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The intelligent diagnosis of rotating machinery with big data has been widely studied. However, due to the variability of working
conditions and difficulty in marking fault samples, it is difficult to obtain enough high-quality fault marking data for training
bearing fault diagnosis models in practical industrial application scenarios. Aiming at the problem of training data imbalance
caused by lack of fault samples, a novel metalearning fault diagnosis method (MOFD) is proposed to get the bearing fault
diagnosis solution under data imbalance. Firstly, in order to enhance the variety of fault samples, a Feature Space Density
Adaptive Synthetic Minority Oversampling Technique (FSDA-SMOTE) is proposed in this paper, which takes the density
difference of minority samples in the spatial domain within the class as the constraint of local neighbor similarity to generate
new fault samples for data augmentation. In addition, in order to strengthen the model’s learning ability and diagnosis
performance under limited fault samples, a residual-attention convolutional neural network (RA-CNN) was constructed to
identify the deep features of fault signals, and a metalearning strategy based on parameter gradient optimization was applied to
RA-CNN for refining the learning process of the diagnosis model. Finally, the reliability of the proposed method is verified
through experimental analysis of public bearing dataset.

1. Introduction

In the process of modern industrial production and applica-
tion, rolling bearing plays an essential role in the work effi-
ciency of mechanical equipment as one of the core
components of industrial rotating machinery equipment
[1]. The components of rolling bearings have complex struc-
ture and operate in a poor environment. They are in a state
of high load operation for a long time. Once the bearing
operation failure occurs, it will increase huge operation and
maintenance costs and unknown security risks [2, 3]. There-
fore, the application of fault diagnosis based on rolling bear-
ing can monitor and maintain the equipment in a more real-
time and effective manner to avoid industrial production
accidents. In recent years, the application of data-driven
intelligence in the field of industrial machinery fault diagno-
sis has developed rapidly. Traditional fault diagnosis tech-
niques rely on professional mechanism knowledge and

expert experience, combined with signal processing methods
[4–6] and pattern recognition techniques [7–9] to extract
effective features from sensor data, so as to improve fault
diagnosis accuracy. Ye et al. [10] proposed a signal process-
ing technology based on variational mode decomposition
(VMD) and a machine learning fault diagnosis model based
on particle swarm optimization (PSO-SVM). The proposed
method reconstructed vibration signals and calculated their
multiscale displacement entropy (MPE) to construct multi-
dimensional feature data and optimized penalty parameter
C and kernel parameter g by PSO to improve the perfor-
mance of SVM classifier. Lu et al. [11] used stack denoising
autoencoder (SDAE) to extract fault features from vibration
signals containing complex environmental noise and opera-
tion state fluctuations for fault identification and classifica-
tion. The successful implementation of the above
traditional fault diagnosis methods often depends on the fea-
sibility of classifying the features extracted from the training
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data in low-dimensional space. However, for sensor data
extracted under complex working conditions, it is difficult
to obtain representative features through prior knowledge
to distinguish different fault categories of data.

With the great success of deep learning model in the field
of computer vision, the adaptive features learning method of
CNN in high-dimensional space has attracted the attention
of scholars [12–14], Wen et al. [15] proposed a data pre-
processing method that converted the time series signal into
gray images, and fault diagnosis was carried out by adaptive
feature extraction based on Lenet-5 Convolutional neural
network. Yao et al. [16] and Ravikumar et al. [17] introduced
residual learning blocks to train the deep neural network to
ensure that the model has sufficient depth and alleviate the
problems of gradient disappearance and overfitting. How-
ever, the vibration signal sequence is too long and lacks cor-
relation with local spatial features, which leads to the
deviation of feature extraction in time and space dimension.
To solve this problem, Wang et al. [18] proposed an atten-
tion mechanism (AM) for image classification. It improved
the receptive field of the underlying features through multi-
ple up-downsampling operations, so that the deep network
could also capture various local dependencies and obtain
rich context features, and the model could extract more rep-
resentative deep features. Ye et al. [19] proposed a time con-
volutional network (TCN) based on attention mechanism,
which extracted effective local features through causal con-
volution residual blocks and used attention mechanism to
make the network tend to pay attention to fault features,
so that the model could detect and diagnose fault types more
quickly and improve the efficiency of fault diagnosis. Men
et al. [20] proposed Res-CBAM model for hyperspectral
information recognition by combining residual module
and attention module. The classification performance of
the model was improved by introducing CBAM to calculate
channel and spatial model attention and reassigned weight
parameters. However, the success of most of the above deep
learning model applications relies on expensive computing
resources and large amounts of balanced and annotated
training data [21], but in practical industrial production
applications, there are not enough fault data to support the
training of the neural network model. The reasons are as fol-
lows: (1) the internal structure of industrial machinery and
equipment is very complicated, and its failure will seriously
hamper the progress of industrial production. (2) The degra-
dation cycle time of rolling bearing is very long, which
brings huge difficulties for collect sufficient fault data; (3)
the nonstationary dynamic characteristics of bearings under
variable working conditions greatly cause more trouble for
fault data collection and correct identification; current
machine learning classifier algorithms are inertially inclined
to majority samples. However, in practical application, it is
more valuable to correctly classify minority samples [22].
Therefore, the study on the imbalance of training data has
become one of the focus in the current field of industrial
fault diagnosis [23–25].

At present, some research results have been achieved in
data imbalance. For example, methods such as signal trans-
lation, noise addition, time stretching, and resampling are

proposed to increase the number and diversity of training
data artificially [26–29]. Synthetic minority oversampling
technique (SMOTE) [30] is one of the most widely used data
augmentation methods. This method uses feature space
composed of a few samples and their K-nearest neighbors
to synthesize new samples, which can effectively reduce the
overfitting phenomenon, but easily magnifies noise and
leads to fuzzy boundary of adjacent category data. Wei
et al. [31] proposed a cluster-based majority-weighted
minority oversampling technique (cluster-MWMOTE),
which further improved the model’s adaptation to the inter-
nal imbalance of fault instances. Yi et al. [32] enhanced the
data of minorities on the basis of clustering, in which the
sample of minority group was aggregated into several clus-
ters, and new samples were generated by linear interpolation
between adjacent clusters. However, with the existence of
boundary effect, it is easy to generate noise samples based
on the nearest neighbor principle, which leads to sample
overlap between classes, and the interference model learns
the true spatial distribution of the original data samples.
Therefore, in order to solve the problem that traditional data
synthesis methods cannot mine deep features of data and
generate the high-quality sample, generative adversarial net-
work (GAN) was proposed by Goodfellow et al. [33]. As the
most popular data enhancement method in recent years,
GAN can generate pseudoimages, audio, or video based on
real datasets to solve the problem of training data imbalance.
Zhao and Yuan [34] proposed an improved GAN model.
The improved GAN introduced an auxiliary classifier to
facilitate the training process and an autoencoder-based
method to estimate the similarity of the generated samples,
thus improving the quality and diversity of the generated
samples. Although the applications of fault diagnosis based
on GAN are very wide, problems such as instability, modal
collapse, and weak gradient in GAN training process
[35–38] make it difficult to apply these models in practical
engineering. Therefore, in order to overcome the challenge
of faulty data imbalance, the research community needs to
focus on developing an efficient computing model with fas-
ter learning ability that can be fit to task requirements even
when datasets are unbalanced.

Recently, the superior performance of metalearning in
solving the problem of few-shot fault diagnosis has gradually
attracted the focus of scholars [39–42]. Model agnostic
metalearning (MAML) is a metalearning method based on
parameter optimization proposed by Finn et al. [43], which
had demonstrated excellent generalization ability in image
recognition for processing new tasks under a small number
of training samples. Yu et al. [44] proposed a metalearning
fault diagnosis model based on gradient optimization [45],
which optimized the initial parameters of the model network
through the scenario training mechanism, so that the model
can also perform fault diagnosis efficiently and quickly
under the condition of limited training data. Zhang et al.
[21] applied Siamese network to fault diagnosis with data
imbalanced. Siamese network is used to measure the dis-
tance between the same or different sample pairs to deter-
mine their similarity, so as to achieve high precision fault
diagnosis with limited samples. Vinyals et al. [46] proposed
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a matching network for few-shot classification, which
designed a short- and long-term memory network to realize
metric-based metalearning architecture, so as to avoid fine-
tuning requirements of new tasks. Chen et al. [47] proposed
an improved prototype network to better improve the fault
identification performance of the classification model in
the case of data imbalance by setting a multiscale feature
extractor and an appropriate distance measurement func-
tion. The above metalearning methods can solve the prob-
lem of data imbalance well in current industrial intelligent
fault identification. The advantage of few-shot learning can
further alleviate the problem of unbalanced training data
and enhance the learning ability of the model for complex
working conditions. We improve the framework of bearing
fault diagnosis under the metalearning mechanism and sum-
marize the following contributions:

(1) This paper proposes a metalearning network (RA-
CNN) that integrates residual learning modules and
attentional mechanisms. This method can effectively
extract fault features with the limited fault data and
avoid model overfitting

(2) This paper proposes FSDA-SMOTE for data aug-
mentation. Compared with the traditional data aug-
mentation method, this method can reduce the
interference of data noise more effectively and avoid
the fuzzy classification boundary

(3) This paper proposes a k-way N-shot episodic train-
ing mechanism to refine the feature learning process
of network models. This method enables the model
to learn more general fault information from multi-
ple different metatasks

The rest of this paper are as follows: Section 2 outlines
the background on relevant theories. Section 3 describes in
detail the proposed methodology and framework. Section 4
and Section 5 are the experimental analysis and conclusions,
respectively.

2. Related Research Work

2.1. Metalearning. Metalearning is referred to as “learning-
to-learn,” which is generally utilized for tackling few-shot
image classification. In recent years, metalearning research
can be generally divided into three different categories,
including optimizing the initialization parameters of the
metalearner to quickly adapt to new tasks [43–45], generat-
ing the metric-learning network by judging the feature sim-
ilarity between sample pairs [21, 46], and learning a
recurrent neural network model with memory storage func-
tion [47]. Different from traditional deep learning methods,
metalearning is a flexible framework that learns prior expe-
rience from multiple relevant tasks, which relies on the
obtained experience to improve its performance on target
tasks without training from scratch [42]. Metalearning is
aimed at generating a general algorithm based on the ability
to learn metaknowledge θi from different tasks Ti. For a
given task fT1, T2,⋯,Tig ⊆ T , this method makes the model
have stronger generalization ability and faster adaptability
for task sets pðTÞ with different distributions. The descrip-
tion is shown in

argmin
θ

〠
T~p Tð Þ

Loss T ; f θð Þð Þ, ð1Þ

where LossðT ; f ðθÞÞ represents the loss function obtained
by training data in task T using the model f ð·Þ of initializing
network parameter θ. It is worth noting that θ in metalearn-
ing is constantly updated across multiple metatasks in the
learning process, and the θ obtained after tasks learning
can reduce the loss of new tasks as much as possible.

2.2. Synthetic Minority Oversampling Technique (SMOTE).
SMOTE, a common oversampling method, was proposed
by Chawla et al. in 2002 [30]. SMOTE not only solves the
duplication problem caused by oversampling but also effec-
tively reduces overfitting by creating a positive composite
in the characteristic space of a few class instances and their
K nearest neighbors (usually, K is 5 for SMOTE). Suppose
a dataset contains m positive and n negative samples
(m > n), in order to balance the positive and negative sam-
ples, m-n synthetic negative samples must be created. First,
sample xi is randomly selected from n negative samples. Sec-
ond, choose 6 nearest neighbors of xi in n instances which
are identified through the Euclidean distance as shown in

dk xi, xj
À Á

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

l=1
xli − xlj
� �2s

, ð2Þ

xnew = xi + rand 0, 1ð Þ · xi − dk xi, xj
À ÁÀ Á

, ð3Þ
where l denoted the identity of the sample point and rand
ð0, 1Þ is a random number from 0 to 1, which guarantees
that a new minority sample xnew is generated by linear inter-
polation as shown in Figure 1. The above steps are repeated
to obtain additional synthetic minority samples. Thus,
SMOTE has been proven effective in dealing with imbal-
anced data.

Majority sample

Synthetic sample
Minority sample

Figure 1: The process of SMOTE synthesizes minority samples.
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3. Proposed Methodology

The bearing fault diagnosis under data imbalance can be
treated as a typical few-shot classification problem, which
is difficult for traditional deep-learning models to solve.
Therefore, MOFD method based on advanced metalearning
theory is proposed, and the flowchart is shown in Figure 2.
The whole process is divided into four parts: (1) in data
augmentation, bearing vibration data of different fault cate-
gories is collected, FSDA-SMOTE is used to generate auxil-
iary data, then the dataset is expanded and balanced; (2) in
data preprocess, the original balanced vibration data is
converted to time-frequency image (TFI) by STFT; (3) in
metadataset building, the TFI dataset is used to organize
metalearning tasks according to the episodic training mech-
anism; (4) finally, RA-CNN is used to fine-tuning its net-
work parameters until the optimal parameters are achieved
by extracting the deep fault features of TFIs from multiple
metatraining tasks and metatest tasks, and the MOFD with
the optimal network parameters can effectively realize fault
classification under data imbalance.

3.1. Data Augmentation. A new oversampling technique
called FSDA-SMOTE is proposed to improve the shortcom-
ings of the traditional KNN-based oversampling method
[32]. FSDA-SMOTE filters outlier samples out by averaging
the intraclass distance [27]. In the meantime, in order to
avoid the synthesized new samples from fuzzy boundary
between classes, the distance weighting method is adopted
to select the original samples for synthesis, and the minority
samples are clustered. Finally, a new minority class sample is
synthesized according to the spatial density difference of

samples in the minority class cluster. The algorithm can
not only enrich minority class samples in the inner space
of a clusters but also avoid the confusion of the boundary
between different classes.

The details of the FSDA-SMOTE algorithm for synthe-
sizing new minority samples are represented in Algorithm 1.
For convenience, these collections of composited minority
patterns are represented by Smin New . The samples in
Smin New , Sminf , and Smajf are combined to get a new set,
which is represented by Snew, where Sminf and Smajf represent
the minority class samples and the majority class sample
after denoising. For Algorithm 1, lines 1-15 of the above
pseudocodes are suited for denoising data samples. Lines
16-20 are clustering process for a minority samples. Lines
21-30 are density adaptive data generation based on sample
density differences within the class.

3.2. Data Preprocessing. Using accelerometer sensor to col-
lect bearing original vibration signal is the most common
method in fault diagnosis field [41]. However, the original
signal cannot directly show the relationship between the
time information and the fault characteristics. Therefore, it
is more beneficial for the model to learn the fault character-
istics by converting it into a frequency domain signal with
stable frequency domain characteristics through fast Fourier
transform (FFT). However, only relying on one-dimensional
analysis in time and frequency domain, the model cannot
capture the internal information of bearings in various fault
states to learn and transfer applications. Therefore, two-
dimensional time-frequency analysis has become an impor-
tant tool to analyze mechanical vibration signals for fault

Meta-
knowledge 
learning

RA-CNN architecture

Real application

Bearing data collectionOutput fault diagnosis results

MOFD model

Data preprocessing

Data augmentation

Meta-datasets building

Fault class 1

Fault class1

Subtask 1

Subtask 2

Subtask n

Subtask 1

Subtask n'

Meta
training

set

Meta
testing

set

Channel
attention
module

Spatial
attention
module

Sofmax classifer

Support set Ds Query set DQ

Fault class2 Fault class2 Fault classN Fault class uknown
FSDA-SMOTE

L = 1024 L = 1024

L = 1024 L = 1024

Fault class 2

Figure 2: The flowchart of the metaoptimization fault diagnosis model.
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Input: majority data Smaj; minority data Smin:
Initialize: nearest neighbors K1; means clusteringK2
output: the set Snew of new samples
1: obtain the K1 nearest neighbors of xi and compose of the set NNminðxiÞ. xi ∈ Smin
2: Smin noise = fxi ∣ xi ∉NNminðxiÞg
3: Sminf = Smin noise ∩ Smin
4: obtain the K1 nearest neighbors of yi and compose of the set NNmajðyiÞ. yi ∈ Smaj
5: Smaj noise = fyi ∣ yi ∉NNmajðyiÞg
6: Smajf = Smaj noise ∩ Smaj
7: forxi in Sminfdo:
8: foryi in Smajfdo:
9: dminðxiÞ = the minimum Euclidean distance between xi and yi
10: distðxi, xjÞ = the Euclidean distance between xi and xj, i ≠ j
11: ifdistðxi, xjÞ < dminðxiÞ:
12: Cluster Ji = fxj ∣ distðxi, xjÞ < dminðxiÞ, i ≠ jg
13: end if
14: end for
15: end for
16: fori in the number of samples in Sminf do:
17: ifxi ∈ Ji:
18: new cluster Qi = fJi ∣ J j contains xi , i ≠ jg
19: end if
20: end for
21: forj in the number of clusters Q do:
22: get the center cyi by the K-means cluster algorithm
23: for each sample xi in Qjdo:
24: radius (xi) = the mean distance of xi’s k-nearest neighbors
25: spreadnumber (xi) = the number of xi’s contained in a circle of radius
26: spreadability (xi) = the sum of xi’s spreadnumber in the current circle
27: density ρðxiÞ = spreadabilityðxiÞ/spreadabilitymaxðxÞ
28: synthesize new sample xnew = cyi + ρðxiÞ ∗ ðcyi − xiÞ.
29: Snew⟵xnew
30: end for
31: end for

Algorithm 1: The procedure of FSDA-SMOTE.
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Figure 3: The process of STFT.
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diagnosis [40, 42]. The time-frequency analysis method cited
in this paper is short-time Fourier transform (STFT), and its
process is shown in Figure 3. In Figure 3, the x-axis, y-axis,
and brightness of TFIs represent time domain, frequency
domain, and amplitude, respectively.

STFT cuts the original signal f ðtÞ segment by segment
through the finite scale window function φðtÞ and applies
the FFT to each segment of the time axis at τ. Finally, TFI
with time-frequency domain information is formed. The
mathematical formula of STFT is shown in

STFT ω, tð Þ =
ð+∞
−∞

f tð Þφ t − τð Þe−jwtdt: ð4Þ

In STFT processing, the time-frequency resolution in the
spectrogram is determined by the scale of the window func-
tion. Therefore, the best time-frequency resolution can be
obtained by selecting appropriate window function widths.
The time-frequency resolution P is calculated as:

P =
Ns −Np

Nw −Np

" #
×

Nf

2
+ 1

� �
, ð5Þ

where ½·�means rounding down and Ns represents the length
of segments of the signal. In order to reduce spectrum leak-
age, the scale of the window function Nw = 64 or N = 128

applied in this paper. Np is the number of overlapping
points, and Nf is the number of points participating in the
Fourier transform.

3.3. Metadataset Building. In k-way, n-shot episodic training
mechanism, “k” represents the number of categories that the
task must classify, and “n” represents the number of images
available for learning from each category. For example, the
model has a total of 50 images (5 for each class) in 10-way,
5-shot learning problem, which are used to learn and classify
the test images in the 10 classes. To ensure that RA-CNN
learns more general fault information from multiple differ-
ent tasks, this paper proposes to use TFI before and after
data enhancement as Dmeta−test and Dmeta−train, respectively.
During the preparation of the metatraining set,M TFIs from
each type of failure are randomly sampled, and K TFIs are
used to form a 10-way K-shot support set. The support set
of each task is used to train the fault classification model
and provide corresponding loss feedback, and the data of
the query set is used to verify the classification effect of the
trained model. Repeating this way many times, the tasks of
the entire metatraining phase is assigned, and the tasks of
the metatest set are obtained in the same way, but it is worth
noting that the Dmeta−train is obtained from the balanced
dataset after data enhancement, while the Dmeta−test is
obtained from the initial unbalanced dataset.

3.4. RA-CNN Architecture. The CNN has been proved to
have a good performance when the original vibration data
is processed by STFT for feature extraction before neural
network training [44], while many kinds of CNNs cannot
learn features well from the TFI of limited original rotating
machinery fault data. Therefore, the proposed metalearning
network model RA-CNN for high-precision intelligent fault
diagnosis is combined with 2-dimensional convolutional
neural network (2D-CNN), residual learning, and attention
mechanism. In the case of limited training data, in order to
facilitate the model to extract more representative image
features, we combine the attention mechanism and 2D-
CNN to make the model strengthen the learning weight
of fault type features with minority samples and improve
its learning ability for fault features. Then, in order to avoid
model overfitting, we add the residual learning modules to

…

Conv layer

Activation layer

Full connected layer
BN layer

Pooling layer

Residual-learning

Elements multiplication

Channel
attention
module

Spatial
attention
module

Figure 4: The network structure of RA-CNN.

Convolutional layer

Input x

Output y

F(x) + x

ReLU

BN+ReLU+Pooling

Convolutional layer
BN+ReLU+Pooling

Identity
mapping

Figure 5: The process of residual learning.
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the proposed model. Since metalearning focuses on the
optimization of lightweight networks, the backbone of
RA-CNN is a CNN with four convolution layers, as shown
in Figure 4, which is decided by several simulation experi-
ments and the special structure of the ResNet [20].

3.4.1. Residual Learning. The residual learning techniques pro-
vide an easy way to train neural networks with deep layers.
However, with the expansion of layers, a neural network with
deeper layers may not be able to learn some simple functions;
at some epochs, the accuracy may begin to stagnate or even
decrease, leading to model overfitting problems. In the case
of limited sample training network model, the problem of
overfitting becomes more serious. Therefore, residual learning
block is introduced to train the network, and the reconstruc-
tion of neural network layer is simplified according to the
residual function of input layer to avoid the problem of model
overfitting. The residual learning process was shown in
Figure 5, and the functional expression of residual learning is
shown in Equation (6).

y = F x,Wð Þ + x, ð6Þ

where x and y, respectively, represent the input and output
vectors of the residual block, Fð·Þ is the residual function,
and W is the weight value inside the residual block.

In the forward propagation of the feature vector of CNN,
in order to ensure the consistency of the dimensions of input
and output vectors, if scale changes occur during the convo-
lution operation inside the residual block, the transforma-
tion matrix Ws is used to adjust the dimension of the
identity mapping part of input x. At the same time, consid-
ering that increasing the proportion of residual errors can
reduce the difficulty of model training, coefficients are added
on the basis of the original structure to adjust the value of
the sum of output and residual errors, as shown in

y = λF x,Wð Þ + 1 − λð ÞWsx: ð7Þ

3.4.2. Attention Mechanism. In this paper, attention mecha-
nism CBAM is introduced into the network structure of
metalearning to extract more expressive features, as shown
in Figure 6. CBAM is composed of two different attention
modules, and these two attention modules complement each
other in defects and make the model pay more attention to
feature representation and spatial definition. The two infer

Channel
attention
module

Spatial
attention
module

F′′Input feature F

Figure 6: The flowchart of CBAM.

Max pooling

BN Average
pooling

shared MLPInput feature F

Input feature F'
Channel-refined

[MaxPool, AvgPool]

BN

Conv
layer

Channel attention
Mc

Spatial attention
Ms

2

Spatial attention module

Channel attention module

Figure 7: Diagram of channel and spatial attention.
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the attention weight from the channel dimension and the
spatial dimension in series and then multiply it with the con-
volution result of the residual network to adjust the features,
highlight the target features in the feature map, and enhance
the recognition ability of the model for fault features.

Channel Attention Module (CAM) according to the
dependence of different channels in the feature map on the
response degree of the recognition target adjusts the feature
map according to the different response degree and calcu-
lates the weight of each channel using multilayer perceptron.
A channel with a high response degree indicates that it is
similar to the recognition target and is assigned a higher
weight; a channel with a low response degree indicates a
large gap from the recognition target and is assigned a lower
weight. The structure of CAM is shown in Figure 7, and the
implementation steps are as follows: (1) the input feature
map is subject to maximum pooling and average pooling,
respectively. The average pooling realizes the compression
of channel features, and the maximum pooling can collect
the feature information of the target; (2) the pooled feature
map is sent to the multilayer perceptron composed of the
full connection layer, the average pooling layer, and the
maximum pooling layer for parameter sharing; (3) the mul-
tilayer perceptron output results are multiplied and
summed, and then, the channel attention feature map is out-
put through sigmoid activation function. So, the calculation
formula of channel attention feature mapMcðFÞ is shown in

Mc Fð Þ = σ MLP AvgPool Fð Þð Þ +MLP MaxPool Fð Þð Þð Þ
= σ W1 W0 Fcavg

� �� �
+W0 W1 Fcmaxð Þð Þ

� �
,

ð8Þ

Input:Dorigin, Snew , f RA−CNNðθÞ inner and outer learning rate α and β, number of adaptation steps m, number of few-shot tasks N ,
metaepochs M
output: the classification accuracy of bearing fault diagnosis
1: Random initialize θ
2: Split Dorigin into Dmeta train and Dmeta test

/∗Metatraining stage ∗/
3: forepoch = 1, 2,⋯Mdo
4: Randomly create n tasks from {Dmeta train, Snew}
5: fori = 1, 2,⋯ndo
6: Create support set Ds and query set DQ from task i
7: Evaluate LtrðTiÞð f θÞ from Formula (11)

8: Update θ to θi′ using inner learning rate α and loss LtrðTiÞð f θÞ
9: end for
10: Optimal parameter θ′ update from Formula (13)
11: end for

/∗Metatesting stage ∗/
12: forepoch = 1, 2,⋯Mdo
13: Randomly create n-way, k-shot few-shot tasks from Dmeta test
14: repeat steps 5 to 8, to obtain the updated θi′
15: obtain optimal parameter θ′
16: predict fault class labels by f ðθ′Þ based on the DQ of Dmeta test
17: Compute the classification accuracy
18: end for

Algorithm 2:The implementation of the MOFD.

Table 1: RA-CNN parameters list.

No. Layer name
Kernel
number

Kernel
size

Stride Padding

1 Input / / / /

2 2D Conv1 32 3 × 3 1 Yes

3 ReLU / / / /

4 MaxPool 32 2 × 2 1 Yes

5
AvgPool_
channel

64 2 × 2 1 Yes

6
MaxPool_
channel

64 2 × 2 1 Yes

7 MLP / / / /

8 ADD / / / /

9 2D Conv2 64 3 × 3 1 Yes

10 ReLU / / / /

11 MaxPool 64 2 × 2 1 Yes

12
AvgPool_
spatial

64 2 × 2 1 Yes

13
MaxPool_
spatial

64 2 × 2 1 Yes

14 ADD / / / /

15 2D Conv3 128 7 × 7 1 Yes

16 2D Conv4 128 5 × 5 1 Yes

17 ReLU / / / /

18 MaxPool 128 2 × 2 1 Yes

19 FC 256, 96

20 Softmax / 96, 10 / /
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where σ denotes the sigmoid function,W0 andW1 represent
the weight of shared network MLP. F represents an input
feature map.

The neural network extracts the features for learning
based on image details from the spatial dimension informa-
tion of the feature map through the spatial attention module
(SAM), to supplement CAM’s output. Its structure is shown
in Figure 7. The implementation steps are as follows: (1) the
input feature maps are sequentially pooled and averaged and
spliced the two feature maps with the channel; (2) the con-
nected feature map is sent to the convolution layer for fea-
ture extraction, and then, the spatial attention feature map
is finally output through the sigmoid activation function.
In general, the calculation formula of channel attention fea-
ture map McðFÞ is shown in

Ms Fð Þ = σ f 7×7 AvgPool Fð Þ ; MaxPool Fð Þ½ �ð ÞÀ Á
= σ f 7×7 FSavg ; F

S
max

� �� �
,

ð9Þ

where f 7×7ð·Þ indicates a convolution with the 7 × 7
filter size.

3.5. Metalearning Process. During the implementation of the
proposed MOFD, the learning process is characterized by
sequence of episodes, where each episode contains the
metatraining and metatesting. RA-CNN as a basic learner
is expressed as f ðθÞ. Here, θ are weights of the neural net-
work, and x is the feature vectors of the input. During
metatraining, the metaparameter θ initializes the classifica-
tion model y = f ðx ; θiÞ, where θi = θ and θ of each task Ti
is different. Ti is divided into support sets DS and query
sets DQ, and Adam is used to update parameters θi′ based
on DS. Finally, the metaparameter θi is updated according
to the learning of multiple metatasks in Tmeta−train and
obtains the optimal parameter θ′ of metatraining as the
shown in Equation (12).

θ′⟵ θ − α∇θLtr tð Þ f θð Þ, ð10Þ

where m denotes the number of metatasks. α denotes the
inner-loop learning rate.

Among them, the loss function LtrðTiÞð f θÞ applies the loss
function to measure the performance of the updated RA-
CNN model in bearing fault classification with unbalanced

Fan end bearing

Drive end
bearing

Normal Outer race

Inner race Ball

Electric
motor

Torque
transducer &

encoder

Dynamometer

Figure 8: Bearing devices and failure types of CWRU experiments.

Table 2: The details of CWRU bearing datasets.

Fault state Fault diameters A B C A′ B′ C′ D

Normal 0.000 720 720 720 720 720 720 100

Ball 0.007 36 72 144 36 (+684) 72 (+648) 144 (+576) 100

Inner race 0.007 36 72 144 36 (+684) 72 (+648) 144 (+576) 100

Outer race 0.007 36 72 144 36 (+684) 72 (+648) 144 (+576) 100

Ball 0.014 36 72 144 36 (+684) 72 (+648) 144 (+576) 100

Inner race 0.014 36 72 144 36 (+684) 72 (+648) 144 (+576) 100

Outer race 0.014 36 72 144 36 (+684) 72 (+648) 144 (+576) 100

Ball 0.021 36 72 144 36 (+684) 72 (+648) 144 (+576) 100

Inner race 0.021 36 72 144 36 (+684) 72 (+648) 144 (+576) 100

Outer race 0.021 36 72 144 36 (+684) 72 (+648) 144 (+576) 100

9Journal of Sensors



data, and its mathematical form of updating the RA-CNN by
the binary cross entropy loss function is shown in

Ltr Tið Þ f θð Þ = − 〠
xi ,yið Þ~DS

yi log f θ xið Þ + 1 − yið Þ log 1 − f θ xið Þð Þð Þ,

ð11Þ

where ðxi, yiÞ is the input vector and label pair. The training
data is the support dataset DSðxi, yiÞ of each task Ti.

Then, the updated RA-CNN model f ðθ′Þ is used for
outer loop optimization based on query set DQ, and the total
loss of all query set tasks takes the following form:

Ltr Tið Þ f θ′ð Þ = 〠
xi ,yið Þ~DQ

Ltr Tið Þ θ′ − 〠
N

m=1
αLtr T j~Dsð Þ f θð Þ

 !
:

ð12Þ

In order to accurately and rapidly classify bearings with
unknown bearing data under finite samples and gradient step
sizes, our metaobjective is to find the optimal model parame-
ters in multiple tasks by minimizing total loss LMOFD. Then,

the metalearning parameters after inner loop optimization θ′
are updated with the outer-loop learning rate β:

θ∗ ⟵ θ′ − β∇θ′Ltr Tið Þ f θ′ð Þ: ð13Þ

In the metatesting stage, the RA-CNN model parameter
θ∗ can be fine-tuned based on the metatest support set to
search for the best model parameter θbest that can complete
accurate fault classification on the query set. The pseudocode
implementation of the proposed MOFD is outlined in Algo-
rithm 2. The parameters of RA-CNN are shown in Table 1.

4. Experimental Analysis

This section takes the Case Western Reserve University
(CWRU) bearing dataset as the experimental case to verify
whether the MOFD model can effectively solve the bearing
fault diagnosis problem under data imbalance. A 10-way
diagnosis case is conducted on CWRU datasets. In the pro-
cess of experimental setting, the relevant control variables
are discussed in a certain range and finally compared with
the current advanced related methods to determine the
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Figure 9: The visualization of original vibration and spectrum signals of CWRU bearing dataset in different health states.
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feasibility and progressiveness of the fault diagnosis model
proposed in this paper.

4.1. Dataset Introduction. The CWRU dataset is a widely used
bearing dataset for intelligent fault diagnosis for rotating
machinery. As shown in Figure 8, the experimental equipment
includes 1.5 kWmotor, power tester, electronic controller, tor-

que, and acceleration sensors, and single point damage failure
on the inner, outer, and ball of the bearing is simulated,
respectively, through EDM. The fault damage diameters are
0.18, 0.36, 0.54, and 0.71 inches, respectively. Vibration signals
of normal bearings and damaged bearings with single point
defects are collected at frequencies of 12kHz or 48kHz under
four different motor loads. The experimental data collected
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Figure 10: Visualization with different oversampling techniques: (a) normal sample distribution; (b) SMOTE; (c) MWMOTE; (d) FSDA-
SMOTE.
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from the drive SKF-6205 and its sampling frequency is equiv-
alent to 12Khz. In Table 2, the bearing signal data is divided
into 10 categories (one health state and 9 fault states) accord-
ing to different fault diameters of bearings and fault states
(normal, inner race, outer race, and ball).

4.2. Data Augmentation. As shown in Table 2, the imbalance
ratio between each fault dataset and the normal dataset
should be set at least less than 0.2 to simulate the experimen-
tal conditions of data imbalance. Dataset A is an unbalanced

dataset with the imbalance ratio 0.05, which has 720 normal
samples and 36 samples for each the other 9 fault categories;
dataset B is an unbalanced dataset with the imbalance ratio
0.1, which has 720 normal samples and 72 samples for each
the other 9 fault categories; and dataset C is an unbalanced
dataset with the imbalance ratio 0.2, which has 720 normal
samples and 144 samples for each other 9 fault categories.
FSDA-SMOTE uses imbalanced datasets A, B, and C to
enhance data and obtain rebalanced datasets A′, B′ and C′,
the number of samples for every category is 720. In addition,

Table 3: The average accuracy (%) of imbalanced and rebalanced datasets by SVM.

Types Imbalanced
Rebalanced (used data augmentation)

SMOTE MWMOTE LSTM GAN FSDA-SMOTE

Dataset A 81.54 86.23 85.34 88.17 88.41 86.37

Dataset B 83.31 87.14 88.18 90.67 90.58 91.34

Dataset C 88.07 89.75 90.33 95.50 94.12 95.80

Table 4: The parameter setting of STFT.

Window scale Overlapping points FFT points Time–frequency resolution Input image size

64 35 31 16 × 16 16 × 16 1ð Þ
128 103 31 16 × 16 16 × 16 2ð Þ
64 50 64 33 × 33 32 × 32 1ð Þ
128 116 63 32 × 32 32 × 32 2ð Þ
64 57 128 65 × 65 64 × 64 1ð Þ
128 122 128 65 × 65 64 × 64 2ð Þ
128 125 256 129 × 129 128 × 128
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Figure 11: Average accuracy and time consumption with different input image size.
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Figure 12: Continued.
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each category has a test set with 720 samples to verify
the trained fault diagnosis model. Dataset D is a test
set with 100 samples in each category and a total of
1000 samples.

In the stage of sampling data, the original signal data is
segmented in an average order. There is no overlap between
these segments, and the length of segments is 512. The fre-
quency spectrum signal is obtained by short-time Fourier
transform of the fragment, which has more important phys-
ical information and contains more useful fault diagnosis
information. In Figure 9, the spectrum signals under differ-
ent fault states with the fault diameter of 0.007 inch are
introduced into the spectrum space and sample fault spec-
trum signals. Among them, the left part of Figure 9, respec-
tively, represents the original bearing vibration information
under different fault states with the speed of 1797 RPM,
states with the speed of 1797 RPM, and the right part of
Figure 9, respectively, represents the spectrum signals after
short-time Fourier transform under different fault states. In
order to test the effectiveness of FSDA-SMOTE algorithm
on limited imbalanced bearing fault diagnosis, several other

data augmentation methods are compared in the paper,
including 2 oversampling algorithms (SMOTE, MWMOTE)
and 2 network generation models (LSTM [15], GAN [31]).
That is, the FSDA-SMOTE algorithm in data augmentation
stage of Figure 2 is replaced with the other data augmenta-
tion methods. The parameters of oversampling algorithms
are set as follows: data augmentation algorithms made the
size of the fault instances sampling the same as the normal
instances; the k nearest neighbor parameters of SMOTE
and MWMOTE is 5. MWMOTE and FSDA-SMOTE’s num-
ber of clusters is 9. Additionally, in order to highlight the dif-
ferences in the spatial distribution of new samples generated
by different sampling algorithms, dataset A in Table 2 is
taken as an example with visualized application T-SNE of
each sampling algorithm.

Figure 10 shows the projection distribution of dataset A
and its synthetic samples in two-dimensional space, which is
visible through the sample density areas under different color
labels to further visually illustrate the distribution differences
between different sample categories. However, some samples
also infiltrate into each other outside the sample dense area,

(g) (h)

(i) (j)

Figure 12: Time-frequency images of CWRU bearing dataset under different fault states: (a) normal; (b) B_007; (c) B_014; (d) B_021; (e)
IR_007; (f) IR_014; (g) IR_021; (h) OR_007; (i) OR_014; (j) OR_021.
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leading to fuzzy boundary between classes and even abnormal
data. At this time, it is often necessary to consider whether to
treat them as discrete points. The processing result of different
sampling algorithms for dataset A is shown in Figure 10.
Figure 10(a) shows the original distribution of various samples
in the feature space of unbalanced dataset A, and the data dis-
tribution of each category is chaotic, so it is impossible to set
the boundary between classes well to separate each category

sample. Figure 10(b) uses SMOTE algorithm to enhance the
minority fault data of dataset A.

However, the synthesizing data based on the traditional
SMOTE is easy to receive the interference of noise data and
affect the real distribution of failure data, thus reducing the
quality of the synthesized sample. In Figure 10(c), although
the MWMOTE can optimize minority boundaries by denois-
ing and assigning information weight to minority failure
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Figure 13: The metalearning process of MOFD with different shots.
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samples, the difference in weight allocation will also result in
partial fault sample clusters (such as IR_007, B_021) being
ignored, thus failing to correctly learn the fault samples within
the group boundary. Figure 10(d) uses the FSDA-SMOTE
method proposed in this paper. In this method, the similarity
between synthetic samples and original samples is enhanced
by defining the spatial density of samples in minority fault
samples cluster. Due to the spatial density of the sample gen-
erated in Figure 10(d), the sample synthesis range is closer to
the center of the minority sample cluster. The boundary
between classes becomes very clear, which is beneficial to
improve the reduction degree of synthetic samples.

As shown in Table 3, unbalanced data A, B and C are bal-
anced with different imbalance ratios by using different data
augmentation methods and rebalanced data A′, B′, and C′
are obtained. SVM, as a classification model with outstanding
stability, is introduced to carry out fault diagnosis and classifi-
cation experiments on unbalanced and rebalanced datasets,

respectively. The experiment is repeated for 10 times, and
the average accuracy of 10 times fault classification is taken
as the final judgment result. It can be seen from Table 3 that
the unbalanced training data will obviously affect the model’s
classification performance, and the influence of such problems
can be effectively reduced by expanding the fault data (the
minority of the training data) through data augmentation
method. Specifically, FSDA-SMOTE generated rebalanced
dataset A′ is about 4.83%, 8.03%, and 7.73% higher than
imbalanced dataset A; SMOTE is about 4.69%, 3.83%, and
1.68% higher; MWMOTE increases by 3.8%, 4.87%, and
2.26%. LSTM increases by 1.94%, 4.44%, and 7.43%, and
GAN increases by 6.87%, 7.37%, and 4.32%. The above exper-
imental data prove that the fault identification ability of the
rebalanced dataset obtained by data augmentation is better
than the unbalanced dataset, which indicates the feasibility
and effectiveness of data augmentation method for solving
the problem of low accuracy of fault identification under data
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Figure 14: The compared results of metalearning (1\5\10-shot) and baseline CNN with CWRU datasets.

Table 5: The accuracy of fault diagnosis models on CWRU dataset A.

Types
Imbalanced Rebalanced (used data augmentation)

/ SMOTE MWMOTE LSTM GAN FSDA-SMOTE

VMD-SVM 68.57 77.32 83.12 81.17 82.39 86.54

SDAE-DNN 75.96 80.13 86.26 87.67 90.58 92.34

CNN 73.74 80.48 85.71 82.36 87.22 91.03

Res-Net 76.92 80.32 83.72 79.90 88.27 90.26

Instance-TL 80.14 82.75 86.56 90.53 83.17 89.08

Siamese network 83.65 88.19 91.14 87.07 90.34 92.16

Proposed 85.76 89.33 90.03 80.41 91.12 95.71
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imbalance. In addition, the average accuracy of rebalanced
datasets with different imbalanced ratios is also different in
bearing fault diagnosis by using the same data augmentation
method. From dataset A to dataset C, with the gradual
increase of imbalance ratio, the average accuracy of the gener-
ated complex balanced dataset is higher. From this conclusion,
it can be inferred that increasing the number of training data is
conducive to better learning fault information of the diagnos-
tic model, and it also proves the necessity of data enhancement
in the case of data imbalance. Finally, FSDA-SMOTE gives
better average accuracy on three imbalance ratios than the
other data augmentation methods. In summary, the experi-
ment results prove the feasibility of FSDA-SMOTE synthetic
sample and the reliability of sample quality based on the
CWRU’s dataset.

4.3. Data Preprocessing. As shown in Figure 3, the reba-
lanced dataset is converted into a one-dimensional time-
domain signal into a spectrogram image through the STFT.
In the process of STFT, different window scales, overlapping
points, and Fourier points are set to obtain different time-
frequency resolutions. To facilitate pooling in the CNN,
the last row and last column are removed when the time-
frequency resolution is odd. The rebalanced dataset A′ based
on FSDA-SMOTE is selected as the training dataset for RA-
CNN classifier testing to obtain the image input size at the
optimal time-frequency resolution. The RA-CNN input
image sizes are listed in Table 4.

In order to avoid contingency, 20 experiments are
repeated to obtain the average test accuracy and time con-
sumption. The diagnosis results are shown in Figure 11.
The test accuracy is greater than 85%, which indicates that
feature extraction based on 2D time-frequency image input
can extract deeper fault characterization features. When
the input image size is 64 × 64, the fault identification aver-
age accuracy is over 94%. However, with the increase of
image scale, the time consumed for fault diagnosis also
increases significantly. Considering the test accuracy and
time cost comprehensively, the window function of scale
128 and the time-frequency image scale of 64 × 64 are the
default parameters of STFT. The time-frequency images of
bearing vibration signals under 10 different health states
after short-time-Fourier transform are shown in Figure 12.

4.4. Experiment Setting. Metalearning experiments apply a
novel convolutional neural network model RA-CNN with
4 convolutional layers as the backbone structure to train a
metalearning classifier for fault diagnosis under data imbal-
ance, which also contains the residual learning module and
the temporal and spatial attention module. During the pro-
cess of metalearning experiment, Adam optimizer is used
(learning rate α = 0:01) for inner loop optimization and
SGD with momentum (momentum = 0:9) for outer optimi-
zation. The metalearning rate β used for metaupdate step
(locate on line 10 of Algorithm 2) has an initial value of
0.1 and changes dynamically as the metaiteration increases.
The number of subtasks N of Dmeta train and Dmeta test are
800 and 200, respectively. The adaptation steps (m) for
metalearning are 50, and all the metalearning experiments

are allowed to run for 4000 metaepochs before fine-tuning.
In order to facilitate a fair comparison with other fault diag-
nosis models, the network conditions and hyperparameters
used in the experiment should not be changed as much as
possible when it is not necessary. The input image is resized
to 64 × 64 and normalized the pixel value between [0, 1].
The early stop strategy is used to avoid overfitting and
obtain best model. In order to avoid occasionality that an
experiment might occur, we repeated 20 experiments for
each verification process, and the average results were as
close to the real diagnosis result of the model as possible.
All the models proposed in this paper are tested in the same
operating environment; the specific contents are as follows:
Intel Xeon(R) CPU E3-1231 V3 @ 3.40GHz, NVIDIA
GeForce RTX2080Ti, Ubuntu18.04, Python3.6, CUDA
11.2, and TensorFlow 2.7.

4.5. Experimental Result Analysis. In order to further dem-
onstrate the feasibility and superiority of the MOFD’s fault
classification ability under data imbalance, six baseline
models are proposed to compare the fault diagnosis results
with the MOFD method, which includes VMD-SVM [7],
SDAE-DNN [8], CNN [10], Res-Net [12], Instance-TL
[35], and Siamese network [41]. Considering the differences
between traditional model and metalearning model in data
training methods, MOFD and Siamese networks based on
10-way classification tasks are proposed, and different data
augmentation techniques are used for 1-shot, 5-shot, 10-
shot learning. So, the accuracy and loss curves of 1, 5, and
10 shots are drawn in dataset A, and the variation trend of
MOFD during metatraining and self-testing is observed
metatesting. In the first 2000 iterations, the accuracy of
metatraining and metatesting improves significantly, then
slows down, and finally, approaches 100%. Figure 13(a)
shows that the MLFD model is well trained without overfit-
ting. Figure 13(b) shows the loss reduction process of 1-shot,
and the model tends to converge after 1200 iterations.
Figures 13(c) and 13(d) illustrate the changes of 5-shot and
in Figures 13(e) and 13(f) is 10-shot, whose process are sim-
ilar to 1-shot, but the initial loss of 10-shot is a lower value
than others, because the 10-shot can obtain more bearing
fault information to train the model better than 1-shot or
5-shot. Therefore, we compared the fault classification
results of CNN, MOFD1, MOFD5, and MOFD10 under dif-
ferent metatask sets, respectively, to verify the influence of
the amount of metatask set data on model fault feature
learning. Figure 14 shows that the accuracy of MOFD 10-
shot performed better than MOFD1-shot in all 6 experi-
ments under variable datasets, and it is worth emphasizing
that FSDA-SMOTE data augmentation is used to solve the
dataset imbalanced in all of six experiments.

After determining the training method of metalearning,
it is concluded that the model based on metalearning strat-
egy can better identify and classify faults by comparing
MOFD and baseline CNN without metalearning, and the
results are shown in Figure 14. It is obvious that the diagnos-
tic performance of MOFD on six datasets is very good, but
the performance of CNN will fluctuate according to the
degree of data imbalance. Especially under the experiment
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with dataset A, the accuracy of the CNN is only 73.74%,
which is 9.52% lower than MOFD10-shot. This is because
the imbalance of datasets will shift the classification bound-
ary and change the model’s perception of the original data
distribution. MOFD has the ability to obtain prior knowl-
edge of general bearing faults through the known fault data
and apply them to fault diagnosis of data imbalanced. It is
difficult for baseline CNN to effectively obtain enough fault
features for bearing fault diagnosis under data imbalance
based on its simple network structure and limited samples.

In the end, the seven methods proposed above will be
compared with each other through the CWRU bearing data-
set. Table 5 shows the fault diagnosis results of each fault diag-
nosis model under different data augmentation methods. The
fault diagnosis models used uniformly dataset A with the
imbalanced ratio 0.05 as the training data tomagnify the inter-
nal imbalance of the dataset.

As shown in Table 5, the average accuracy of almost all
models on balanced datasets is higher than that on unbal-
anced datasets. The transfer learning model based on
instances (instance-TL) has the least improvement (2.61%),
and the VMD-SVM model has the most improvement
(17.97%). In addition, the experimental results show that
among these data augmentation methods, FSDA-SMOTE
generated the fault data effectively improves the diagnostic
performance of models and gets the best or above average
in the comparison of multiple methods and models. There-
fore, the MOFD model based on metalearning framework
proposed can effectively solve the problem of bearing fault
diagnosis under data imbalance.

5. Conclusion

In this paper, a method based on metalearning framework is
proposed to describe the fault diagnosis problem of data imbal-
ance as a few-shot learning problem based on image classifica-
tion. Based on the time-series correlation of bearing vibration
signals and the time-invariance of frequency domain features,
time-frequency transform technology STFT is used to learn
the deep features of bearing signals from the image level, and
FSDA-SMOTE data augmentation method clusters minority
samples to define samples’ density in the class and generates
high quality fault data to enhance the diversity of training data.
The effectiveness of this method is verified by comparing with
several data augmentation techniques. In addition, a metaopti-
mization fault diagnosis method (MOFD) for k-way N-shot
metalearning training method is proposed. Compared with
the traditional use of CNN as a metalearner, MOFD uses RA-
CNN based on residual learning and time-space attention
mechanism for fault feature extraction, which not only avoids
overfitting due to limited fault training data but also improves
the ability of metalearner network to extract key fault features.
Experimental results based on public CWRU datasets show
that the MOFD method can significantly improve the data
imbalance problem, and RA-CNN can obtainmore representa-
tive fault feature information under the limited data of meta-
task. Besides, it has better fault classification performance and
good robustness and generalization. Therefore, the proposed

method has a certain reference value in solving the bearing fault
diagnosis problem under data imbalance.
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