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The study aims to train athletes to be in top form and at their best in the competition. Based on the relevant theoretical research,
archers are taken as the research subjects, the characteristics of archery are analyzed, and the electroencephalogram (EEG) features
of the athletes in different stages of precompetition training are monitored. And the athletes’ competitive state monitoring model
based on random forest (RF) is implemented and tested. The experimental results show that the athletes’ dominant frequency of
brain band «, EEG entropy, central fatigue index, excitation inhibition index, and cerebral state index in precompetition training is
significantly different from those in training (P < 0.05).The monitoring model implemented classifies athletes’ competitive states.
Compared with the support vector machine (SVM) classification model, its classification accuracy is higher than 90%. The overall
classification accuracy is 89.74%, more significant than SVM. The research provides a reference for monitoring athletes’
competitive states and helps them regulate their states in real time.

1. Introduction

Archery is popular among people in China and symbolizes
China’s traditional culture. It is listed as one of the events
in second Olympic Games in 1900 [1]. As a traditional sport,
it attracts more and more attention due to the excellent per-
formance of Chinese archers in various world events in
recent years. Monitoring electroencephalogram (EEG) is a
method of recording brain activities using electrophysiolog-
ical indexes. In the early 1950s, scientists in the former
Soviet Union studied the application of EEG to sports train-
ing [2]. Schchumiller studied athletes’ EEG and obtained
their states at different stages in acquiring the relevant skills.
Majiev et al. discussed the EEG features of athletes when
they are feeling fatigued. And the related research becomes
more and more extensive with the development of science
and technology.

EEG is used for concussion injury and recovery. Wilde
et al. (2020) combined EEG and neurocognitive data. They

proposed the indexes to enhance brain function, which can
significantly change the diffusion of athletes suffering from
concussion and have clinical application value for a concus-
sion [3]. Zhao et al. (2021) used the deep learning method to
analyze the EEG signals of athletes and designed a channel
attention module connected to the input layer of convolu-
tional neural networks (CNN) to reduce the risk of suffering
from concussion again after recovery training [4].Besides,
EEG can evaluate athletes’ competitive state and guide ath-
letes’ training. Duru and Assem (2018) used the psycholog-
ical subtraction method to discuss the effectiveness of
nerves and utilized EEG to measure the cognitive dynamics
of karate athletes during the break time and in doing sports
[5]. Sultanov and Ismailova (2019) explored the relationship
between EEG rhythm oscillation and competitive anxiety
when opening and closing eyes. They also took young foot-
ball players as the experimental subject to test their sports
competition anxiety, recorded their prefrontal EEG with a
single channel mobile EEG system, and analyzed the EEG
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rhythm as a predictor of stress with a regression model. This
study provides a method for predicting athletes’ emotional
states [6]. Bailey et al. (2019) used portable EEG equipment
to track the psychological state of climbers during the climb-
ing activity. The results show that climbers are more relaxed
(at the critical moment) and (« activity) have introverted
attention (0 activities) when challenging more difficult
routes [7]. Tharawadeepimuk and Wongsawat (2021) used
the brain topographic map (absolute force) and brain con-
nectivity (coherence and amplitude asymmetry) to analyze
the psychological factors when doing sports. They evaluated
athletes’ performance in competition through noninvasive
quantitative EEG [8]. Bieru et al. (2021) used EEG to record
the brain activity of 12 judo athletes and 11 volleyball ath-
letes during hand flexor contraction and relaxation, which
helps coaches evaluate the training effect of athletes [9].
Zhu (2021) assessed the impact of EEG information and
central nervous transmission on athletes’ regulation and
training, providing a basis for improving the level of archery
training [10].

In short, the above studies are mainly on athletes’ con-
cussion injury and evaluate their psychological state via
EEG. Still, there are few on the application of EEG to mon-
itoring athletes’ competitive states. Therefore, archers are
taken as the research subject to explore the characteristics
of archery and test the EEG of the national team under dif-
ferent training states. An athletes’ competitive state monitor-
ing model is implemented based on the random forest (RF)
and used to test the EEG of athletes in the precompetition
training stage. The EEG characteristics of archers under dif-
ferent training states are analyzed. The evaluation criteria of
test indexes are constructed, and the model’s performance is
tested. The innovation is to classify the competitive state of
athletes based on RF, so that coaches can intuitively and
conveniently know the states of athletes. The study provides
a fundamental tool for coaches to monitor and control ath-
letes’ competitive states, which has practical significance.

2. Research Methods

2.1. EEG. Classifying the competitive states of athletes can
better detect and adjust the states of athletes. The commonly
used classifiers include the nearest neighbor algorithm, naive
Bayesian classifier, radial basis function neural networks,
and RF. The nearest neighbor algorithm is simple and easy
to implement, but it performs poorly when the samples are
imbalanced. Naive Bayesian works well on small-scale data
and can complete multiple classification tasks, but it needs
a priori probability before use. The structure of radial basis
function neural networks is simple, but it cannot display
the reasoning process. RF can highly parallelize the training.
It can randomly select the node division features of a deci-
sion tree (DT) and mark the importance of each feature in
the output results. The data trained after random sampling
has small variance and strong generalization ability. There-
fore, RF is selected as the classifier to test athletes’ competi-
tive states.

EEG is obtained by recording brain activities using elec-
trophysiological indexes. EEG presents neural electrical
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activities by following a specific law. Specifically, the fre-
quency of the activities is 1-30 Hz and can be divided into
six bands, namely, 6, 0, a;, a,, 3, and f3, [11]. The frequency
of § is 1~3Hz, and its amplitude is 20~200uV. This
waveform can be measured in infancy or immature intellec-
tual development and when people are exhausted, sleepy, or
under anesthesia [12]. The frequency of 0 is 4 ~ 7 Hz, and its
amplitude is 5~20uV. This waveform is more common
among adults with frustrated will, depression, or psychosis.
The wave frequency of « is 8~13Hz (the average is
10Hz), and its amplitude is 20~100 yV, the most common
waveform in human brain waves. When people are quiet
and close their eyes, this waveform appears frequently, but
when people open their eyes or receive other stimuli, this
waveform will disappear immediately [13]. «; represents
the regulation factor, and the performance of the human
brain in the state is concentrated and inspired [14]. «, is a
state in which the brain is highly awake, focused, and
detached [15]. The frequency of 3 is 14~30Hz, and its
amplitude is 100~150 p#V. This waveform will appear when
people are nervous and impassioned. The original slow wave
will immediately become a single fast waveform [16]. 8 can
help athletes reduce tension and pressure and improve their
ability to respond and deal with emergencies. 3, wave shows
that the human brain is in a thinking state [17]. S5,
shows that the brain is alert and excited [18]. If the athlete’s
B waveform fluctuates significantly, the excitability of the
athlete’s central nervous system gets stronger, his speed
and intensity of nerve are strengthened, and his stress ability
is improved, forming an excellent state to win in the
competition.

2.2. RF Model. RF is one of the tools for data mining. As its
name implies, RF uses a random method to build a DT in a
forest. In RF, there are no relations between any DTs. There-
fore, DT should be discussed first in the study of RF [19].
DT is a commonly used classification method. Its gener-
ation falls into two steps. One is the splitting of nodes. When
the attribute represented by a node cannot make judgments,
this node should be divided into two subnodes (if it is not a
binary tree, it will be divided into n subnodes). This node is
called an internal node, and the node that can judge the
attribute is called a leaf node, forming a tree structure.
The other is the determining of the threshold. An appropri-
ate threshold should be selected to minimize the classifica-
tion error rate. Figure 1 shows the schematic diagram of DT.
The DTs are commonly used by iterative dichotomizer 3
(ID3), C4.5, and classification and regression tree (CART).
Among the above, the classification effect of CART is better
than others. It selects the optimal feature through the GINI
coefficient minimization criterion, determines the optimal
binary segmentation point of the feature, and generates a
binary tree. If there are K categories in CART, the probabil-
ity that the sample points belong to class k is p,, and the
GINI index of the probability distribution is calculated by

GINI= ) p(1-py)- (1)
k=1
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FIGURE 1: Schematic diagram of DT (represents internal nodes and represents leaf nodes).
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FiGure 2: RF model.

For the second classification problem, if the probability ~ index is calculated by
of the sample point as the first class is p, the GINI index of
the probability distribution is calculated by

y (1G]
GINI(D)=1- ¥ () 3
GINI(p) = 2p(1 - p). (2) w k; (IDI) ®)

If the training sample set D= [(x}, ;) (X3, %) - (X, In equation (3), |C,| is the number of K-type sample
¥,)]> x is the eigenvector, y is the sample type, and its GINI  points in D.
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FIGURE 4: Athletes’ questionnaire survey results.

D is divided into D,and D,according to whether feature
A takes its possible value a, and then

Dy ={((xy)[A(x)=a)}, (4)

Dy ={((xy) [A(x) #a)}. ()

In equations (4) and (5), if D=D, + D,, then the GINI
index of D under the condition of A = a is calculated by
D] D]

GINI(D, A,) = WGINI(Dl) + WGINI(DZ). (6)

RF is composed of multiple DTs. Each DT decides the
final classification result of the test sample by voting. The
model is shown in Figure 2.

2.3. Theoretical Research on Competitive States. Competitive
states are the spiritual activities in competitive sports events
and training. Stone et al. believes that competitive states are
the best preparation for sports performance obtained by ath-
letes through corresponding training [20]. They are the best
short-term states of psychology and physics. Some Chinese
scholars define competitive states as instant states when ath-
letes compete. These states change dynamically, and athletes’
best performance in psychology and physics is called “the
best competitive state.” Bompa, a Romanian Canadian
Sports Training scholar, uttered that the competitive state
could be measured and evaluated, and he classified the com-
petitive states. If he achieved more than 98% of the best
results last year, the athletes have the best competitive state.
If he completed 96.5% ~98%, the athlete’s state is normal; if
he achieved 95% ~96.5% best results, the athlete’s state is
poor; if the best results are less than 95%, the athlete’s state
is worst. Here, the view of Chinese scholars is that the com-
petitive state is an instant state when athletes participate in
the competition.

2.4. Characteristics of Archery. Archery is an ancient sport.
Athletes complete bow pulling and archery action by stand-
ing still and coordinating force. The characteristics of
archery show the role of muscle in antifatigue ability during
long-time training [21]. The basic requirements of archery
are fast, accurate, and stable. “Fast” means that athletes’
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F1GURE 5: Dominant frequency of the athletes’ brain band « under different training states.

TaBLE 1: The scoring criteria of the dominant frequency of brain band « in different training states.

Scores of the dominant frequency of  Information Scattered Evenly Concentrated Highly concentrated
brain band « dispersion information distribution information information

5 <30.7 30.7-40.5 40.6-47.8 47.9-60.8 >60.8

10 <27.8 27.8-43.9 44.0-51.7 51.7-64.5 >64.5

15 <24.6 24.6-41.7 41.8-48.4 48.5-63.3 >63.3

20 <27.1 27.1-44.2 44.3-50.7 50.8-62.7 >62.7

25 <27.5 27.5-38.7 38.8-45.1 45.2-56.3 >56.3

technical actions should be clear and fast. In the face of
changes in the external environment, athletes should
respond quickly and adjust themselves quickly. “Stability”
means that athletes need to overcome external and internal
interference and give stable play to their technical level and
control their emotions. “Accurate” means that athletes can
play their technical actions and hit the target accurately in
the competition.

Compared with other sports, archery athletes are greatly
affected by their psychological load. No matter in training
and conditions, athletes have tremendous psychological
pressure. The training activities require concentration, sensi-
tive and accurate proprioception, precise nerve control, fast
response, good information processing ability, decisive deci-
sion-making, and regular exertion of ability under huge
stress, all of which depend on the quality of athletes’ brain
function. The adaptation level of archers to the psychological
load will be directly reflected in the central nervous system
changes. Because it is simple, noninvasive, and repeatable,
EEG is one of the important means of clinical medicine
and brain cognitive science. The research athletes’ EEG fea-
tures can help athletes regulate their brain mechanism in

daily training and competition, enabling them to participate
in the competition in the best form and achieve the best
results.

Some scholars found that athletes’ EEG features could
reflect their tension and competitive states before the com-
petition. Some scholars analyzed the EEG of swimmers the
day before the match and found that there are special spatial
configurations of serotonin, acetylcholine, and dopamine in
their brain center. This demonstrates those athletes’ psycho-
logical state changes before the competition, and their psy-
chological loads before the competition can be monitored
by their EEG.

2.5. Athletes’ Competitive State Monitoring Based on RF. The
training state and brain features of athletes are tested
through experiments. According to the scores, the EEG fea-
tures of athletes with different scores are extracted, respec-
tively, the test indexes that can reflect athletes’ training
state are selected, and the scoring standards of each index
are established. Then, the athletes’ competitive state moni-
toring model is implemented based on the model. According
to the results, the real-time detection of athletes’ competitive
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FI1GURE 6: Athletes’ EEG entropy test results in different training states.

TaBLE 2: Scoring standard of the athletes’ EEG entropy test in
different training states.

Values of EEG

entropy Better Good Normal Poor Worse
> <0.43 %_‘?2' %5638 %6895 >0.85
0 S O S (U
15 <0.53 %235' %‘.6764' %Zg >0.88
20 <0.50 %2’ %‘.6742' %;37' >0.87
» R

states is realized, and the coaches can help regulate athletes’
competitive states according to the results. The implementa-
tion process of athletes’ competitive state monitoring model
is shown in Figure 3.

The classification accuracy of RF is essential to measure
the classification results of the RF model, which indicates
the proportion of correct classification datasets to the length
of all datasets. Its calculation equation is

Accuracy = —<orect

(7)

all

In equation (7), Ty e 1S the number of correct data for
RF classification in the test set, and T, is the data length of
all test sets.

2.6. Experimental Methods. Selection of subjects is as follows:
the sample set of the experiment is the archers of the
national training team, and the total number of subjects
is 57.

Test steps are as follows: use EEG to test the athletes,
respectively, and fill in the athlete’s psychological fatigue
questionnaire and automatic force rating table.

Test indexes are as follows: dominant frequency of «
brainwave, EEG entropy, central fatigue index, excitation
inhibition index, and brain functional state index.

The dominant frequency of brain band « [22] is as fol-
lows: it is the probability of each waveform. When the prob-
ability of the dominant frequency is the maximum, other
frequencies will decrease. And the information in the brain
will be more concentrated. On the contrary, when the prob-
ability of the dominant frequency in the brain decreases, the
brain’s concentration will decrease, reflecting the concentra-
tion of athletes’ attention to a specific event.

EEG entropy [23] is as follows: it shows the uncertainty
of brain band « and the order of dominant frequency. It also
reflects the response of athletes to external interference. The
entropy value of EEG is between 0 and 1. The smaller
the entropy value is, the less the brain band « is. The better
the order of the dominant frequency is, the smaller the influ-
ence of external interference on athletes is. It shows that the
information in the athletes’ brains is messy, and the impact
of external interference is great.

Major neurotransmitter levels include y-gamma-amino-
butyric acid (GABA), glutamic acid (Glu), acetylcholine
receptor (AchR), acetylcholine (Ach), 5-hydroxytryptamine
(5-HT), noradrenaline (NE), and dopamine (DA). Among
them, GABA is an inhibitory neurotransmitter, and it affects
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the excitability of neurons greatly. Glu is an excitatory neu-  brain stay conscious. 5-HT is a messenger and can produce
rotransmitter. AchR includes muscarinic receptors and nic-  pleasant emotions. It has an important impact on regulating
otinic receptors. The former produces a parasympathetic ~ brain activities such as emotion and energy. NE has both
excitatory effect, and the latter can excite postganglionic  inhibitory and excitatory effects. DA is related to human lust
neurons in an autonomic ganglion. Ach makes the human  and feelings and conveys excitement and happiness.



TaBLE 3: Scoring criteria of central fatigue index of athletes in
different training states.

Central fatigue No Mildly Very

Very Relaxed

indexes relaxed fatigue fatigued fatigued
5 <12.7 11%;- 1272(; 22.6-27.7  >27.7
10 <152 115,5_27' 129751 27.5-33.1  >33.1
15 <13.6 1352’ 129641 26.2-335 >335
20 <20.6 22%63 235247 32.8-39.1  >39.1
25 <20.7 220773 237249 33.0-39.7  >39.7

TABLE 4: Scoring criteria of excitation inhibition index of athletes in
different training states.

Excitatory

inhibitory Very Depressed Normal Excited Ve?ry
. depressed excited
indexes
16.0- 21.5-
5 <10.0 10.0-15.5 215 275 >27.5
10 <135 135215 22275 20 i35
32.5
18.5-  25.5-
15 <125 125180 00 U0 315
17.0- 23.0-
20 <11.0 11.0-16.5 225 8.0 >28.0
170- 235
25 <100 100165 0 S 5275

Central fatigue index [24] is as follows: a value used to
show the degree of fatigue.

Excitation inhibition index [25] is as follows: a value
used to reflect whether the brain is excited.

Brain function state index [26] is as follows: a value used
to reflect brain synergy.

Data processing is as follows: it is used to score the ath-
letes according to the questionnaire, and then the training
status of the athletes is evaluated (the scores of the two ques-
tionnaires account for 50%, respectively). Athletes’ psycho-
logical fatigue questionnaire is developed by Raedke and
Smith in 2001. In the questionnaire, athletes’ psychological
states fall into three dimensions: emotional/physical exhaus-
tion, reduced sense of achievements, and negative evaluation
of sports, including 15 questions. The survey results of ath-
letes’ psychological fatigue questionnaire are divided into
five grades: “Never,” “rarely,” “sometimes,” “often,” and
“always,” with scores of 5 points, 10 points, 15 points, 20
points, and 25 points, respectively. The automatic force rat-
ing table is also divided into five levels, namely “very
relaxed”, “relaxed”, “slightly laborious”, “laborious” and
“very laborious” and the corresponding scores are 5 points,
10 points, 15 points, 20 points, and 25 points, respectively.

» o« » o«
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When the athlete’s final score is 5 points, 10 points, 15
points, and 20 points, it indicates that the athlete is not tired.
When his score is 25 points, the athlete is in a state of
fatigue.

In the questionnaire surveys, 57 athletes’ psychological
fatigue questionnaires are distributed, and 57 are recovered,
with a recovery rate of 100%. The number of effective ques-
tionnaires is 57, and the questionnaire efficiency is 100%. 57
automatic force rating questionnaires are distributed, and
57 are recovered, with a recovery rate of 100%. The number
of effective questionnaires is 57, and the questionnaire effi-
ciency is 100%.

3. Results

3.1. Brain Function Feature Data of Different Competitive
States. The questionnaire survey results on 57 athletes of
the national training team are shown in Figure 4.

Figure 4 shows that the size of athletes with 5 points is
small, and 3 athletes’ psychological states are “relaxed.”
The numbers of athletes with 15 points and 20 points are
more significant, and they are 16 and 19, respectively, indi-
cating that the overall competitive state of the athletes
is poor.

The dominant frequency of the athletes’ brain band « in
different competitive states is tested, and the average vari-
ance under different training degrees is calculated. The
results are shown in Figure 5.

Figure 5 shows that when the scores of training states are
5 points, 10 points, 15 points, and 20 points, the values of
athlete’s brain band « are approximate, and the difference
is not statistically significant. When the athlete’s training
score is 25 points, the values of their dominant frequency
of brain band « are lower than that of other states. Com-
pared with the nonfatigue state of 5 points, 10 points, 15
points, and 20 points, P > 0.05 and the difference are statis-
tically significant.

The values of athletes’ dominant frequency of brain band
a in different training states are analyzed, and the corre-
sponding scoring criteria are shown in Table 1.

The EEG entropy of athletes under different training
states is tested, and the test results are shown in Figure 6.

Figure 6 shows that when the score of the training state
is 25, their average score of the EEG entropy test is higher
than that of others, which has a significant difference com-
pared with other training states (P < 0.05), which is statisti-
cally significant. The EEG entropy of athletes at other
scores is not statistically significant.

The scoring standard of the athletes’ EEG entropy test in
different training states is established, as shown in Table 2.

The primary neurotransmitter levels of athletes under
different training states are tested, and the test results are
shown in Figure 7.

Figure 7 shows that with the increase of training state
scores, 5-HT and Ach in the main neurotransmitter levels
of athletes are growing, while DA shows a change of low-
high-low. As athletes continue to exercise, their dopamine
level gradually rises. When the athletes feel fatigued, their
states become worse, the pivot fatigue gradually appears,
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TABLE 5: Evaluation criteria of brain state indexes of athletes in
different training states.

Brain

state Excellent =~ Good General Poor Very poor
indexes coordination synergy synergy synergy synergy
T
10 <10.7 1&'2‘ 125641 226827 >28.7
15 <7.8 ;685 126267 22242) >24.3
20 <4.6 ;61 123121 221326 >23.6
25 <63 o AT Oy

and their excitement decreases, which makes their dopamine
level decrease accordingly. However, with the loss of ath-
letes’ training state, pivot fatigue gradually increases, and
athletes’ 5-HT and Ach also increase.

The central fatigue index and excitation inhibition index
of athletes in different training states are tested, and the
results are shown in Figure 8.

Figure 8 shows that the central fatigue index is also rising
with the continuous rise of athletes’ training state scores.
This indicates that the worse the athletes’ states are, the
more exhausted the athletes feel. And there is a significant
difference between athletes’ central fatigue index and their
dominant frequency of 20 and 25 points and between
their central fatigue index and their dominant frequency of

5, 15, and 20 points (P <0.05), which is statistically
significant.

Under different training states, athletes’ 5-HT, Ach, and
central fatigue indexes change regularly. Their levels of 5-HT
and Ach will increase when the central nervous system is
anoxic and glucose-deficient. Based on the above, the evalu-
ation standard of the central fatigue indexes to evaluate ath-
letes’ fatigue states is only discussed. The scoring standards
of central fatigue index and excitation inhibition index of
athletes in different training states are shown in Tables 3
and 4.

The brain state indexes of athletes in different training
states are tested, and the test results are shown in Figure 9.

Figure 9 shows that when the training state score of ath-
letes is 25 points, the brain state index of athletes is the high-
est, which is significantly different from that of athletes at 5
points, 10 points, 15 points, and 20 points (P < 0.05). There
is no significant difference in athletes” brain function state
index at other points.

The evaluation criteria of brain state indexes of athletes
in different training states are established, as shown in
Table 5.

3.2. Model Performance Test. According to the evaluation
criteria, the competitive states of athletes are divided into
five levels: excellent, good, general, poor, and very poor.
The monitoring model and the classification model based
on SVM monitor the competitive states of athletes, respec-
tively, and the test results of classification accuracy are
shown in Figure 10.

Figure 10 shows that when the RF model classifies the
competitive state of athletes, the classification accuracy is
greater than that of SVM models. When the competitive
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state of athletes is in the better and good states, the classifi-
cation accuracy gap between the RF model and SVM model
is small. Still, the competitive states of athletes are general
and poor. When their states are very poor, the classification
accuracy of the RF model is more than 90%, and it is much
higher than that of SVM models. The overall classification
accuracy of the RF model is 89.74%, which is much higher
than 80.35% of SVM models. This proves that the RF model
is better in detecting athletes’ competitive states.

4. Conclusion

The competitive ability of athletes is affected by their com-
petitive states. In the training stage, coaches usually regulate
the competitive state of athletes employing training rhythm
control and psychological counseling, so that athletes can
participate in the competition in the best form and play their
best in the match. The characteristics of archery are ana-
lyzed, and athletes” competitive states are monitored through
their EEG features. The athletes’ training state is evaluated
using the questionnaires survey, the EEG feature data under
different training states are collected, and the EEG character-
istic evaluation criteria are established. The criteria provide a
basis for constructing the classification standard of athletes’
competitive states. An athlete’s competitive state monitoring
model is implemented based on RF and tested. The experi-
mental results show that when the athlete’s training state is
25 points, his dominant frequency, EEG entropy, central
fatigue index, excitation inhibition index, and brain state
index are significantly different from those of the other ath-
letes (P < 0.05). The athletes’ competitive states are classified
using the monitoring model, and the classification accuracy
of each index is greater than that of the SVM model. The

overall classification accuracy is 89.74%, higher than that
of the SVM model. The research helps coaches regulate ath-
letes’ competitive state in training, but there are still some
shortcomings. For example, the size of the samples is too
small, and the model implemented still has much room for
improvement, which will be the focus of the follow-up
research.
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The labeled dataset used to support the findings of this study
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Conflicts of Interest

The author declares no competing interests.

References

[1] Y.H. Tsai, S. Y. Wu, W. L. Hu et al., “Immediate effect of non-
invasive auricular acupoint stimulation on the performance
and meridian activities of archery athletes,” Medicine,
vol. 100, no. 8, article e24753, 2021.

[2] M. Fink, “Random controlled trial of sham electroconvulsive
therapy and other novel therapies,” The Journal of ECT,
vol. 37, no. 3, pp- 150-151, 2021.

[3] E. A. Wilde, N. J. Goodrich-Hunsaker, A. L. Ware et al., “Dif-

fusion tensor imaging indicators of white matter injury are

correlated with a multimodal electroencephalography-based
biomarker in slow recovering, concussed collegiate athletes,”

Journal of Neurotrauma, vol. 37, no. 19, pp. 2093-2101, 2020.

T. Zhao, J. Zhang, Z. Wang, and R. Alturki, “An improved

deep learning mechanism for EEG recognition in sports health

[4

—_



Journal of Sensors

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

informatics,” Neural Computing and Applications, vol. 33,
pp. 1-13, 2021.

A. D. Duru and M. Assem, “Investigating neural efficiency of
elite karate athletes during a mental arithmetic task using
EEG,” Cognitive Neurodynamics, vol. 12, no. 1, pp. 95-102,
2018.

M. Sultanov and K. Ismailova, “EEG rhythms in prefrontal
cortex as predictors of anxiety among youth soccer players,”
Translational Sports Medicine, vol. 2, no. 4, pp. 203-208,
2019.

A. Bailey, A. Hughes, K. Bullock, and G. Hill, “A climber's
mentality: EEG analysis of climbers in action,” Journal of Out-
door Recreation, Education, and Leadership, vol. 11, no. 1,
pp. 53-69, 2019.

K. Tharawadeepimuk and Y. Wongsawat, “Quantitative EEG
in sports: performance level estimation of professional female
soccer players,” Health Information Science and Systems,
vol. 9, no. 1, pp. 1-15, 2021.

D. E. Bieru, M. R. Rusu, M. L. Calina, M. I. Marin, N. C. Kork-
maz, and R. U. S. U. Ligia, “Identifying the muscle contraction
activity at athletes using brain mapping,” BRAIN. Broad
Research in Artificial Intelligence and Neuroscience, vol. 11,
no. 4Supl, pp. 81-100, 2020.

C. Zhu, “EEG and central nervous system transmitteron ath-
letes training,” Revista Brasileira de Medicina do Esporte,
vol. 27, no. 7, pp- 703-705, 2021.

A. Lin, K. K. L. Liu, R. P. Bartsch, and P. C. Ivanov, “Dynamic
network interactions among distinct brain rhythms as a hall-
mark of physiologic state and function,” Communications
Biology, vol. 3, no. 1, pp. 1-11, 2020.

Z.Tian, B. Y. Kim, and M. J. Bae, “Study on acoustic analysis of
Cleveland dam waterfull sound,” International Journal of Engi-
neering Research and Technology, vol. 13, no. 6, pp. 1159-1164,
2020.

R. A. Martin, A. Cukiert, and H. Blumenfeld, “Short-term
changes in cortical physiological arousal measured by elec-
troencephalography during thalamic centromedian deep
brain stimulation,” Epilepsia, vol. 62, no. 11, pp. 2604-
2614, 2021.

H. Zhu, F. Yang, Z. Bao, and X. Nan, “A study on the impact of
Visible Green Index and vegetation structures on brain wave
change in residential landscape,” Urban Forestry & Urban
Greening, vol. 64, article 127299, 2021.

Y.L Sysoev, V. A. Prikhodko, R. T. Chernyakov, R. D. Idiyatul-
lin, P. E. Musienko, and S. V. Okovityi, “Effects of alpha-2
adrenergic agonist mafedine on brain electrical activity in rats
after traumatic brain injury,” Brain Sciences, vol. 11, no. 8,
p- 981, 2021.

S.S. Abed and Z. F. Abed, “User authentication system based
specified brain waves,” Journal of Discrete Mathematical Sci-
ences and Cryptography, vol. 23, no. 5, pp. 1021-1024, 2020.

A. A. Jamebozorgy, Z. Bolghanabadi, A. Mahdizadeh, and
A. Irani, “Effect of neurofeedback on postural balance and
attention of women with knee osteoarthritis after bilateral total
knee replacement,” Archives of Rehabilitation, vol. 21, no. 1,
pp. 40-53, 2020.

D. Wilfried, C. D. G. Nina, and B. Silvia, “Effectiveness of
Menosan® _Salvia officinalis_ in the treatment of a wide spec-
trum of menopausal complaints. A double-blind, randomized,
placebo- controlled, clinical trial,” Heliyon, vol. 7, no. 2, article
e05910, 2021.

(19]

(20]

[21]

(22]

(23]

(24]

[25]

(26]

11

E. Alcobaca, S. M. Mastelini, T. Botari et al., “Explainable
machine learning algorithms for predicting glass transition
temperatures,” Acta Materialia, vol. 188, pp. 92-100, 2020.

M. H. Stone, W. G. Hornsby, G. G. Haff et al., “Periodization
and block periodization in sports: emphasis on strength-
power training—a provocative and challenging narrative,”
The Journal of Strength & Conditioning Research, vol. 35,
no. 8, pp. 2351-2371, 2021.

K. J. Sarro, T. D. C. Viana, and R. M. L. De Barros, “Relation-
ship between bow stability and postural control in recurve
archery,” European Journal of Sport Science, vol. 21, no. 4,
pp. 515-520, 2021.

I. S. Ramsay, P. Lynn, B. Schermitzler, and S. R. Sponheim,
“Individual alpha peak frequency is slower in schizophrenia
and related to deficits in visual perception and cognition,” Sci-
entific Reports, vol. 11, no. 1, pp. 1-9, 2021.

B. Garcia-Martinez, A. Fernandez-Caballero, L. Zunino, and
A. Martinez-Rodrigo, “Recognition of emotional states from
EEG signals with nonlinear regularity- and predictability-
based entropy metrics,” Cognitive Computation, vol. 13,
no. 2, pp. 403-417, 2021.

S.  Deepa, A. Kumaresan, P.  Suganthirababu,
R. Vijayaraghavan, and J. Alagesan, “Analyzing the casual rela-
tionship between physiological biomarkers and scales in asses-
sing Parkinson’s disease-related-fatigue: an attempt to
optimize the exercise strategy,” Annals of the Romanian Soci-
ety for Cell Biology, vol. 25, no. 6, pp. 988-993, 2021.

H. Bruining, R. Hardstone, E. L. Juarez-Martinez et al., “Mea-
surement of excitation-inhibition ratio in autism spectrum
disorder using critical brain dynamics,” Scientific Reports,
vol. 10, no. 1, pp. 1-15, 2020.

B. G. Fahy and D. F. Chau, “The technology of processed elec-
troencephalogram monitoring devices for assessment of depth
of anesthesia,” Anesthesia ¢ Analgesia, vol. 126, no. 1, pp. 111-
117, 2018.



	Athletes’ State Monitoring under Data Mining and Random Forest
	1. Introduction
	2. Research Methods
	2.1.�EEG
	2.2. RF�Model
	2.3. Theoretical Research on Competitive States
	2.4. Characteristics of Archery
	2.5. Athletes’ Competitive State Monitoring Based on�RF
	2.6. Experimental Methods

	3. Results
	3.1. Brain Function Feature Data of Different Competitive States
	3.2. Model Performance�Test

	4. Conclusion
	Data Availability
	Conflicts of Interest

