
Retraction
Retracted: Software Engineering Code Workshop
Based on B-RRT ∗FND Algorithm for Deep Program
Understanding Perspective

Journal of Sensors

Received 19 December 2023; Accepted 19 December 2023; Published 20 December 2023

Copyright © 2023 Journal of Sensors. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article has been retracted by Hindawi following an investi-
gation undertaken by the publisher [1]. This investigation has
uncovered evidence of one ormore of the following indicators of
systematic manipulation of the publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research reported
(3) Discrepancies between the availability of data and the

research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Manipulated or compromised peer review

The presence of these indicators undermines our confidence
in the integrity of the article’s content and we cannot, therefore,
vouch for its reliability. Please note that this notice is intended
solely to alert readers that the content of this article is unreliable.
We have not investigated whether authors were aware of or
involved in the systematic manipulation of the publication
process.

Wiley and Hindawi regrets that the usual quality checks did
not identify these issues before publication and have since put
additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research
Publishing teams and anonymous and named external
researchers and research integrity experts for contributing to
this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their agree-
ment or disagreement to this retraction.Wehave kept a recordof
any response received.

References

[1] A. Xu, “Software Engineering Code Workshop Based on B-
RRT ∗FND Algorithm for Deep Program Understanding
Perspective,” Journal of Sensors, vol. 2022, Article ID 1564178,
11 pages, 2022.

Hindawi
Journal of Sensors
Volume 2023, Article ID 9826740, 1 page
https://doi.org/10.1155/2023/9826740

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9826740


RE
TR
AC
TE
DResearch Article

Software Engineering Code Workshop Based on B-RRT∗FND
Algorithm for Deep Program Understanding Perspective

Aiqiao Xu

College of Science and Technology, Ningbo University, Ningbo, Zhejiang 315300, China

Correspondence should be addressed to Aiqiao Xu; fm@bbc.edu.cn

Received 20 August 2022; Accepted 13 September 2022; Published 26 September 2022

Academic Editor: Yaxiang Fan

Copyright © 2022 Aiqiao Xu. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Developers will perform a lot of search behaviors when facing daily work tasks, searching for reusable code fragments, solutions to
specific problems, algorithm designs, software documentation, and software tools from public repositories (including open source
communities and forum blogs) or private repositories (internal software repositories, source code platforms, communities, etc.) to
make full use of existing software development resources and experiences. This paper first takes a deep programmatic
understanding view of the software development process. In this paper, we first define the software engineering code search
task from the perspective of deep program understanding. Secondly, this paper summarizes two research paradigms of deep
software engineering code search and composes the related research results. At the same time, this paper summarizes and
organizes the common evaluation methods for software engineering code search tasks. Finally, the results of this paper are
combined with an outlook on future research.

1. Introduction

Developers face a large number of search behaviors in their
daily work tasks, searching for reusable code fragments,
solutions to specific problems, algorithm designs, software
documentation, and software tools from public repositories
(including open source communities and forum blogs) or
private repositories (internal software repositories, source
code platforms, communities, etc.) to make full use of exist-
ing software development resources and experiences and to
improve the reusability of software, while reducing develop-
ment costs and improving development efficiency. A study
conducted in 1997 showed that code search has become
the most common activity in software development activities
[1]. The study showed that developers would construct an
average of 12 query statements per workday to search for
problems encountered. It can be seen that code search is
gaining importance in software development activities. A
scholar at Peking University has conducted a literature sum-

mary of work related to code search tools. The authors
established a classification system to categorize code search
tools in terms of code repository organization, query texts,
search models, and evaluation methods [2]. Code search
can be classified from search forms, such as code search
based on natural language query, code clone detection, code
search based on test cases, code search oriented to defect
detection, and application programming interface search.
The common point is to locate code files or fragments that
meet user requirements from user requirements, combining
information retrieval, program understanding, and machine
learning techniques [3]. The framework of code understand-
ing based on deep neural networks is shown in Figure 1.

Among them, the code search based on natural language
query is closer to the actual needs of developers and is the
hot spot in the current code search research. The code search
task is similar to the traditional ad hoc task, but the code
search task also has many difficulties, which are introduced
in the next section.
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2. Research Background

The code search based on natural language query is closer to
the actual needs of developers and is the hot spot in the cur-
rent code search research. The code search task is similar to
the traditional ad hoc task, but the code search task also has
the following difficulties.

2.1. Cross-Modal Matching Problem. In the code search task,
the query and the document are in different modalities. The
query is mainly expressed in natural language form, while the
target document is a source code text with program language
syntax constraints, and the cross-modal semantic gap problem
needs to be considered when computing the match [4].

2.2. The Query Intent Understanding Problem. The inten-
tions expressed by queries in code search tasks are more
diverse. They include user development requirements, con-
structive requirements to achieve a specific technical route,
and API requirements to use a specific interface. It is neces-
sary to combine software engineering domain knowledge
with semantic understanding models when constructing
retrieval models to understand user query requirements [5].

2.3. Program Understanding Issues. The code search model
first needs to build an understanding of the source code frag-
ment of the retrieved object. It includes the code base syntax
semantics, API functional information, code structure fea-
tures, and code functional characteristics. Among them,
identifiers and program structure are the core of building
program understanding [6].

As can be seen, the main problem faced by current code
search research is how to understand program functionality
and query intent matching based on program understand-
ing, i.e., joint modeling of natural language and code frag-
ments based on program understanding. In this paper, we
present a review of recent code search research progress
from the perspective of program understanding.

3. Materials and Methods

3.1. Basic Theory

3.1.1. Program Understanding. Program understanding is a
key activity in software engineering, and the importance of

program understanding in software engineering was clari-
fied by the NATO Conference on Software Engineering held
in 1968. Software engineers rely on understanding of pro-
grams when performing tasks such as software reuse, main-
tenance, migration, and reverse engineering [7].

In a collaborative development scenario, developers need
to understand the software architecture and interface design
patterns to develop and implement software functions, while
in software maintenance, maintainers need to understand
the main functions and implementation methods of existing
projects as a basis for further defect checking and repair.
“Understanding” is essentially a mapping from the concep-
tual domain of the object of understanding (e.g., text and
source code) to the conceptual domain with which the sub-
ject of understanding (human, model) is familiar by means
of learning. The subject of program comprehension is the
whole software system or part of it and is aimed at studying
how it works [8]. Program understanding tasks include con-
structing models at each level of abstraction from code
models to application domain problems, understanding soft-
ware using domain knowledge and constructing cognitive
models between software artifacts and usage scenarios, and
judging their role and relationships with other components
by reading source code. Its ultimate purpose is to support
software maintenance, evolution, and reengineering [9].

Classified according to the implementation approach,
program understanding can be divided into two main
approaches: analysis-based and learning-based. Analysis-
based program understanding approaches rely heavily on
the analyst’s personal knowledge and experience, and con-
structing a program understanding model is equivalent to
manually constructing a set of relevant features [10]. Such
approaches are often coupled with specific software systems,
and the relevant rules of experience are more difficult to be
transferred to other projects. Also, as the size of the software
increases, the resources required for analysis will increase
plus rise and efficiency will decrease.

3.1.2. Deep Program Understanding. The availability of large
amounts of open source code on the Internet provides suffi-
cient data for learning-based program understanding
methods. Studies have shown that program source code
has properties similar to natural language, and this natural-
ness provides a theoretical basis for combining statistical
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Figure 1: Deep neural network-based code understanding framework.
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models, especially deep models, for source code analysis and
understanding [11]. Some scholars have conducted an in-
depth analysis of the impact of source code localness on sta-
tistical modeling [12]. Domestic scholars have provided a
detailed overview of the progress and challenges in deep
source code modeling [13]. The software engineering code
understanding representation is shown in Figure 2.

The deep learning-based program understanding frame-
work, which consists of two main stages, first constructs the
corresponding representation of source code text according
to the different tasks and on this basis constructs the source
code feature vectors by deep models and applies them to
specific tasks [14].

Specifically, the program source code is first transformed
into CharSequence, TokenSequence, APISequence, Abstract-
syntaxTree (AST), and FunctionCallGraph (CFP) according
to the task [15].

Based on this, source code different representations are
used for specific tasks after being converted into feature vec-
tors by neural networks. Source code has different represen-
tation form characteristics and applicable tasks. The
modeling of programs based on word representations is sim-
ilar to the modeling of natural language understanding
models and is simple to implement and easy to migrate
[16]. However, word-based code modeling approaches are
often plagued by the OutOfVocabulary (OOV) problem
due to the presence of developer-defined identifier cases
[17]. Character sequence-based modeling can solve the
OOV problem, but character symbol-based representations
have difficulty learning word meanings and are therefore

weaker in terms of representational power. The APIs con-
tained in the code are often designed to be standardized,
while the wording is more fixed, so learning for API
sequences has good results in both code search and summa-
rization tasks [18]. This is shown in Figure 3.

It can be observed that the use of word sequences alone
as a representation of source code suffers from a lack of rep-
resentational power, so combining multimodal approaches
to model source code is gradually coming to the forefront
of researchers’ minds. Syntax tree-based code modeling can
improve the problem of inadequate learning of program
structure in sequence modeling. However, most of the exist-
ing studies use sequence sampling to obtain node sequences
from syntax trees for representation, and the utilization of
tree structure is not sufficient. Scholars at Northwestern
Polytechnic University propose an improved method for
fusing syntax tree information into code representation
methods, where syntax trees are used as a parallel corpus
of code sequences and modeled with natural language frag-
ments based on alignment with source code sequences,
improving the effectiveness of source code search tasks.
The ability of graph neural networks to model natural lan-
guage text structure has also inspired its exploration in code
modeling. Source code data is easier to construct graph rep-
resentations than natural language text, so program under-
standing models that incorporate graph structures have a
better prospect.

As can be seen, deep code understanding research is the
basis for many software engineering tasks, and the feature
vectors from different representations can provide sufficient
feature information for code search tasks. The next section
defines the code search task from a deep program under-
standing perspective.

3.2. Research Methodology

3.2.1. B-RRT~∗FND Algorithm. The RRT algorithm is one of
the most representative sampling-based path planning algo-
rithms, which can achieve the purpose of expanding the tree
by randomly generating sampling points from the space,
using the starting point as the root node, and growing from
the nearest and collision-free sampling nodes in the direc-
tion of the link in a specified step, until the link between
the leaf nodes and the target point is collision-free; then,
the path planning is completed. The basic steps of the algo-
rithm are as follows: step 1: given the map space M, the
starting points Pstart and Pend. Step 2: Prand is obtained
by random sampling in the space. Step 3: start from the
nearest node Pnear point to grow toward Prand with step s
and define the newly generated point as Pnew. Step 4: there
is a certain probability that the sampled points will not grow
along the randomly sampled point Prand but choose to grow
directly to the end point Pend. Step 5: when the tree grows to
Pend or the line between Pnew and Pend does not intersect
with the obstacle, the feasible path σ is generated. Although
the RRT algorithm has probabilistic completeness and can
quickly obtain feasible solutions in space, its process of
searching for solutions is blind, specifically because Prand
is obtained by random sampling, which makes the tree grow
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Figure 2: Software engineering code understanding representation
situation.
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in a random direction, and the algorithm lacks memorability
of node expansion, leading to redundancy.

The RRT∗ algorithm belongs to the optimal algorithm,
and the asymptotically optimal path can be obtained by
obtaining enough sampling points in the update iteration.
The algorithm adds two operations of parent node reselec-
tion and node reconnection: parent node reselection: with
Pnew as the center of the circle, nodes in the region with R
as the radius are selected as alternative parents, and the path
cost with these nodes as parents is calculated, and the node
that minimizes the path cost is selected as the new parent.
The node with the lowest path cost is selected as the new
parent and connected, and if there is a collision in the path,
other alternate parents are selected. Node reconnection: take
Pnew as the center of the circle, select a range with R as the
radius, try to change the parent node of the node within the
range to Pnew; if doing so can reduce the total path cost,
then disconnect the node from its parent node and connect
it to Pnew; if the connection has a collision, then give up this
connection and continue to select other nodes within the
range to try in turn. If the random sampling point Pn is
taken exactly on the optimal path σ ∗ from Pstart to Pend
in the space, the path cost is reduced due to Pn becoming
the parent of its neighboring nodes after enough times of
sampling. Since the algorithm scales up the search while
the parent node reselection and node reconnection opera-
tions traverse all points in the tree, causing a huge memory
burden, the search efficiency of the algorithm can be
improved by fixing the number of nodes. The RRT∗FN algo-
rithm (Fixed-nodesRRT∗) introduces the concept of maxi-
mum number of nodes based on the RRT∗ algorithm,
which sets the maximum number of nodes allowed in the
tree and randomly deletes a childless node except the end
node when the number of nodes in the state space is greater

than the preset node. The steps of RRT∗FN algorithm are as
follows: step 1: same as RRT algorithm step 1, step 2, and
step 3. Step 2: Perform parent node reselection and node
reconnection. Step 3: every time a Pnew is generated, check
the number of nodes present in the space, if it is greater than
the maximum number of nodes FixNodes randomly delete
the childless leaf nodes that are not the last node of the path.
Step 4: when the tree grows to Pend or Pnew and Pend’s
connection does not intersect with the obstacle, the feasible
path σ is generated. Repeat step 1 to step 3 for asymptotic
optimization of the path solution.

B-RRT∗FND algorithm: inspired by the RRT∗FN algo-
rithm, in order to further improve the search efficiency of
the RRT∗FN algorithm and apply the algorithm to the
dynamic environment, this paper proposes the B-RRT∗FND
algorithm (BidirectionalRRT∗Fix-NodeDynamic), which
improves the algorithm for the original RRT∗FN algorithm
by making the following improvements, combining the bidi-
rectional greedy search strategy with RRT∗FN algorithm is
combined to further speed up the planning speed of the
RRT∗FN algorithm. It also makes use of dynamic update
and path repair to enable the algorithm to be applied to the
case of unknown and moving obstacles.

Greedy bidirectional search: the improved algorithm
combines a bidirectional greedy search strategy with the
RRT∗FN algorithm to solve the problem of blindness in
the growth of unilateral trees. The RRT∗FN algorithm has
no advantage over the RRT∗ algorithm in search speed,
can only reduce the residual sampling points to avoid redun-
dant growth, has the effect of limiting the tree size to
improve the program running speed when the number of
iterations is high leading to a large tree size, and is not
related to obtaining path solutions quickly. With the addi-
tion of the two-way greedy search strategy, the algorithm
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plans a path with more obvious directionality and can obtain
an initial path more quickly. The greedy bidirectional search
needs to establish two random search trees, Tree1 and Tree2,
at the start and target points simultaneously, and the two
trees grow toward each other, respectively, using the greedy
strategy in the growth process. In this paper, the two-way
greedy search strategy is combined with the RRT∗FN algo-
rithm to improve the defects of the traditional one-way ran-
dom tree growth with poor purpose. Two trees are created
from the starting point Pstart and the target point Pend,
and each grows greedily toward the other. The green line is
the starting tree and the blue line is the end tree. The black
circles indicate obstacles. The nodes in the state space are
generated in the order of subscripts, if the number of nodes
in each tree is specified to be no more than 5.

In this paper, the RRT∗ loss value and RRT∗FND loss
value are low in each hidden layer node tree, and the total
number of 11 nodes is between 2 and 12, and both loss
values are above 2. The results show that the RRT∗ loss value
and RRT∗FND loss value are low, as shown in Figure 4.

In this paper, on each hidden layer node tree again, B-
RRT~ ∗FND loss value and RRT∗FND loss value are higher,
much higher than the number of nodes selected in this paper
requires a total of 11 nodes from 2 to 12; both loss values are
about 6 or more, and the results show that B-RRT~ ∗FND
loss value and RRT∗FND loss value are higher, as shown
in Figure 5.

In order to verify the effectiveness of the algorithm in
this paper, the BRRT∗FND algorithm is compared with
other algorithms under three maps, and its performance
indexes are evaluated. To facilitate the simulation analysis
and to take into account the reasonableness, because the
RRT class algorithm is based on random sampling, there is
chance in the simulation process, and each measurement
result may cause large differences due to different sampling

point locations. In order to exclude the influence brought
by chance, this paper conducts 50 independent experiments
for each case and collates the results for comparison and
analysis.

The two-way algorithm has certain advantages in fast
solution finding, and the overall path cost is further reduced
due to the improved algorithm using a two-way greedy
search strategy. Since the B-RRT∗ algorithm, the RRT∗FN
algorithm and the B-RRT∗FND algorithm are all optimal
solution algorithms; the iterative process path solution
parameters of the path solution are collated in this paper,
as shown in Figure 6.

It can be seen that the path solution length and search
time of B-RRT∗FND algorithm are due to the other two
algorithms. The length of the B-RRT∗ algorithm after 500
iterations is basically the same as that of the B-RRT∗FND
algorithm, but because it does not have a fixed number of
nodes, the running time tends to increase concisely with
the number of iterations, and after 1500 iterations, the run-
ning time of the improved algorithm and the number of iter-
ations are approximately linear. At 3000 iterations, the B-
RRT∗ algorithm takes 36.117 s, and the B-RRT∗FND is
29.221 s. The algorithm performance comparison (II) is
shown in Figure 7.

3.2.2. Main Evaluation Method. Set ðΩ, ζ, PÞ is a conceptual
space, and x is the set of all wandering variables on the space
involved. The risk measure ρ is a mapping x from a xρ subset
of Rto the real numbers, denoted as ρ : X ∈ xρ ↔ ρðXÞ ∈ R.

First define the g function called distortion function
(distortionfunction) g : ½0, 1�⟶ ½0, 1� if it is a monotoni-
cally nondecreasing function and satisfiesgð0Þ = 0, gð1Þ = 1.

Next, define the ρg : x⟶ R risk measure, often called
distortionriskmesure if ρgðXÞ satisfies
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Figure 4: Comparison of RRT∗ loss value and RRT∗FND loss value.
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ρg Xð Þ≔
ð0
−∞

lg SX xð Þð Þ−1Þdx +
ð∞
0
g SX xð Þð ÞÞdx, X ∈ x,

ð1Þ

where g is the distortion function, in which SXðxÞ = Pð
X ≻ xÞ, X is the tail distribution.

The X assumption is that the total risk faced f : ½0,∞Þ
⟶ ½0,∞Þ by the insurer f ðXÞ is the partition function, rep-
resenting the insurer transferring part of the risk faced by
itself to the reinsurer. The reinsurers charge the insurer for

the insurance premiums to supplement the risks they bear
because they assume a portion of the insurer’s risks. In this
paper, we assume that the reinsurance cost criterion has
the following form:

μr f Xð Þð Þ =
ð∞
0
r Sf xð Þ xð Þ
� �

dx: ð2Þ

Without loss of generality, we assume r that it is not a func-
tion, that is, zero almost everywhere, and that the total risk
an insurer has to face is the residual risk it will face plus
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Figure 5: Comparison of B-RRT~ ∗FND loss value and RRT∗FND loss value.
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the cost required to transfer the risk. Expressed in terms of
the formula can be expressed as

T f Xð Þ = X − f Xð Þ + μr f Xð Þð Þ: ð3Þ

The basic algorithm theory BP algorithm theory process
mainly includes the process calculation of linear propagation
of output signal deviation forward and backward and linear
propagation of output signal error forward and backward
and reverse which are two process calculation processes.
That is, the signal error can be adjusted according to the
two input directions from the actual input signal direction
to the actual expected signal output, respectively, to calculate
the signal output, from the direction of the real expected sig-
nal output and then to the real expected input direction of
the two directions, respectively, to calculate the signal error
to adjust the signal error weight range and error threshold.
In the study of the propagation method after the forward
superposition of the signal, the input node signal is mainly
the node on the actual output of the signal after the inverse
superposition through the role of the hidden layer, and the
actual output node signal can be generated through the non-
linear transformation process [19]. If we find that the actual
signal output node position does not coincide with the actual
output node direction position of the actual input node
expectation signal, the process of backward feed-back prop-
agation method for signal error compensation will be easily
generated. The principle of error input signal back propaga-
tion processing system is that the system will automatically
back propagate its various output signals or error informa-
tion values to each error input layer of the system through
the hidden layer nodes layer by layer and will sequentially
transfer its output error signal values to the nodes on each

layer corresponding to all other layers of the system error
input signal elements, with the system in each layer of the
system nodes obtained. The output error input signal values
obtained by the system at each layer node are used as the
basis for its calculation to automatically adjust the weights
among the system’s error output signal elements [20].

Neural network is essentially a nonlinear predictive
model and, as its name suggests, an algorithm that mimics
the human and animal nervous systems for computation.
It is based on imitating the neural network system of human
and animal-like brains to perform calculations and then to
process the content of each module. Neural network algo-
rithm is a derivative of data mining technology, which is
one of the types of data mining technology that can be used
for big data mining, such as analysis, classification, aggrega-
tion, and other data mining functions. Its advantages and
disadvantages are very clear; the first advantage is that it is
extremely resistant to interference, and the second is that it
is capable of deep learning and better memory in a nonlinear
situation and can handle more complex situations. At the
same time, it has two disadvantages. First, its computation
and processing results are low-dimensional and cannot be
adapted to a high-dimensional environment, so it has a
hard-to-interpret nature. The second is that whether it is
supervised or unsupervised learning, it requires a long learn-
ing time, and the data is collected using a more traditional
neural network approach.

In this paper, we use fuzzy neural networks. This type of
neural network (FNN for short) is first, a deep combination
of fuzzy theory and neural network algorithms. In the pro-
cess of data mining and information processing by neural
network algorithms, fuzzy theory is incorporated to improve
the mapping and the relevance of mathematical relationships.
The efficiency of supervised learning and unsupervised
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learning is better improved. The algorithmic formulas of such
neural networks and the related structural diagrams are more
commonly used and common and can be found in general
textbooks. This type of neural network is shown in the figure;
it goes through five levels in the process of training and super-
vised and unsupervised learning; at the beginning of the two
levels, as the level increases, the range of calculations required
will be doubled, but as it enters the third level and enters the
fourth level and enters the fifth level, the content of calcula-
tions will gradually decrease until it becomes one. Of course,
this type of graph is first tested for dimensionality at this node
in the input layer when the input is made. The specific value
assumes that the dimension value is n and the node that needs
to be input is n. Depending on the number of nodes needed, it
is passed all the way to the layer of the dimensionality function
and the related layer of further computed functions, as well as
finally to the output layer. This type of fuzzy theory combined
neural network has the same nature as the wavelet neural net-
work and the neural network combined with the generalized
theory, which both use the traditional gradient form of com-
putation downward to calculate the centroid of the affiliation
and the associated required width value and the final output
value and the weights that we need. This is shown in Figure 8.

4. Results and Discussion

4.1. Software Engineering Code Search and Document Search.
Code search is a cross study of information retrieval and
program understanding, similar to document search tech-
niques, and they have more commonality in various tech-
niques such as query understanding, document indexing,
and document sorting. However, from the perspective of
the search object, due to the characteristics of source code
itself, the understanding of code includes two aspects, i.e.,
the usage scenario of code and the principle of code algo-
rithm. Taking “bubble sort” as the query, the results of doc-
ument search and code search can be seen that the
document search results often contain the original keywords
and a series of concepts around the keywords and combina-
tions. In the code search results, the focus is on the specific
implementation of the algorithm and the correctness of the
code. The core difference between the two lies in how the
understanding of the document (code) is achieved. At the

same time, matching code to user intent based on character-
istics such as source code functional characteristics, applica-
tion scenarios, and how the functionality is implemented is
the biggest difference between the two search approaches.
From a formal point of view, Q is the query text, and C is
the source code fragment. As can be seen, the difficulty of
the code search task is to establish an understanding of the
source code fragment and, on this basis, to achieve a match
between the user’s query intent and the functional semantics
of the code fragment. In traditional information retrieval
model-based approaches, the code is usually treated as an
ordinary natural language document, and the similarity
between the user query and the code document is finally
calculated by combining the natural language model with
vectorization after simple word separation, deactivation,
and stemming.

A research team in the UK proposes a method based on
textual regularization for traceability between code and doc-
uments. Another foreign scholar introduces method name
information into the retrieval model to enhance the perfor-
mance of code retrieval results and combines API under-
standing to improve the code search system based on
information retrieval, whose implementation is simple and
straightforward and is a common research baseline. A
scholar in Xi’an introduced the combination of topic model
and Tfidf model into source code and query representation
to improve the accuracy of query and code matching. An
Italian research team recategorized code search features
and reassigned feature weights according to different seman-
tic categories to improve the retrieval effect. Domestic
scholars proposed a code search method combined with
ranking learning. Some other scholars further expand the
code search feature system on this basis and combine it with
ranking learning. Deep code search research then combines
deep program understanding research to construct retrieval
models. Some scholars have pioneered the problem of the
semantic gap between source code and natural language.
The query text and code fragments are obtained as feature
representations by natural language models and program
understanding models. After obtaining feature vectors,
matching relations are constructed by deep models.

Natural language model part, word representation,
word2vector model, glove model, and fasttext model are
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Figure 8: Fuzzy neural network.
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commonly used for representation; contextual representa-
tion, Elmo model, Bert model, etc., are commonly used to
model sentences directly to obtain representation.

In the part of matching model, domestic play scholars
jointly studied the combination of ranking learning training
target and depth model, i.e., neural information retrieval
model. In addition, domestic scholars have summarized
the loss function in the neural retrieval model, and methods
such as contrast learning sorting (contrastive learning) and
ternary sorting (triplet loss) have gradually received atten-
tion, combining reinforcement learning to improve query
understanding and thus retrieval effect. In the section on
procedural representation models, the UK research team
has summarized and categorized them in more detail. Early
research treated code fragments as ordinary text and com-
bined with natural language modeling methods to model
word sequences and API sequences; some subsequent work
gradually paid attention to code structure properties and
proposed code structure modeling methods combined with
abstract syntax trees, and the stronger graph structure of
source code makes recent research on source code modeling
combined with graph neural networks gradually gaining
attention.

4.2. Deep Software Engineering Code Search. This section
compares current code search research progress from the
perspective of deep program understanding models. In
terms of paper selection basis, this paper uses code search
and code retrieval as keywords for searching, covering soft-
ware engineering, natural language processing, neural com-
puting, and other fields. Finally, more than 40 papers related
to deep code search were collected from related conferences,
journals, and prepublication platform arXiv. Based on this,
case study papers, system design papers, and research papers
without clear evaluation metrics were excluded for this paper,
leaving 27 papers for the final summary.

The analysis dimensions include source code representa-
tion, deep model structure, data set used for model evaluation,
and evaluation metrics. The source code representation is
planned from the perspective of deep program understanding,
mainly including word sequence representation, API sequence
representation, tree structure (mainly abstract syntax tree),
and graph structure (function call graph, syntax tree subgraph,
etc.). The structural aspects of deep models include convolu-
tional networks (CNN), recurrent networks (LSTM), trans-
former, attention mechanisms, etc.

A Russian scholar has made an early exploration of deep
code search, which firstly studied the search and generation
of APIs and on this basis proposed the deep code search
model Code NN, which laid the basic framework of deep
code search model. In China, scholars in this field combined
word vectors to model source code in an unsupervised way,
and the code text was processed into word sequences, and
then, the chapter representation was constructed by word
vectors, and matched retrieval was realized on this basis.
Later on, some scholars further studied the semantic gap
between natural language and APIs in detail on this basis.

Starting from the work of Russian scholars, a series of
attempts have been made to apply different deep model

architectures to the code search task. Domestic scholars have
initially tried to introduce attention mechanism into code
matching computation by constructing multilayer attention
networks using CNN to capture the deep semantics of
source code. Another Japanese scholar applied twin net-
works to code search tasks to enhance the matching ability
between queries and codes. Indian scholars separate key-
word matching and syntactic pattern learning to propose
an adaptive deep code search model with stronger generali-
zation over a new codebase. Kunming scholars, on the other
hand, applied adversarial learning to the training process to
improve the matching between code and query text.

The pure sequence modeling approach is difficult to uti-
lize the structural information of the source code, and
domestic scholars are the first to use abstract syntax trees
to informationally enhance the code representation. Then,
the semantic dependencies in the source code are modeled
by combining syntax trees on this basis. Finally, self-
attentive networks are used for code search for the first time,
on which the sequence information and structural informa-
tion of source code are modeled uniformly in combination
with self-attentive networks.

The graph is a prevalent structure in source code, and
Yangling County scholars construct subgraphs from syntax
trees to model the relationships between different nodes in
the code. After that, the query and code feature vectors are
mutually augmented using relational graph convolutional
network modeling to finally improve the retrieval effect.
Then, different representations of the source code are con-
sidered as multimodal tasks, and the code sequences, syntax
trees, and graphs are fused to model the semantic represen-
tation of the code. The final result achieves SOTA effect,
which confirms the practical effectiveness of fusing sequence
and structural semantics on code understanding tasks.

Pre-trained models have also achieved success in various
tasks in the field of natural language processing. Some
researchers have also started to focus on the effect of source
code pretraining. Domestic scholars combined with the con-
trast learning training paradigm to train Bert models on
code text; foreign scholars focused on Python code for Bert
model training and proposed the CuBert model. Based on
this, domestic researchers added code structure to the train-
ing process and proposed GraphCodeBert, which combined
with graph structure to enhance transformer’s expressive-
ness when pretraining code. In contrast, foreign scholars
have verified the effectiveness of the CodeBert and other
models on specific code comprehension tasks by using a
code search task with the training model. The results show
that transformer-based pretrained language models also
have good results on code comprehension tasks.

4.3. Dataset and Evaluation Methods

4.3.1. Evaluation Metrics. The evaluation metrics for the
code search task are consistent with those for the informa-
tion retrieval task and mainly consider two aspects of the
results, namely, the relevance of the retrieved results and
the ranking order of the relevant results. The precision
P@K calculation method is relatively simple and measures
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the proportion of the number of relevant documents in the
retrieval results to the retrieval results, where K indicates
the number of documents obtained in one retrieval process.

Recall R@K is also simple and measures the number of
relevant documents in the search results as a proportion of
the overall relevant documents, where K indicates the num-
ber of documents obtained in a single search. As can be seen,
the precision and recall metrics measure the ratio of relevant
documents in the top K search results. MeanReciprocalRank
(MRR) introduces the order of relevant documents in the
results for result evaluation. The average precision (Average-
Precision) combines precision and document order, where
m denotes the total number of relevant documents in the
current search results and N denotes the total number of
search results.

The discounted cumulative gain (DCG) introduces the
relevance rank into the evaluation. The normalized discounted
cumulative gain (NDCG)metric is normalized using the DCG
score of the best ranked result. In addition to the above met-
rics, there is also Frank evaluation describing the order of
the first correlation result in the search list in the list.

4.3.2. Evaluation Dataset. In this paper, we comb through
the code search research work from 2016 to the present
and summarize the datasets used to evaluate the effective-
ness of the model. In terms of selection criteria, the dataset
must be publicly available, while at least two or more works
have used the dataset to evaluate the model.

The code search commonly used evaluation datasets is
more involved, of which a total of seven works are involved.
In terms of dataset construction, the current work focuses on
constructing large-scale code snippet-natural language text
combinations as training data by automated extraction.
The validation data is constructed based on automatic annota-
tion combined with negative sampling methods. The model
evaluation uses common code search questions as queries,
and fine-grained annotation is performed on the constructed
codebase.

According to the data annotation division, among them,
CSN and ROSF data were strictly annotated with relevance
levels; DCS, NCS, and CosBench first screened the natural
language queries and later annotated relevant code snippets
on the codebase.

According to the evaluation metrics, CNS and ROSF can
be evaluated using NDCG; StaQC is mainly combined with
text classification metrics; the remaining datasets are mostly
evaluated using MRR, P@K, and Frank metrics.

According to programming languages, the DCS, NCS,
ROSF, and CosBench datasets mainly contain Java program-
ming language code data (covering Android). The CoNaLa
data, on the other hand, combines Stackoverflow commu-
nity data mining and manual annotation to build data con-
taining Java and Python programming languages. The
StaQC dataset mainly contains annotation results in both
Python and SQL. The CodeSearchNet dataset contains Java,
Python, Php, Ruby, Go, and JavaScript, covering the widest
range of programming languages.

According to the task division, StaQC converts the code
search task into a related document classification problem,

so it can be studied in combination with text classification
methods; the CSN and ROSF data have sufficient annotation
level information and can be studied in combination with
ranking learning methods; the code fragment-natural lan-
guage combinations contained in the rest of the dataset
can be used for code summarization tasks as well as code
search studies based on summarization techniques.

4.3.3. Comparison of Results. In this section, based on the
introduction of datasets and evaluation metrics, recent
experimental work on code search is sorted out from the
perspective of model effectiveness, focusing on deep
model-based code search methods. The evaluation metrics
then cover recall, precision, MRR, MAP, and NDCG. For
statistics, the relevant literature baseline of the proposed
dataset is bolded in the literature column accordingly. Some
datasets, such as the StaQC dataset, were proposed using
classification metrics as baseline, so they are not indicated
here.

In this paper, the results are organized by dataset, related
literature, and evaluation metrics. From a dataset perspec-
tive, the StaQC dataset is the most widely used and relatively
influential. The experiments on the DCS dataset are rela-
tively more adequate, and the different literature needles
basically cover all evaluation metrics. From the perspective
of evaluation metrics, MRR metrics are currently commonly
used in code search model validation. And from the pro-
gramming language perspective, the programming language
that has been studied more is Java.

4.4. Software Engineering Code-Related Perspectives. Code
search research is gradually gaining attention from the aca-
demic community. In this paper, recent progress in code
search is reviewed from the perspective of deep program
understanding, and the problem can be studied in the fol-
lowing aspects in the future: (1) stable and reproducible
evaluation methods: most of the current studies do not open
evaluation datasets, and the open datasets have problems
such as inconsistent labeling. It is shown that the problems
of dataset and open source code make the reproducibility
of deep model results problematic. Future research should
try to build consistent and clear datasets and evaluation
methods and platforms to facilitate code search research.
(2) In-depth study of program representation techniques:
source code understanding and modeling is the key to the
code search task. Most models use sequence modeling for
feature extraction representation of source code, and a few
works simply stitch and fuse tree and graph structure data
to introduce code structure information. Combining graph
neural networks for more in-depth structural modeling of
code can be attempted in future research. (3) Multimodal
source code modeling approach: the source code consists
of identifiers and programming language-specific keywords.
The programming language-specific keywords provide the
structural information of the code, while the code identifiers
provide more adequate natural language information. The
two modal data can be combined in future research to model
the structural semantics as well as the natural semantics of
the code in a unified way, which can then be used for code
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search tasks. (4) Code search research application issues:
current code search research focuses on the problem of reor-
dering based on deep code modeling methods. The code
search tool research is more concerned with the collection,
cleaning, and management of code data. Some data process-
ing methods and effect optimization methods in code search
research are not applicable between the actual application
system. The search model can be designed from the practical
application purpose in future research.

5. Conclusion

This paper first defines the software engineering code search
task from a deep program understanding perspective. Sec-
ondly, it summarizes two research paradigms of deep soft-
ware engineering code search and composes the related
research results. At the same time, this paper summarizes
and organizes the common evaluation methods for software
engineering code search tasks. Finally, the results of this
paper provide an outlook on future research.
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