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Microwave-based distance measurements are limited depending on the sensing environment, such as the propagation medium
and surrounding obstacles, and the complex environment also affects the measurement performance. To tackle this problem,
we propose a method for predicting the distance based on the artificial neural network learning of near-field microwave
reflection spectra. In principle, the spectral data is expected to contain a signature of the distance of the target object. Based on
this, we proposed a two-step neural network to extend the measurable distance range while ensuring prediction performance.
The first step is to predict the coarse range of the target by classification, and the next is to predict the precise distance value
through multidimensional regression within that coarse range. The method was verified through experiments to predict the
position of an object in an underwater environment, which was difficult to measure with conventional methods.

1. Introduction

Distance measurement is a common interest in many fields,
including scientific and industrial applications. To date, vari-
ous techniques have been developed. The techniques are gen-
erally divided into contact and noncontact types. The first
requires an object to touch the sensor, which usually compli-
cates and slows the measurement process and can damage
the inspected object. Moreover, if the measurement target is
a soft material such as rubber, textile, or tissue, it cannot be
measured at all. On the other hand, the noncontact type, in
which the sensor and the object to be measured are separated,
has the advantages of low inspection cost and short inspection
time. Therefore, it is excellent in usability [1]. The noncontact
distance measurement sensor uses ultrasonic waves, radio
waves, infrared rays, visible light, and so on [2, 3]. In principle,
the distance can be simply computed from the time of flight
(ToF) in a straight line from the transmitted source.

Ultrasonic sensors have the advantages of being low cost
and compact in size [2]. However, the distance measurement

in ultrasonic sensors is based on the speed of sound, which
varies depending on the propagation medium, temperature,
and relative humidity [4], causing an error in the distance
measurement. The infrared sensor offers a lower cost and a
faster response than ultrasonic sensors [5], but they have
nonlinear characteristics due to the reflectance properties
of the object surfaces [6]. Radar sensors using radio waves
are not affected by the surrounding weather and have high
precision [7], and the computational cost can also be
reduced [8]. However, there are disadvantages in that it is
difficult to identify small objects and understand the types
of objects. Lidar sensors, using a laser pulse, obtain high-
resolution long-distance 3D data as well as precise distance
measurements and have the advantage of analyzing visibility
in space [9]. It can track objects at a range of 200m or more
and a wide field of view [10]. However, there is the disadvan-
tage that it is affected by the environment such as illumi-
nance and weather, and the price is quite expensive.

To overcome the limitations of using each sensor alone,
a method of using several types of sensors together has been
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proposed. For example, there is a method of combining an
ultrasonic sensor and an infrared sensor, or a method of
combining a radar sensor and a lidar sensor [3, 10]. How-
ever, these methods increase the complexity of the measure-
ment system and accordingly increase its size and cost.

Another method to measure the distance is to use a ste-
reo camera that is widely used in areas such as robots and
autonomous vehicles and can measure relatively accurately
[11]. In addition, distance measurement using a stereo cam-
era is being improved through continuous research and effi-
cient use of algorithms [12–15]. However, outdoor use may
cause problems in bad weather with little light, such as fog
or rain, because the camera is affected by light.

As such, there are many ways to measure distance. How-
ever, when optical visibility is not guaranteed, when refrac-
tion modeling is difficult, or when there is strong
interference in a measurement signal, it is often difficult to
use the above-described conventional method. For this rea-
son, using microwaves may provide a meaningful sensing
signal even in the measurement environment. However,
until now, it has been difficult to extract meaningful infor-
mation from the measured signal. Meanwhile, recent
remarkable breakthroughs in machine learning have had a
profound impact on problems such as regression, classifica-
tion, and optimization [16–18] and have been widely applied
in various fields [19, 20]. In particular, artificial neural net-
works (ANNs), one of machine learning, are effective model-
ing methods that can deal with nonlinear and multivariable
problems. This is because ANNs can learn and model non-
linear and complex relationships, generalize, and, unlike
many other prediction techniques, do not impose restric-
tions on input variables. Due to these advantages, such
ANNs have been applied in many practical applications,
such as nonlinear dynamic system control [21], material
property prediction [22, 23], and crack detection in concrete
structures [24]. Considering the recent situation, ANN is
expected to be able to extract meaningful information from
complex microwave signals.

To this end, in this paper, we propose a short-range dis-
tance measurement method through ANN learning of near-
field microwave reflection spectra measured from the sur-
rounding environment. In detail, we first investigate the
change in the reflection spectrum as the distance of an object
placed in water changes. Then, we present a one-step neural
network and a two-step neural network for distance predic-
tion and evaluate their performance.

2. Materials and Methods

2.1. Microwave Reflection Spectrum. The distance of an
object is related to the nature of the signal that the transmit-
ted microwave reflects off the object and returns. Here, the
nature of the signal can be expressed with the reflection
spectrum that describes how much of a wave is reflected
by an impedance discontinuity in the transmission medium
according to the microwave frequency. The reflection spec-
trum can be obtained from the scattering coefficient (also
called the S-parameter [25]). In general, the parameter is

defined as

Sij =
V−

i

V+
j
, ð1Þ

where V−
i is the wave signal voltage out from the port i, and

V+
j is the wave signal voltage into the port j. Here, the reflec-

tion coefficient (Sii or Sjj) is defined as the ratio of the output
voltage to the input voltage at the same port. Therefore, the
microwave reflection spectrum, measured by the one-port
antenna used in this work, can be obtained from the logarith-
mic magnitude of reflection coefficient, 20 log jS11j.

In another expression, the reflection coefficient Γ [25] at
the load is also given as

Γ = ZL − Z0
ZL + Z0

, ð2Þ

where ZL and Z0 are the load impedance and the reference
impedance (50Ω), respectively. The reflection coefficient can
bemeasured using a vector network analyzer (VNA). The load
impedance depends on the position of the object placed in the
measurement environment and varies with themicrowave fre-
quency. As a result, the resonant frequency changes according
to the distance between the antenna and the object. In [26], a
study on distance measurement was conducted using the phe-
nomenon. However, the method has a disadvantage in that the
available change in the resonance frequency according to the
distance is limited, and thus, the measurement range is lim-
ited. If there are several obstacles in the vicinity other than
the object of interest, the mutual interference of microwaves
will cause inaccurate measurements.

In another aspect, the reflection spectrum contains the sig-
nature signal of the object of interest despite its complex envi-
ronment. Owing to this fact, we can expect that it will be
possible to use neural networks with excellent learning ability
on complex and nonlinear data. That is, the measured spectral
data becomes the input to the ANN, and the output of the
ANN becomes a prediction for the distance of the object to
be measured.

2.2. One-Step Neural Network Approach. ANN is a machine
learning technique created by mimicking the structure of
neurons in living things. It is similar to the process by which
a neuron receives a signal and is activated when that signal
crosses a threshold. In this work, the measured microwave
reflection spectrum becomes the input to the ANN, and
the output of the ANN becomes the predicted distance of
the object.

To predict the distance of the object, we first consider a
simple one-step ANN as shown in Figure 1, which uses a neu-
ral network for regression with one input layer, one hidden
layer, and one output layer. The input data of the input layer
is spectral data with N points in the range of frequencies f1
to f N . The output is the distance of the object.

As the ANN training algorithm, the Levenberg-Marquardt
backpropagation (LMBP) algorithm is applied. This combines
the Gaussian Newton method and the gradient descent
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method, which is the most widely used method for nonlinear
function optimization problems [27]. Next, a data set should
be prepared to train the neural network. To this end, the spec-
tral data of the microwave reflection signal are sufficiently
acquired in advance according to the location of the target
for which the distance is to be measured. And training is done
using the dataset.

2.3. Two-Step Neural Network Approach. To predict a wide
range of distances, it is expected that a large amount of train-
ing data and a large amount of training time will be required
accordingly in the standard one-step ANN. To improve this
problem, we propose a two-step neural network as shown in
Figure 2. It consists of a single ANN for classification and
multiple ANNs for regression. The first ANN predicts a
coarse range of an object, and the second ANN predicts a
fine range (precise distance of the object).

The detailed flow of the two-step ANN is as follows.
When the spectral data of an object placed at a certain dis-
tance are measured using the VNA, the data is input to the
first neural network, an appropriate segment corresponding
to the coarse range is selected, and the precise distance is
predicted through the regression neural network selected.

In this work, the scaled conjugate gradient backpropaga-
tion (SCGBP) algorithm is applied for the classification
training algorithm. The scaled conjugated gradient algo-
rithm, which combines the trust region method with the
general conjugate gradient, can provide fast supervised
learning [28]. On the other hand, the training of each neural
network to predict the final precise distance is trained with
the minimum data set required by each neural network.

2.4. Experimental Setup. To verify the proposed method, we
established an experimental testbed for measuring the
microwave reflection spectrum of the surrounding environ-
ment where the object is placed, as shown in Figure 3. Here,
a thin monopole antenna was used to detect the reflection
spectrum. To accurately set the desired distance of the
object, the antenna sensor is moved using an XY table driven
by a stepping motor. The microwave reflection spectrum is
obtained as the magnitude of the reflection coefficient mea-

sured by the VNA (Keysight E5063A). For the study, the
measurement frequency band was set to 300 kHz to
1.5GHz. The personal computer controls the XY table and
VNA that also collects measurement data.

On the other hand, the object to predict the distance is
embodied in the water. In such an environment, it is practi-
cally difficult to utilize the existing distance measurement
method. The size of the water tank is 600 × 600 × 400mm3.
The object is a metal plate with a size of 150 × 250mm2.
The main resonance frequency of the antenna sensor is
about 950MHz (see Figure 4).

In the experimental setup, we prepare data for training,
validation, and testing of the proposed ANN model. After
positioning the monopole antenna 10mm in front of the
measurement target, the microwave reflection spectrum is
measured and stored. These measurements are taken in
1mm intervals up to 250mm, 30 times in each position.
As a result, a total of 7,230 data were prepared. For model
training and model evaluation, we used 4,338 (60%) of the
data in the training set, 1,446 (20%) in the validation set,
and 1,446 (20%) in the test set.

As shown in Figures 1 and 2, the ANN is a multilayer
network consisting of connected neurons in input, hidden,
and output layers. In this study, we use microwave reflection
spectral data as the input to the network and consider the
distance of the target object as the output of the network.
Therefore, the input neurons are 201 which is the number
of data points at a frequency sampled equally spaced
between 300 kHz and 1.5GHz. The output neuron is 1 in
the case of one-step NN (see Figure 1). In the two-step NN
(see Figure 2), the output neurons of the NN in the first step
are 4 (the number of segments of the measurement distance)
and that of the NN in the second step is 1 (the output is a
predicted distance). The number of neurons in the hidden
layer is mainly dependent on the accuracy requirement of
the practical problem to be tackled [21]. In general, the
trial-and-error approach is used to determine the optimal
neuron number of the hidden layer. In this work, by increas-
ing the number of hidden layers to 100, the optimal number
of hidden neurons was determined, with a small number and
without overfitting. As a result, 10 hidden neurons were
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Figure 1: One-step neural network for distance prediction.
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selected. The training is performed with a backpropagation
algorithm to optimize the connecting weights in the ANN
model.

3. Results and Discussion

3.1. Results of the Microwave Reflection Spectrum. To investi-
gate the effect according to the distance of the object (metal
plate), we measured the reflection spectrum in the prepared
experimental environment. Here, the spectral data were col-
lected by moving the metal plate by 10mm in the range of
10 to 250mm. The microwave frequency range used was up
to 1.5GHz.

The experimental result is in Figure 4 that shows that the
resonant frequency andmagnitude are affected by the distance
of the metal plate apart from the sensing antenna. In particu-
lar, the changes in resonance frequency and magnitude were
plotted in Figure 5. It is noteworthy that the change oscillates
and decreases rapidly as the distance increases. In this case, it
is difficult to apply the method reported in [26] because it is
impossible to determine the unique distance of the metal plate
with only the reflection magnitude at the resonant frequency.
Therefore, the overall pattern around the resonance point is an
important clue in predicting the distance of the object.

3.2. Results of the One-Step Neural Network Approach. As
mentioned earlier, we need to prepare a dataset of the micro-
wave reflection spectrum for training the neural network.
For this, the training distance interval was determined based
on the wavelength of the microwave used. The wavelength λ
can be obtained from

λ = c
f

ffiffiffiffi

εr
p , ð3Þ

where c is the speed of light (3 × 108m/s), f is the operating
frequency, and εr is the relative permittivity of the propagation
medium. Considering our experimental environment operat-
ing in the water, the wavelength is 36mm, computed with a
microwave frequency of 945MHz (a typical resonance fre-
quency as shown in Figure 4) and a relative permittivity of
78 (water).

Therefore, in this study, we considered four cases with
distance intervals of 18mm (λ/2), 9mm (λ/4), 6mm (λ/6),
and 3mm (λ/12). Using each acquired dataset, a standard
one-step ANN (see Figure 1) was trained. The correspond-
ing test results are shown in Figure 6. This is the error of
the distance predicted by a trained neural network while
moving the metal plate by 1mm. According to the results,
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the larger the distance interval used for training, the larger
the distance prediction error. In particular, when the target
object is at a close distance (below about 50mm), the predic-
tion error is much larger. It can be seen in Figures 1(a) and
1(b). Moreover, at the distance used for training, the predic-

tion error is close to zero. That is, as shown in Figure 1(a),
the prediction error is close to zero for every 18mm interval:
18mm, 36mm, 54mm, ⋯, 180mm, 198mm, etc., which are
the distances of the training dataset. On the other hand, the
result of training with a dataset measured at every 3mm
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Figure 5: Changes in (a) resonance frequency and (b) reflection magnitude with distance.
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interval (Figure 1(d)) shows that the best prediction error
over all ranges is within 2mm.

From the experimental results, it was confirmed that dis-
tance prediction is possible using a one-step ANN trained
with the spectral reflection data, but more densely spaced
training data are needed to more accurately predict the dis-
tance close to the antenna.

3.3. Results of the Two-Step Neural Network Approach. From
the distance prediction results obtained through a one-step
ANN, we know that the prediction error is related to the
amount of training data. That is, the wider the range to pre-
dict, the greater the amount of training data required. In
particular, a more densely spaced training data set is needed
near the sensing antenna. Meanwhile, it would be more
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efficient if the prediction performance could be improved
with as little training data as possible. Based on this idea,
we proposed a two-step ANN (see Section 2.3) that satisfies
the desired performance with fewer training data.

Consider again the experimental testbed to perform dis-
tance prediction of the metal plate within the range of 10 to
250mm. And let us aim to implement a neural network that
satisfies the prediction error within 3mm in the entire range.
However, in the case of training with 18mm interval data,
the prediction error was satisfied when the actual distance
is greater than about 190mm (see Figure 6(a)). And, when
the training distance intervals were 9mm and 6mm, they
were satisfied after 80mm and 45mm, respectively (see
Figures 6(b) and 6(c), respectively). Based on the results,
we have divided the overall range of 10–250mm into four
segments: 10–45mm, 45–80mm, 80–190mm, and 190–
250mm.

Therefore, the input of the first neural network is spec-
tral data (201 points), and its output is the selection of the
appropriate segment out of four. To evaluate the perfor-
mance of the classifier, we measured the confusion matrix
in the test as shown in Figure 7. This provides better insight
into which classification models are getting more accurate
and what types of errors are being generated. The result
shows that the classification accuracy is 98.5%, and the
remaining 1.5% are classified into immediately adjacent seg-
ments. Based on these classification results, an appropriate
regression network was selected, and the final precision dis-
tance was predicted. The result is shown in Figure 8. The
prediction error is less than 3mm in the entire range, unlike
the one-step ANN. On the other hand, 1.5% of the input
data were misclassified into the immediately adjacent seg-
ment. However, this degree of error did not affect the final
distance prediction.
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4. Conclusions

In this paper, we presented a method for predicting the dis-
tance of an object from the acquired microwave reflection
spectrum. It was experimentally shown that the spectral data
change into a nonlinear complex pattern according to the dis-
tance. Therefore, we used an artificial neural network with a
strong learning ability for these nonlinear pattern changes.
On the other hand, the prediction performance is affected by
the distance interval of the training data. In particular, the
closer the location of the object to the antenna, the worse the
prediction performance. A simple solution to this problem is
to use a much denser training dataset. In this case, another
problem arises the training data increases proportionally.
Therefore, in this paper, we proposed a two-step ANN that
combines classification and regression. To verify the method,
an experiment was conducted to predict the distance of a wide
range of an object placed in water. As a result, the prediction
error was within 3mm in the range of 10–250mm. Through
this study, we confirmed that the distance of the target object
can be predicted by learning the microwave reflection spec-
trum. Therefore, this distance measurement method can also
be used in complex environments where unwantedmicrowave
reflections can occur. In future research, we intend to present a
practical study of predicting the distance of industrial parts
placed in these complex environments and to conduct com-
parative studies with other machine learning techniques in
addition to neural networks.
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