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Aiming at the high requirements of cloud service-based virtual reality in AIoT for data transmission rate and delay sensitivity, a
cloud VR system scheme based on MEC (Mobile Edge Computing) is proposed, which mainly incorporates viewpoint-based VR
video data processing and hybrid digital-to-analog (HDA) transmission optimization and can be served for AIoT transmission
filed. Firstly, a learning-driven multiaccess MEC offloading strategy is designed, in which the VR terminal automatically selects
the optimal MEC server for task offloading, thereby effectively improving network efficiency and reducing service delay.
Secondly, the progressive transmission of the VR data is realized through viewpoint-aware dynamic streaming based on RoI
(region of interest) and the priorities of different objects. The transmission priority of each object in the scene is determined
through the ROI layering, which effectively solves the contradiction between the large data volume in the VR scenes and the
network bandwidth limitation when applied in AIoT domain, and further improves the real-time performance of the system.
Then, the HDA (hybrid digital-analog) technique is introduced to optimize the transmission. Finally, the base station protocol
stack is modified on the basis of the LTE (Long-Term Evolution) system, and the MEC technology is integrated to realize a
complete cloud VR system in AIoT. The experimental results show that compared with other advanced schemes, the proposed
scheme can achieve more robust and efficient data transmission performance and provide better VR user experience.

1. Introduction

Recently, it is well known that VR (virtual reality) systems
combined with AIoT, incorporating multiple technologies
such as digital image processing, computer graphics, multi-
media, computer simulation, sensors, and computer net-
works, have a wide range of applications in many fields
such as entertainment, simulation training, aerospace, scien-
tific and computing visualization, art, [1]. VR has three most
prominent features: immersion, interactivity, and imagina-
tion, which are also known as the 3I characteristics of VR
[2] and can realize human-computer interaction based on
these characteristics. Cloud VR is a kind of real-time VR
technology where can be used for amount data transmission
in AIoT based on cloud computing, in which cloud servers

are used to replace users’ local computing devices, which
promotes the popularization of VR applications [3]. The
cloud VR architecture consists of four parts: the content
layer, the platform layer, the network layer, and the terminal
layer. Among them, the content provided by the platform
layer to the content layer includes cloud VR video services
and cloud VR strong interaction services and is responsible
for video import, transcoding, storage, broadcast control
and distribution processing, logical calculation, and real-
time rendering for strong interaction services. The network
layer consists of four parts: backbone network, MAN (met-
ropolitan area network), access network, and home network,
which meet cloud VR’s requirements for large bandwidth
and low latency. Finally, the terminal layer is connected to
the platform layer by accessing 5G/Wi-Fi to realize functions
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such as VR content presentation and user authentication [4].
Cloud VR Solution Architecture is shown in Figure 1.

However, due to the huge amount of VR video data, in
addition to cloud computing and rendering, network trans-
mission bandwidth and delay limitations have become new
bottlenecks for the entire system [5]. For basic 4K resolution
cloud VR services, the network bandwidth needs to reach at
least 40Mbit/s, and the RTT (round trip delay) of transmis-
sion should be controlled within 40ms to provide users with
a good viewing experience [6]. In the current mobile net-
work architecture, the distance between the user and the
server is at least at the metro distance level. Regardless of
device forwarding and image transmission, the RTT of fiber
transmission only is as high as 30-40ms, which is difficult to
meet the requirements of cloud VR [7].

With the development of 5G technology and the need of
AIoT, the bandwidth of mobile networks has greatly
increased. By sinking computing nodes to the vicinity of
the application scenario (gateways), MEC puts the data col-
lection and analysis operations close to the user side and
realizes the closed loop of data processing on the edge, which
can alleviate the network transmission pressure and shorten
the data processing time [8]. Under the MEC architecture,
deploying VR applications on MEC nodes will bring the fol-
lowing advantages: (1) the MEC computing nodes are
directly deployed close to the mobile gateways, which can
reduce the number of hops for network transmission
between VR application data and end users, and reduce
network processing delay [9]; (2) the VR application runs
on the MEC node, which can realize local data processing.
For the users under the same UPF (User Plane Function),
the data does not need to enter the Internet, which can
reduce the transmission pressure on the Internet [10]; (3)
edge processing of VR content, for example, in VR live
broadcast scenarios, the process of VR video splicing,
encoding and transcoding, and distribution can be per-
formed directly on the MEC nodes, data offloading can be
realized for local users nearby, and OTT (Over the Top)
users or users covered by other MEC nodes can be quickly
distributed through CDN (content delivery network) [11];
and (4) the distributed networking of MEC can realize con-
tinuous VR experience in mobile scenarios, such as watch-
ing VR live broadcasts or participating in video conferences
on high-speed mobile carriers (such as cars and high-speed
trains) [12].

In addition, MEC can work with low-latency
application-layer protocols such as QUIC (Quick User Data-
gram Protocol Internet Connection) and RTP (Real-Time
Transport Protocol) to make cloud VR possible [13]. On
the other hand, in the MEC scenario, the source ends (edge
servers) are more closely connected with the channel ends
(base stations), and the bandwidths are sufficient to support
the transmission of baseband data between the servers and
the base stations, which greatly improves the feasibility of
using pseudoanalog, HAD (hybrid digital-analog) and other
source-channel joint coding techniques [14].

When a user watches a VR video, due to the limitation of
the FoV (field of view) of the display device, the user often
can only watch a certain part of the whole video at a

moment. If the server transmits the entire video, most of
the bandwidth resources will inevitably be wasted. There-
fore, the adaptive block transmission method based on
DASH (Dynamic Adaptive Streaming over HTTP) is the
most widely used method for VR video streaming [15]. In
the block transmission mode, a complete VR video is
divided into many video blocks, and each video block is
encoded into different quality levels. The server adaptively
selects an optimal quality level for each video block accord-
ing to factors such as network bandwidth and transmits it to
the user. There are two basic schemes in the adaptive block
transmission mode: view adaptation and rate adaptation
[16]. The former is central for predicting changes in users’
viewpoints, and the latter is central to resource allocation
by the servers.

Based on the mobile edge computing technology in
AIoT, this paper modified the LTE (Long-Term Evolution)
base station protocol stack to build a mobile edge computing
platform to serve for AIoT that expands to support HDA
(hybrid digital-analog) transmission, in order to realize an
efficient and reliable cloud VR system. The main contribu-
tions of this paper are as follows:

(1) A learning-driven MEC server unloading strategy is
adopted, so that users can automatically select the
optimal MEC server

(2) Realize a complete cloud VR system through
viewpoint-aware dynamic streaming based on ROI
and object priorities

(3) Based on HDA technique, the system transmission
efficiency is optimized to provide high quality VR
videos under limited bandwidth

2. Related Research

The main content in the VR system is virtual scenes, and
there will be a large number of 3D scenes in the virtual
scenes. In the current network environment, the system is
faced with the problem of how to solve the contradiction
between the data transmission of 3D scenes and the limited
network bandwidth in practice in AIoT. This aspect involves
the processing, sending, and receiving of the 3D scenes, and
at the same time, it is also necessary to ensure that the user-
side scenes can be generated with a good visual experience
[17]. Whether these problems can be solved are fundamen-
tally related to the successful implementation of the VR
system.

The researchers have proposed FOV transmission
schemes for differential transmission of panoramic video
information based on viewpoint areas [18]. These include
the pyramid projection transmission scheme proposed by
Facebook and the Tile Wise transmission scheme promoted
by Huawei.

In the pyramid projection transmission scheme, a full-
view nonuniform quality code stream is prepared for each
view, and high-quality coding is used in the user’s viewpoint
region, while low-quality coding is used in other regions
[19]. This method greatly reduces the bandwidth
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requirements of system users when watching panoramic
videos and improves the effective utilization of network band-
width, but the sum of all perspective video files in the system
server is more than 6 times that of the original files. The Tile
Wise transmission scheme combines low-quality full-views
and high-quality viewpoint regions. The server side does not
need to prepare for each viewing angle area but divides the
panoramic video image into multiple tiles at the same time,
each area corresponds to a stream that can be decoded inde-
pendently, and the server will prepare a low-quality pano-
ramic full-view video stream. The client obtains a full-view
stream and a high-quality tile selected according to the view-
point information [20]. For the construction of panoramic
images with nonuniform qualities, Hosseini et al. [21] pro-
posed a viewpoint-aware adaptive VR transmission frame-
work based on extended MPEG-DASH SRD (moving
picture experts group-dynamic adaptive streaming over
HTTP spatial relation description). Similarly, Kim et al. [22]
proposed a SSAS (spatial segmented adaptive streaming)
scheme based on the HLS (HTTP live streaming) protocol to
realize real-time adaptive streaming based on user viewpoints.
These solutions draw on existing HTTP adaptive transmission
protocols such as DASH and further expand time-based tiling
to space to achieve dynamic adaptive streaming.

According to the situational information such as the
computing capability of the users’ mobile terminals, appro-
priate MEC servers are selected for efficient task offloading,

so as to ensure the network delay performance and reduce
energy consumption. Guo et al. [23] proposed a MEC task
offloading strategy based on nonorthogonal multiple access,
which takes into account the constraints of different access
technologies. By considering different business quality of
service (QoS) constraints, Henri et al. [24] proposed an off-
loading strategy that can guarantee a strong delay boundary
based on game theory. Based on the Stackelberg game theory
Hosseini et al. [25] proposed a price-based distributed MEC
task offloading algorithm, which enables users to make
autonomous decisions. In addition, Liu and Liu [26] pro-
posed an energy-efficient MEC task offloading algorithm
for ultradense wireless network scenarios in which energy
overheads are minimized by optimizing offloading decision
variables and power bandwidth allocation. In the existing
research on MEC task offloading, it is assumed that the com-
puting power and storage capacity of the MEC are known,
and based on the research scenario of a single MEC server,
the offloading decision of computing tasks is made with
the goal of optimal delay or optimal energy. However, with
the densification of base station deployment in 5G networks,
a large number of MEC servers will be deployed on base sta-
tions or access points (APs) that are closer to user mobile
terminals. The computing and storage capabilities of differ-
ent MEC servers are different. Therefore, the mobile termi-
nals on the user side need to independently decide and
select the optimal MEC server access strategy according to
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the situational information such as service characteristics
and network environment, so as to minimize network delay
and network energy consumption at the same time, thereby
realizing an energy-efficient MEC server task offloading
strategy.

Liu et al. [27] proposed an efficient VR transmission
mechanism based on source-channel joint coding. After til-
ing the VR videos with reference to the users’ FOV informa-
tion, different levels of error correction strategies are used to
maximize the viewing quality within users’ FOV. Feng et al.
[28] defined a new QoE (Quality of Experience) metric to
measure the user’s viewing experience and presented an effi-
cient modulation control algorithm to maximize the QoE
value under different channel conditions. Zhang and Ma
[32] proposed multiobject crowd real-time tracking in the
dynamic environment based on a novel neural network,
which can be used in AIoT cloud VR.

3. VR Adaptive Transmission Scheme Based on
MEC and Viewpoint Awareness

3.1. System Architecture. The proposed solution integrates
the MEC technology on the basis of the LTE system and
expands the base station to realize the HDA transmission
mode, so as to meet the high requirements of the interactive
VR services for latency and network quality and provide
high-performance network support for the cloud VR service
especially in AIoT data transmission [32]. The system struc-
ture is shown in Figure 2.

By modifying the protocol stack of the base station, while
introducing the MEC function, the compatibility of the sys-
tem to standard LTE terminals is maintained. The tunneling
protocols are used to redirect traffic at the network layer to
filter and offload sensitive traffic from the edge services.
The base station maintains a sensitive traffic table of the edge
services, which records the IP addresses, protocols, and port
numbers of data packets that need to be forwarded to the
edge servers. Each passing data packet is matched. If the data
packet matches the entry in the sensitive table, the destina-

tion IP in the tunnel packet header of the GPRS Tunneling
Protocol (GTP) is reconstructed, and the original core net-
work IP is replaced with the edge server IP; that is, the data
packet is forwarded to the edge server. For the returned
downlink data, the edge server masquerades the source IP
address as the real public network address of the application
server.

The proposed architecture implements cloud VR based
on the MEC system. The computing tasks and services are
moved down to the edge of the base stations, so as to mini-
mize the transmission delays from both the network struc-
tures and the physical distances, and the RTT will be
controlled within 10ms. It not only improves the response
speed of the server but also ensures the stability of the net-
work service quality and greatly improves the users’ viewing
experience. The introduction of HDA technique provides a
more flexible transmission mode for edge servers, enabling
them to make full use of bandwidth resources and alleviating
the saturation effect of existing digital transmission in AIoT.

3.2. Learning-Driven MEC Server Adaptive Offloading
Strategy. In the MAB (multiarmed bandit) model [24], there
are N gambling arms and one player for multiple rounds of
selection. Each time the player selects one of the gambling
arms and receives the corresponding reward, the player
can only obtain the reward value of the selected arm after
selection. The reward value of each gambling arm follows
some unknown specific distribution and is independent of
each other. The player learns the reward distribution of dif-
ferent gambling arms through exploration and utilization.
After J rounds of games, the optimization goal of the player
is to maximize the expected value of the reward.

It is assumed that there are U users and M base stations
in the 5G wireless network scenario, and each base station
contains an MEC server (to simplify the description, the
base station and the MEC server are collectively represented
by M). Let the total system bandwidth be B, and there are K
subcarriers in the system bandwidth. Assuming that a user
can only access one base station at time t, and at most, one
user can access a subcarrier, then we have
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Figure 2: System structure.
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〠
k∈K ,m∈M

ak,j,m tð Þ = 1,∀i =U , ð1Þ

where k ∈ K denotes a resource block. The SINR (signal to
interference plus noise ratio) of user terminal i and base sta-
tion m on resource block k is

Γk,m
i =

Pkm
im gk,i,m

N0
, ð2Þ

where Pkm
im represents the transmission power from base sta-

tion m to user i in resource block k, the channel gain
between base station m and user i is gk,j,m, and N0 is the
noise power that follows N ð0, δÞ distribution. The transmis-
sion rate from the user to the base station is

Rm
i = 〠

Km

km=1
akmim log 1 + Γk,m

i

� �
, km ∈ KB

M: ð3Þ

For delay-sensitive services, it is assumed that the arrival
rate of the data packets conforms to the Poisson distribution
with the arrival rate of λds, and the fixed length of the data
packets is Lds. In order to meet the QoS constraints of the
delay-sensitive services, based on the effective bandwidth
theory, the effective bandwidth with the transmission delay
bound is defined as

W θvð Þ = lim
1
tθv

log E eθvZ tð Þ
� �

, ð4Þ

where WðθvÞ is the effective bandwidth, θv is the QoS value
of the user terminal, Z ðtÞ is the number of packets reached
within the period (0, t), and E ð:Þ represents the mathemat-
ical expectation.

Assuming that the maximum computing frequency of
each MEC server (base station) is fmax

m ð∀m ∈MÞ, f ðtÞ = ½ f i
,mðtÞ�, m ∈M, and i ∈U , the amount of computation that
the MEC server m can provide for the user’s mobile termi-
nals can be expressed as

Ai,m =
f i,mT
bi

, ð5Þ

where f i,m represents the computing frequency of each
server, and bi represents the computing load of the user-
side tasks, which can be measured in an offline fashion.
The MEC network architecture is shown in Figure 3.

In the proposed learning-driven MEC-MAB autono-
mous offloading algorithm, the user’s mobile terminal i is
the player, and the MEC server m is the gambling arm. If
the user i chooses to access the MEC server m, the corre-
sponding random reward value Qi,m will be obtained. The
reward value of each MEC server obeys a specific distribu-
tion with mean value as π = ½π1, π2,⋯, πm� and is indepen-
dent of each other, where πm is the real reward of MEC
server m. Since the user cannot always choose the server
with the highest real reward, the regret value Rj is defined

as the difference between the actual reward value obtained
after j selections and the expected maximum reward value:

Rj = π∗ j − 〠
M

m=1
E N j mð ÞÂ Ã

πm, ð6Þ

where π∗ = max
1≤s≤M

πs, and Nj ðmÞ is the number of times the

MEC server m has been selected in the previous j rounds.
Since in the MAB model, the real reward value of the gam-
bling arm is the reward value generated after the action is
performed, it is necessary to estimate the reward value for
the selection behavior of the gambling arm as follows:

Wj+1 mð Þ =Wj mð Þ = 1
Nj mð Þ rN j mð Þ −Wj mð Þ

h i
: ð7Þ

Using the Thompson-Sampling algorithm [29], the
probability of each selection of the reward value of the
MEC server in the MAB model is regarded as a Beta (α, β)
distribution, and then the reward value distribution proba-
bility function of the MEC server selection behavior can be
mathematically expressed as

f m, α, βð Þ = 1
B α, βð Þm

a−1 1 −mð Þβ−1: ð8Þ

The parameter update rule for Beta distribution is given
as

α1, β1ð Þ =
α1, β1ð Þf i, f i ≠ l,

α1, β1 + r1, 1 − rtð Þf ið , f i = l:

(
ð9Þ

Initially, the user mobile terminal observes situational
information such as QoS of its computing task and sets t =
0 and γ = 0. at time t, t ≤ T , the reward estimation of the
user’s mobile terminal for the MEC server selection behavior
satisfies WðmÞ ~ Betaðαm, βmÞ. The user selects the MEC
server with the largest reward value arg maxmWðmÞ⟶
MECt . The network applies the selected access behavior
and measures the corresponding reward value rt , and the
parameters are updated as ðα1, β1Þ + ðrt , 1 − rtÞ⟶ ðα1, β1Þ.

In the proposed MEC-MAB algorithm, as the number of
observations from the MEC server selections increases, the
confidence interval of the beta distribution becomes nar-
rower, enabling the users to automatically select the optimal
MEC server with maximum reward.

3.3. Viewpoint-Aware Progressive Dynamic Streaming. This
paper proposes a viewpoint-aware dynamic streaming based
on ROI and object priority. The strategy first divides the data
into the current scenes, potential scenes, and future scenes
based on ROI judgment. And the concept of ROI is
extended, and the priorities of vertical and horizontal objects
are determined through ROI layering, so as to determine the
transmission priority of each object in the scene.

The visibility judgment and elimination of object space
can reduce the transmission of unnecessary scenes in order
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to achieve the minimum transmission volume, thereby
improving the real-time performance of interaction. To
achieve this goal, the whole scene must first be analyzed to
determine the visible scenes according to the position and
angle of the user, and the visibility should be calculated
according to the relevant algorithm to remove those unnec-
essary or unimportant scenes. Then, the current visible
scenes are firstly transmitted, and as the viewpoint moves,
the incremental part of the scenes is gradually transmitted,
which is also the original intention of progressive
transmission.

As shown in Figure 4, the viewpoint range is divided into
three areas: CPVS (Current Potential Visible Scenes), IPVS
(Incremental Potential Visible Scenes), and FPVS (Future
Potential Visible Scenes), based on the visual habit of look-
ing directly in front and then looking around, and observing
the near area first and then the far area.

CPVS Zone is the immediate and nearest currently visi-
ble scene area. All object models in this area are visible to the
user and are relatively close to the user; so, objects in this
area should have the highest priority in the process of trans-
mission and interaction. IPVS Zone is as follows: this zone
consists of two parts. To the user, the objects in this area
are not immediately visible and are relatively far from the
user. If the user’s viewpoint moves (walks forward or turns),
then the objects in this area are immediately visible. There-
fore, the object model in this area should have a relatively
high priority. After the object model in the CPVS Zone is
accessed, the scenes in this area are downloaded first, so that
these models can be displayed in time when the user roams.
FPVS Zone is as follows: all object models in this area are
not currently visible to the user and are relatively far away
from the user. Object models in this area should have lower
priority, and these objects can be prefetched to the client for
use in scene roaming only when the network is idle or if
additional network bandwidth is available. Thus, the visual
areas are divided into CPVS, IPVS, and FPVS. The object
models in this three zones correspond to three queues, queue

1, queue 2, and queue 3, respectively, and the priority of the
three queues is queue 1 > queue 2 > queue 3.

When there are many objects in the scene, in order to
better distinguish different object models and realize the
progressive transmission of the scene, it is necessary to fur-
ther determine the access sequence of a certain scene with
multiple objects in it; that is, it is necessary to determine
the visual importance of different objects in a certain area.
This paper extends the concept of ROI and determines the
order of a specific object in the access queue by layering a
certain ROI area and considering the horizontal and vertical
importance of different objects.

Level of ROI is from the servers’ perspective, the ROI
area of the current user is further subdivided into several
levels, and the transmission order of the objects is deter-
mined accordingly. As shown in Figure 5, if there are multi-
ple objects in the currently visible ROI, the distance and
viewing angle can be used to determine the order in which
the objects are accessed: objects in level A have the highest
priority, objects in level B have the next priority, and objects
in level C have the lowest priority.

In this way, the system mainly uses limited bandwidth
resources to transmit videos within the user’s visible range,
compresses redundant content as much as possible, and pro-
vides the best viewing effect. At the same time, each frame of
video transmitted contains full-view information, which can
achieve “device-cloud asynchronous” rendering. When the
user’s posture changes, the local display device does not need
to wait for the server to send back data and completes the
rendering locally in real time, updating the scene with the
shortest delay to ensure the complete and smooth transition.

The essence of progressive streaming is “download while
browsing” to achieve the optimal real-time effect. According
to the principle of human vision, the closer the object is to
the viewpoint, the smaller the angle that the object deviates
from the viewpoint, and the higher the resolution of the
object that the viewpoint can observe. To save bandwidth,
it is not necessary to download the full model increments,

5G base station

MEC server

User terminal

Figure 3: MEC network architect.
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instead, we can just download the ORM of the scene. The
ORM of an object can be determined based on its visual
importance to the viewpoint:

W Oið Þ = 1 −
Di

R

� �
cos

θi
2
, Di < R, ð10Þ

where W ðOiÞ represents the visual importance of the object
Oi, R is the ROI radius of the avatar, Di is the distance
between Oi and the avatar’s viewpoint, and θi represents
the deviation angle between the object i and the avatar’s
viewpoint (0 ≤ θ ≤ 180°).

3.4. Optimized HDA Transmission Scheme. In the existing
wireless communication system, the channel end encodes
the video data into a bit stream for transmission. If there is
a bit error in the transmission of the video code stream,
the decoding of the video data will cause serious visual dis-
tortion or even a decoding failure. Although the current
wireless video soft transmission scheme can realize seamless
adaptation of video transmission quality to channel condi-
tions, its transmission efficiency is not satisfactory. Combin-

ing the high efficiency of traditional digital transmission and
the robustness of video soft transmission, the HDA trans-
mission technique has the potential to provide stable, reli-
able, and high-efficiency VR video transmission in AIoT.

In the proposed HDA transmission system, a time-
division multiplexing HDA video soft transmission scheme
is designed. The video in the user window is decomposed
into two layers: the first layer is the base layer signal, which
is generated from the video source compressed by the HEVC
encoder. The second layer is the enhancement layer signal,
which is the residual value after subtracting the original
video signal and the reconstructed signal of the first layer.
The two layers of video signals are transmitted in a time-
division multiplexing manner. On the one hand, in order
to achieve reliable transmission of the digital part, the target
bit rate is controlled by the quantization parameter, and the
channel coding rate and modulation order are determined
by the SNR. On the other hand, overall video quality is
directly dependent on the MSE (mean squared error) of
the analog signal, which can be expressed as a function of
the data variance of the analog part, the power and band-
width allocated to the analog part, and the noise power of
the channel.

In terms of power allocation, it is first necessary to
ensure that the base layer can be successfully decoded.
Therefore, the overall video quality of HDA video transmis-
sion is determined by the data variance of the enhancement
layer (analog source), the resources allocated to the analog
part, and the channel noise power. Based on the SNR, the
bitstream signals at the base layer are turbo-coded with a
selected channel coding rate, and the coded signals are sub-
jected to quadrature amplitude modulation. Considering

IPVS

IPVS

CPVS

FPVS

𝜃

Figure 4: ROI region of the user.

ABC
ROI

Figure 5: ROI layering.
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that HEVC (high efficiency video coding) has basically
removed the interframe correlation of video sequences, the
residual between the original video and the reconstructed
video basically does not contain interframe redundancy.
The residual part is further decorrelated by 3D-DCT trans-
form, and the power-scaled DCT coefficients are used to
modulate the signal amplitude.

Since the signals in the second layer are the enhance-
ment signal of the video, under the condition of limited
bandwidth and power, restoring as many of the enhance-
ment layer signals as possible helps to improve the quality
of the reconstructed video. After the decorrelation operation
of the enhancement layer signals, the energy distribution of
the analog coefficients is relatively concentrated, which is
manifested in some large coefficients that are concentrated
in the upper left corner. In time-division multiplexing cod-
ing, appropriate parameters should be selected for the code
rate and channel coding modulation mode of the first layer
to ensure the correct decoding. Since the first layer is
designed to be decoded correctly at a given channel noise
power, the overall system distortion is determined by the
reconstruction distortion of the second layer. In order to
reduce the interference of the large coefficients of the analog
part to the digital signal, we try to transmit the large coeffi-
cients by time-division multiplexing. Due to the bandwidth
limitation, the small coefficients will be discarded. Although
discarding small coefficients saves bandwidth, the high-
frequency component information carried by these small
coefficients cannot be recovered at the receiving end, which
will bring additional performance loss.

Without loss of generality, we use MSE as the distor-
tion measure. Let Da and Dd be analog distortion and dig-
ital distortion, respectively. In order to successfully decode
the digital base layer, the SNR of the digital part must be
greater than the signal-to-noise ratio threshold SNRth. The
spectral efficiency corresponding to SNRth is ef , which
depends on the MCS (modulation and coding scheme),
and it must satisfy

SNRth ≤
Pd

σ2n
, ð11Þ

where Pd is the average power distribution coefficient of
the base layer digital signal, and σ2n is the channel noise
power with Gaussian white noise added. Since the sum
of digital power and analog power is limited by the total
power PT , the power constraint relationship can be
expressed as

PT = PaBa + PdBd , ð12Þ

where Pa is the average power allocated to the enhance-
ment layer analog signals, Ba is the bandwidth occupied
by the transmitted analog signal, and Bd is the bandwidth
occupied by the transmitted digital signal. After the
enhancement layer is transformed by 3D-DCT, each group
of video frames is further divided into N blocks, and the
variance of the i -th block is defined as λi. The analog sig-

nals transmitted through the channel are interfered by the
channel noise, and the distortions can be expressed as [30]

Da1 = σ2
n 〠

Ba

i=1

ffiffiffiffiffiffiffiffiffiffi
λi

BaPa

s !22
4

3
5: ð13Þ

On the other hand, the discarded coefficients cannot
be recovered at the receiver, which also introduces addi-
tional distortion Da2:

Da2 = 〠
N

i=Ba+1
λi: ð14Þ

Therefore, the optimal power allocation problem can
be defined as

min Da
Pa ⋅QP

STBaPa + BdPd = PT ,

Ba + Bd =N:

8>>><
>>>:

ð15Þ

The variance of the i -th block can be expressed as [31]

λi = ekiQP+wi , ð16Þ

where QP is the quantization parameter, and ki andwi are two
parameters in the i -th block that represent the exponential
relationship between λi and QP. After the video is digitally
compressed and encoded, the number of quantized bits per
pixel can also be further fitted with an exponential function,
and the fitting parameters are a and b, respectively.
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Figure 6: Validation of the proposed MEC offloading strategy.
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The relationship between the quantization parameter QP
and the number of bits produced per pixel R is

R QPð Þ = aebQP: ð17Þ

When a group of video frames has M pixels, the total
number of bits obtained after digital compression can be cal-
culated as

Bit QPð Þ = R QPð ÞM = aebQPM: ð18Þ

4. Experiment and Results

Based on the software radio platform from the laboratory
and the modified LTE protocol stack of the MEC architec-
ture, a complete MEC platform is build, and it is used as
the bearer network to develop the cloud VR system which
is suitable for AIoT. The system can use standard commer-
cial terminals or professional VR headsets as client display
devices. A complete performance evaluation of the proposed
system is performed on this platform.

4.1. MEC Offloading Algorithm Verification. Firstly, the pro-
posed learning-driven MEC task offloading strategy is ver-
ified by simulation. Assuming that the number of users is
10, the computing tasks of the users’ mobile terminals fol-
low the Poisson distribution, and the path loss exponent is
set to 2.

The variation of the simulation regret value with respect to
the number of iterations for the number of MEC server nodes
(base stations) of 3, 5, and 10 is shown in Figure 6. It can be
observed that the network regret value converges in a short
time for different numbers of MEC servers. As the number
of MEC servers increases, the convergence speed of the algo-
rithm becomes slower, but the overall convergence speed is
still reasonable, which shows that the proposed MEC-MAB
offloading strategy has good convergence performance.

4.2. VR Transmission Scheme Validation. MATLAB experi-
mental simulation of the proposed HDA transmission
scheme is carried out. The HDA transmission system pro-
posed in this paper consists of a data channel and a control
channel. The data channel executes the function blocks of
the transmit ends and receive ends, respectively, and is based
on the power distribution calculation to solve Pa and QP
with minimized distortions. The data channel combines dig-
ital transmission and pseudoanalog transmission. The digital
transmission scheme uses HEVC for source coding and the
LTE-based adaptive modulation and coding scheme for
transmission. Different combinations of channel coding
rates and modulation modes can be selected.

Experimental simulations were performed using stan-
dard HD sequences with a resolution of 1664 × 1664 pixels.
For analog transmission, each frame in the video sequence
is divided into 64 blocks. In the experiment, each picture
group is set to consist of 16 frames of images; so, the analog
symbols of each picture group are divided into 1024 coeffi-
cient blocks. When the video frame rate is 30 fps, the source
bandwidth Ns is 41.5MHz. The bandwidth used for data
transmission is defined as Nc, and a specific implementation
process is designed to make the number of symbols used for
source coding and channel coding in the digital part less
than or equal to Nc.

The performance of the HDA transmission scheme pro-
posed in this paper is compared with the existing digital
video transmission scheme HEVC. PSNR is measured at
the receiving ends to evaluate the quality of video transmis-
sion, and same bandwidth and power are used for the two
schemes. According to the LTE adaptive modulation and
coding scheme, the channel coding adopts LTE turbo cod-
ing, and the code rate is R = 1/3. The modulation scheme
supports QPSK, 16QAM, and 64QAM. Taking the channel
SNR = 5:5 dB as an example, the spectral efficiency is about
1.47. Table 1 gives the results of the HEVC scheme and
the proposed HDA scheme on the test sequence under dif-
ferent QPs when the target channel SNR = 10 dB and the
spectral efficiency of the digital part is 1.47. The ratio of
the available video channel bandwidth to the source band-
width is set to β, i.e., β =Nc.

It can be seen from Table 1 that when the digital part
adopts a certain QP value, the video quality of the receiving

Table 1: PSNR results (dB) of HEVC scheme and proposed HDA scheme under different QPs.

Methods
QP = 20 QP = 25

β = 0:8 β = 0:7 β = 0:5 β = 0:8 β = 0:7 β = 0:5 β = 0:25
HEVC 46 46 46 42 42 42 42

Proposed scheme 53 52 51 50 48 46 41
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Figure 7: PSNR performance comparison.
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end under the HEVC scheme does not change with the
change of the available channel bandwidth. When QP = 20,
if the available channel bandwidth is only 1/4 of the source
bandwidth, the data length of the digital part will exceed
the available bandwidth, causing the digital part to not be
decoded correctly. In contrast, with the proposed method,
under the condition that the available bandwidth resources
are severely limited, increasing the QP can realize the encod-
ing and transmission of the digital part of the data.

Next, further performance comparisons between the
proposed HDA scheme and HEVC scheme are carried out.
Under different channel conditions, the classic HEVC
scheme is inevitably affected by the cliff effect. As the SNR
increases, so does the spectral efficiency, at which point
HEVC will have the opportunity to choose a lower QP. Con-
sider an SNR of 0 to 20dB, β = 0:5, and 10% of the band-
width is reserved for hybrid automatic retransmission of
the digital part. As shown in Figure 7, the average PSNR of
the proposed HDA scheme is 0.41 dB higher than that of
the HEVC scheme. By adding analog signals to the existing
digital transmission scheme and dividing part of the band-
width to the analog signals, the saturation effect of the video
quality at the receiving ends can be improved. When the
SNR of the target channel is high, analog signal transmission
can further achieve greater performance gains and benefit
for AIoT.

5. Conclusions

With the rapid development of multimedia services such as
VR, there are great requirements for the data transmission
in AIoT; also, the resolution of video data is increasing day
by day, along with the growing challenge for network band-
width. Therefore, new business models, such as cloud VR,
attracted more attention on the transmission network
latency. In this paper, we design and build a cloud VR sys-
tem based on AIoT using MEC technology to perform
dynamic streaming relying on user viewpoint information.
Through the learning-driven MEC autonomous offloading
strategy, in the absence of prior information such as MEC
server computing and storage capabilities and channel sta-
tus, the optimal MEC server is autonomously selected for
task offloading, and the energy consumption is minimized
while satisfying user delay constraints. Combined with the
viewpoint-aware progressive streaming based on ROI and
object priorities used on the server side, the bandwidth
requirements are reduced, and a good VR viewing experi-
ence is achieved. Meanwhile, based on the relationship
between edge servers and base stations in the MEC architec-
ture, HDA transmission technology is merged to further
optimize the transmission bandwidth and efficiency in AIoT
cloud VR systems. It is known that the use of the AIoT data
transmission can enrich the data information and enhance
the human-computer interaction in AIoT cloud VR systems.
However, it needs more rapidly data processing and more
faster network support. In subsequent studies, the availabil-
ity of better compression schemes for panoramic video and
AIoT data transmission in AIoT cloud VR will be further

explored, and the channel fading will be further considered
with a view to achieving more performance gains.

Data Availability

The data we used is available, and the performance optimi-
zation scheme proposed in this paper can be used in adap-
tive data transmission of VR videos. And part of them are
available from the corresponding authors upon request
(malinjuan@bit.edu.cn; zfq@mju.edu.cn).
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