen from
Table 1 that after 5 minutes of strenuous exercise, both
blood pressure and heart rate values will change signifi-
cantly, and after 10 minutes of rest recovery, the measured
data basically return to a stable state.

After statistical analysis, it is found that using a forehead
thermometer to measure human body temperature before
and after exercise, the value of the change is small. The main
reason is that the selected experimental environment is rela-
tively open, the body surface temperature is greatly affected
by the environment, and the human body sweat evaporation
and other factors lead to the human body temperature. The
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Figure 3: Bagging structure.
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Figure 4: The acceleration of the sliding window segmentation when the overlay rate is 50% and the window is 100.

Table 2: Measurement data of the first experimenter.

Motion state
HR

(bpm)
T
(°C)

SBP (mm
Hg)

DBP (mm
Hg)

Resting state before
exercise

90.2 36.1 113.1 69.1

93.3 35.9 111.4 68.1

91.0 36.2 115.1 68.3

After exercise

119.1 36.3 129.3 67.1

117.4 36.1 128.1 65.3

118.1 36.4 129.3 68.1

Resting after exercise

109.1 36.4 116.1 71.2

105.0 36.3 114.1 69.3

108.1 36.5 118.3 70.1
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monitoring value has not changed significantly. After statis-
tical analysis, it is found that the blood pressure changes of
the 24 experimenters can be divided into three categories:
(1) after exercise, the systolic blood pressure increased while
the diastolic blood pressure decreased; (2) the systolic blood
pressure decreased after exercise, while the diastolic blood

pressure increased; (3) the diastolic blood pressure increased
after exercise, while the diastolic blood pressure did not
change significantly.

The two situations (1) and (2) mostly occurred in young
male experimenters, and situation (3) occurred more fre-
quently in young female experimenters. Among them, the
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Figure 5: Normalized SBP, DBP, and HR changes of male and female experimenters before and after exercise.
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normalized diastolic blood pressure, systolic blood pressure,
and heart rate changes of male and female healthy experi-
menters before and after exercise are shown in Figure 5.

Through analyzing the data, it is found that after 5
minutes of vigorous exercise, the experimenter’s diastolic
blood pressure dropped from 75mmHg to 65mmHg, sys-
tolic blood pressure rose from 120mmHg to 136mmHg,
and heart rate rose from 89 bpm at rest to 130 bpm. After
5 minutes of rest, the experimenter’s heart rate began to
recover, and the diastolic blood pressure increased, and the
systolic blood pressure also began to show a downward
trend; after 10 minutes of rest, the diastolic and systolic
blood pressure basically returned to their preexercise state.
The waveform characteristics of the pulse wave before and
after the exercise of this experimenter were collected syn-
chronously as shown in Figure 6. Figure 6 shows the pulse
wave waveform feature points in the resting state before
exercise and the distribution of waveform feature points
after strenuous exercise.

It can be seen from the pulse wave waveform that the
wave crest becomes narrower, the pulse rate increases, and
the myocardial contractility is strengthened, resulting in an
increase in the heart rate. Therefore, it can be seen that exer-
cise leads to faster heart rate, increased myocardial contrac-
tility, increased cardiac output, and a certain increase in
systolic blood pressure. After exercise, the vascular muscles
relax, the peripheral blood vessels dilate, the diameter of
the blood vessels increases, and the resistance decreases,
which leads to a decrease in diastolic blood pressure. How-
ever, in the test, it was also found that after strenuous exer-
cise of the same intensity, the blood pressure of some
experimenters was opposite to the above phenomenon.
Compared with the resting state before exercise, the systolic
blood pressure decreased to a certain extent, and the dia-
stolic blood pressure increased.

4.3. Motion Recognition and Monitoring Incorporating
Multiple Physiological Characteristic Parameters. In this sec-

tion, the physiological data and acceleration data of 12 peo-
ple standing, squatting, jumping, walking, running, going
upstairs, and going downstairs were collected. All 12 people
were healthy and free of cardiovascular disease. There was
no disease and no disease in the week before the test. We
take medication records, and they sleep well and did not stay
up late three days before the test. We collect acceleration
data worn on the waist of a person wearing physiological sig-
nal measurement equipment during exercise. The data
includes ECG signals, blood pressure data, and body temper-
ature data.

Before the measurement of each set of exercise data, the
experimenter should avoid strenuous exercise and maintain
a resting state for 5 minutes. It is necessary to correctly wear
a belt-type ECG and acceleration sensor, which can collect
ECG signals and acceleration data synchronously, and cor-
rectly wear a finger clip blood pressure measuring instru-
ment, which can realize the measurement of blood
pressure data during exercise. We perform zero calibration
on the acceleration sensor node fixed in the middle of the
waist. After being worn correctly, we collected the physio-
logical data and acceleration data of the experimenter in a
standing state and recorded it. Each exercise lasts for three
minutes, and there are at least 10 rests between the two
exercises.

In this section, we will focus on the effectiveness of using
physiological data to recognize exercise status. This section
introduces blood pressure and heart rate data, mainly dis-
cussing the effectiveness of physiological data to improve
the performance of exercise recognition. To this end, this
section conducts a comparative experiment: only uses accel-
eration data to recognize sports and uses acceleration data,
blood pressure data, and heart rate data to recognize sports.
We select 7 experimenters with representative data changes
among 12 experimenters for analysis and record the changes
of systolic blood pressure, diastolic blood pressure, and heart
rate obtained by 7 experimenters after 7 exercises, ECG sig-
nal, and acceleration during exercise. In this paper, the RF
classification algorithm is used to identify the movement.
Figure 7 records the heart rate changes of one of the exper-
imenters during the six exercises. From the data waveform
in the figure, it can be seen that the amplitude of the change
of the different action data waveforms is obviously different,
which verifies the effectiveness of the physiological data to
improve the performance of motion state recognition from
the data layer.

In this group of experiments, the acceleration data
adopts the same set of data samples. The data in the first
20 seconds of the heart rate is eliminated, and the data
within 50~230 seconds is selected for analysis. The data col-
lection frequency of the ECG equipment is 360Hz, and the
data collection frequency of the acceleration sensor is
60Hz. The sample data is intercepted for 5 seconds. There
are 4000 sampling points for ECG data and 220 sampling
points for acceleration data. A total of 3000 sets of sample
data are obtained. 80% of the data is selected for training
and 20% for testing. The results of random forest exercise
load status monitoring and recognition are shown in
Figure 8. It can be seen from the figure that when
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Figure 7: Changes in center rate data during different exercises.
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recognizing motion based on acceleration data, adding phys-
iological data can effectively improve the recognition rate of
the motion state.

4.4. Introducing Physiological Parameter Health
Monitoring of Exercise Interference

4.4.1. Analysis of the Effectiveness of the Algorithm. We ran-
domly selected a severe fatigue experimenter and collected
resting heart rate and blood pressure data in the experi-
menter’s fatigue state. Data was collected every 10 minutes
for three minutes each, and a total of 6 sets of data were col-
lected. Resting heart rate and blood pressure data were mea-
sured in 6 groups of subjects with unhealthy physiological
parameters. In addition, the acceleration data in the station-

ary state was measured. After the experimenter returned to
the awake state, the acceleration data and physiological
parameter data in the six exercise states were collected as
the data of the healthy group.

We select 216 groups of unhealthy samples
(1 person × 6 times × 180 seconds/5 seconds) and select the
same number of healthy samples. The classification results
are shown in Table 3.

It can be seen from Table 2 that the recognition accuracy
of the positive class of the designed classifier is above 89%.
For a small sample, the classification recognition rate is
ideal. It can be used for doctors or professionals to predict
the health status; it can be used to distinguish whether the
change of individual physiological parameters is caused by
exercise or due to abnormal health of the individual. For
example, it can be extended to actual application scenarios
to analyze based on a large amount of accurate data.

4.4.2. Analysis of the Applicability of the Algorithm. In this
section, the resting heart rate and blood pressure data of
10 severe fatigue experimenters and 4 self-evaluated severe
stress experimenters were collected. The data of 14
unhealthy samples were measured to collect the resting heart
rate and blood pressure data of the experimenter, as well as
the acceleration data in the resting state. The data of the
healthy group was collected from the awake state and
relaxed state of 14 experimenters as healthy samples. We
select 1176 groups of healthy samples
(14 people × 7 actions × 60 seconds/5 seconds) and also
select 1176 groups of unhealthy samples. The classification
results are shown in Table 4.

It can be seen from Table 3 that the recognition accuracy
rate of the positive class is above 87%. At the same time,
comparing the effectiveness of the algorithm, it can be seen
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Figure 8: Experimental comparison of the validity of physiological data.

Table 3: Effectiveness classification results.

Recognition rate (%)
Healthy
sample

Unhealthy
sample

Actual
sample

Healthy sample 90.2 6.7

Unhealthy
sample

9.8 93.3

Table 4: Applicability classification results.

Recognition rate (%)
Healthy
sample

Unhealthy
sample

Actual
sample

Healthy sample 91.6 7.9

Unhealthy
sample

8.4 92.1
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that the recognition accuracy rate of this group of experi-
ments is slightly lower, but it is also above 87%. Considering
the experimenter differences in height, weight, gender, etc.,
the correct rate is within a controllable range. It shows that
the algorithm in this paper is applicable to different
experimenters.

5. Conclusion

In this paper, a random forest classification algorithm is
selected to classify the motion state. The 27 time-domain
and frequency-domain features of the human body’s com-
bined acceleration, combined angular velocity, pitch angle,
and roll angle are, respectively, extracted to form a 108-
dimensional feature vector; when extracting features, a slid-
ing window segmentation method is used for feature extrac-
tion. Different actions use appropriate sliding windows to
ensure the integrity of each action; the PCA dimensionality
reduction method is used to optimize the feature matrix to
make the data set cleaner and more concise and improve
the calculation performance. This article sets up three sets
of experiments to collect data from 24 people to study the
changes in exercise heart rate, blood pressure, and body tem-
perature, collect data from 12 people to analyze the effective-
ness of fusion of physiological parameters to improve the
recognition rate of exercise, and collect data from 14 people
to discuss the physiological parameters that introduce exer-
cise interference. The experimental results show that motion
recognition with physiological features can effectively
improve the recognition rate of motion, and the average rec-
ognition rate is increased from 94.8% to 95.7%; the recogni-
tion accuracy of the SVM-based blood pressure and heart
rate abnormality judgment algorithm is more than 87%.
This paper uses a depth camera to obtain depth images to
build a human knee joint motion data set and uses neural
networks to realize the training of the motion model and
the positioning of the main human joints, but there is still
a deviation from the motion data obtained by the wearable
device. There are two main reasons for this situation: one
is that the existing data set is not complete; the other is that
the performance of the neural network structure is not
strong enough. In order to avoid the shortcomings of the
above basic work, the number of samples for the data set
can continue to be expanded, including the number of peo-
ple collected and the number of images, and the network
structure can be further optimized. By adjusting the struc-
ture and parameter settings, a fast and accurate motion
model can be trained. At present, the collection of accelera-
tion sensor data and multiphysiological parameter data can-
not be synchronized online and can only be synchronized
offline. Next, we will build an integrated motion data and
physiological data collection system.
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