
Research Article
Multirobot Adaptive Task Allocation of Intelligent Warehouse
Based on Evolutionary Strategy

Yifan Liu ,1 Fei Liu ,1 Li Tang ,2 Chuanzheng Bai ,1 and Li Liu 1

1School of Information and Electrical Engineering, Ludong University, Yantai 264025, China
2School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China

Correspondence should be addressed to Fei Liu; liufeildu@163.com

Received 26 July 2021; Accepted 14 March 2022; Published 18 April 2022

Academic Editor: Yunze He

Copyright © 2022 Yifan Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To solve the dynamic and real-time problem of multirobot task allocation in intelligent warehouse system under parts-to-picker
mode, this paper presents a combined solution based on adaptive task pool strategy and Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES) algorithm. In the first stage of the solution, a variable task pool is used to store dynamically
added tasks, which can dynamically divide continuous and large-scale task allocation problems into small-scale subproblems to
solve them to meet dynamic requirements. And an adaptive control strategy is used to automatically adjust the total number of
tasks in the task pool to achieve a trade-off among throughput, energy consumption, and waiting time, which has better
adaptability than manually adjusting the size of the task pool. In the second stage of the solution, when the task pool is full,
tasks in the task pool will be assigned to robots. For the task allocation problem, this paper regards it as an optimization
problem and uses the CMA-ES algorithm to find the optimal task assignment solution for all the robots. By comparing with
fixed threshold method under 56 different task pool sizes, the experimental results show that the throughput can be close to
reaching the optimal level, and the average distance traveled by robots to handle each unit is lower using adaptive threshold
method; so, adaptive task pool solution has better adaptability and can find the optimal task pool size by itself. This method
can satisfy the dynamic and real-time requirements and can be effectively applied to the intelligent warehouse system.

1. Introduction

In recent years, the orders of various e-commerce platforms
have soared, and the scale of distribution centers has become
increasingly large, which has brought great challenges to the
traditional logistics industry [1]. In the traditional ware-
house, 60% to 70% of the workers’ time is spent on picking
up goods [2], and the efficiency is extremely low. Therefore,
more and more automatic machines and equipment have
been applied in the field of warehouse [2]. Many companies
have started to adopt a new kind of parts-to-picker intelli-
gent warehouse system, such as Kiva system [3]. In the sys-
tem as shown in Figure 1, robots transport the shelves from
storage areas to workstations, and workers need to wait at
the stations. When the shelves reach the workstations, they
take the needed goods from the shelves or store bundles into

the shelves. It has been proved that this kind of the intelli-
gent warehouse system greatly saves labor cost and improves
the efficiency of warehouse operation [4].

Cooperative control of multiple mobile robots is the key
to realize intelligent warehousing. In a warehouse as shown
in Figure 1, there are often numerous tasks such as replen-
ishment and picking, as well as numerous robots to perform
these tasks. In addition, the costs of different robots to per-
form a task are also different. Therefore, the efficiency of
the warehouse is determined by selecting suitable robots to
perform specific tasks. This is a typical multirobot task allo-
cation (MRTA) problem [5]. With the operation of the
warehouse, tasks and the warehouse environment will con-
stantly change. How to find a better task allocation scheme
for pick-task and replenishment-task assignment in such a
highly dynamic environment [3, 4] is the focus of this paper.

Hindawi
Journal of Sensors
Volume 2022, Article ID 2056617, 9 pages
https://doi.org/10.1155/2022/2056617

https://orcid.org/0000-0003-0756-6077
https://orcid.org/0000-0002-1541-501X
https://orcid.org/0000-0002-0632-7149
https://orcid.org/0000-0001-5212-4505
https://orcid.org/0000-0001-5658-8315
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2056617


MRTA is one of the most challenging problems in the
multirobot system [6]. Market-based methods are the most
studied methods at present, such as the single-task auction
algorithm proposed in ref. [7]. In order to solve the problem
that the single-task auction algorithm is difficult to get the
optimal solution, a combined auction algorithm which con-
siders the correlation between tasks was proposed in ref. [8].
When the number of robots and tasks is small, MRTA can
be regarded as a zero-one integer linear programming prob-
lem and solved by simplex method, branch and bound
method, Hungarian algorithm [9], etc. For example, the
Hungarian algorithm was adopted in ref. [10] to solve the
role assignment problem in robot soccer game. There are
also some thresholding based methods such as ALLIANCE
[11] and Broadcast of Local Eligibility (BLE) [12], which
have good real-time, fault tolerance, and robustness, but
usually only local optimal solution can be obtained. For
large-scale problems, the heuristic algorithm can effectively
reduce solution space and improve search efficiency. For
example, in ref. [13], the heuristic algorithm was adopted
to solve the task assignment problem in multi-core proces-
sor. Evolutionary algorithms are mature global optimization
methods with high robustness and wide applicability, which
can effectively deal with complex problems that are difficult
to be solved by traditional optimization algorithms. Various
evolutionary algorithms such as genetic algorithm and sim-
ulated annealing algorithm have been widely used in MRTA
problem. In ref. [14], the genetic algorithm was used to solve
the time-extended multirobot task allocation problem in the
case of disaster. A hybrid genetic and ant colony algorithm
was proposed in ref. [15] to improve the solving accuracy
of the genetic algorithm. In ref. [16], the genetic algorithm
was used to solve MRTA problem in the intelligent ware-
house. Ref. [17] designed an improved quantum evolution-
ary algorithm based on the niche coevolution strategy and
enhanced particle swarm optimization (IPOQEA) to solve
the airport gate allocation problem. In ref. [18], an improved
quantum-inspired cooperative coevolution algorithm with

multistrategy is used to solve the knapsack problem and
the actual airport gate allocation problem. Refs. [17–20]
use the cooperative coevolution framework to divide the
complex optimization problem into several subproblems,
and these subproblems were solved by independent search-
ing in order to improve the solution efficiency. Similarly,
the situation where the number of tasks is variable in an
intelligent warehouse can be studied using the idea of
divide-and-conquer in Refs. [17–20].

Therefore, we use a task pool to store dynamically added
tasks and propose an adaptive control strategy to automati-
cally adjust the task pool size according to the current envi-
ronment. When the task pool is full, the tasks in the pool will
be assigned to the robots. Then, the task allocation problem
is regarded as an optimization problem and solved by the
CMA-ES algorithm [21].

2. Problem Formulation

The intelligent warehouse system consists of many movable
shelves and robots as well as some workstations. The robots
transport the needed shelves from the storage area to the
workstations, and the workers can complete the replenish-
ment and picking without moving. A typical intelligent
warehouse layout (a screenshot from the open source soft-
ware RAWSim-O [22]) is shown in Figure 2. In the figure,
the four squares on the left represent the replenishment sta-
tion, and the replenished bundles are temporarily stored
here waiting for shelves. The four squares on the right repre-
sent picking stations. After receiving orders, the system will
use a special algorithm to assign orders to different stations.
There will be an upper limit on the number of orders in the
stations [23]. The squares in the middle area are the shelves,
in which the goods in the warehouse are stored. Shelves can
be lifted and moved by robots. The circles in the figure are
robots. A robot can carry a shelf to move. When a robot does
not carry a shelf, it can move freely under the shelf.

Shelves Storage areaRobot

W
orkstation

Worker

Figure 1: Parts-to-picker intelligent warehouse system from ref. [4].

2 Journal of Sensors



In order to facilitate problem analysis, we make the fol-
lowing assumptions:

(1) Robots are all isomorphic and travel at exactly the
same speed. They can only move forward, backward,
left, and right.

(2) The time for a robot to lift a shelf and stay at a work-
station is very short, which can be ignored.

(3) Every robot carries the required shelf and travels
from the position of the shelf to the designated sta-
tion and then carries the shelf back to its original
location.

The shelf selection algorithm will select shelves for each
workstation according to requirements. The selected shelves
need to be transported from the shelf storage area to the
appropriate station for picking up or replenishing goods,
and then they are transported back to the original position,
which is the task of the robots. If a robot is not assigned a
task, it will move to a special resting area for rest. How to
reasonably assign tasks to robots is the problem to be studied
in this paper.

Referring to ref. [16], suppose that there are m tasks
(refers to all tasks from the beginning to the end of the ware-
house operation) and n robots in the warehouse, the set of
tasks is T = ft1, t2, t3,⋯,tmg, and the set of robots is R =
fr1, r2, r3⋯,rng. The set of tasks assigned to robot ri is
Ti, which is a subset of T . T1 ∪ T2 ∪ T3 ∪⋯ ∪ Tn = T
and T1 ∩ T2 ∩ T3 ∩⋯∩ Tn =∅. Let Ti = fti1, ti2, ti3,⋯,tikg
and Ti is ordered, and then the sequence of tasks to be
completed by the robot ri is ti1 ⟶ ti2 ⟶ ti3 ⟶⋯⟶
tik. The cost of robot r to complete its task sequence can
be expressed as

C rið Þ = I ri, ti1ð Þ + 〠
k

h=1
S thð Þ + 〠

k−1

h=1
R th, th+1ð Þ, ð1Þ

where CðriÞ represents the cost of the robot ri to complete
all tasks. Since all robots travel at the same speed, the cost
can be expressed as the distance traveled by the robot. The
robot can only move forward, backward, left, and right; so,
the distance traveled between the two points can be
expressed as Manhattan distance.

Iðri, ti1Þ represents the cost for the robot to get from the
initial position to the position of required shelf for the first
task ti1. Let the initial coordinate of the robot be ðxr , yrÞ
and the coordinate of the required shelf for the first task be
ðxt1, yt1Þ, and then

I ri, ti1ð Þ = xr − xt1j j + yr − yt1j j: ð2Þ

SðthÞ represents the cost for the robot to complete task th
, which is only related to task th itself. It can be represented
by the distance that after the robot carries the required shelf,
it travels from the position of the required shelf for the task
to the designated station and then returns to the shelf’s orig-
inal position from the station. Let the coordinate of required
shelf for task th be ðxp, ypÞ and the coordinate of target sta-
tion be ðxs, ysÞ, and then

S thð Þ = xp − xs
�
�

�
� + yp − ys

�
�
�

�
�
�

� �

∗ 2: ð3Þ

Rðth, th+1Þ represents the cost for the robot to reach the
starting position of the next task th+1 after completing task
th. Since the robot needs to transport the shelf back to the
original position after completing task th, it can be directly
represented by the Manhattan distance from the position
of required shelf for task th to the position of required shelf
for task th+1. Let the coordinate of required shelf for task th
be ðxp1, yp1Þ and the coordinate of required shelf for task
th+1 be ðxp2, yp2Þ, and then

Figure 2: A typical intelligent warehouse layout from ref. [22].

3Journal of Sensors



R th, th+1ð Þ = xp1 − xp2
�
�

�
� + yp1 − yp2

�
�
�

�
�
�: ð4Þ

In order to make the overall allocation scheme as opti-
mal as possible, we consider the following two optimization
objectives:

(1) The maximum time taken by all robots to complete
all tasks (Ctime)

(2) The mean distance traveled by all robots (Cdistance)

where

Ctime = max
i

C rið Þ,

Cdistance =
∑n

i=1C rið Þ
n

:

ð5Þ

Ctime describes the efficiency of the robots to complete
tasks. The smaller Ctime is, the less time the robots take to
complete all tasks, and the higher the efficiency is. Cdistance
describes the power consumption of the multirobot system.
The smaller Cdistance is, the shorter the total travel distance
of all robots is, and the lower the power consumption is.
The goal of the method studied in this paper is to reasonably
assign all tasks in the system to all robots so that these two
values can be as small as possible.

3. Method

3.1. Architecture.With the entry of new orders, new tasks are
constantly generated and must be completed as soon as pos-
sible; so, the warehouse system is a highly dynamic and real-
time system. In such a highly dynamic system, it is difficult
to find the global optimal solution; so, the problem is divided
into many subproblems. Specifically, we created a task pool
P. When a new task is generated, it is immediately added
to P. When the number of tasks in the task pool P reaches
the threshold value (automatic adjustment of the threshold
will be described in Section 3.3), the CMA-ES method in
Section 3.2 is used to allocate the tasks in the task pool to
robots. The robots insert the new task sequence allocated
into the rear of the previous unfinished task sequence, and
then the task pool is emptied. The robots execute tasks
according to their own task sequence, and the executed tasks
are deleted from the sequence. As the new tasks are gener-
ated again, the tasks are added to P again. Loop until the
warehouse stops running. In Figure 3, the specific steps are
as follows:

Step 1. Initialize the task pool size and set the task pool P to
be empty. For all robots, initialize task sequence Ti of every
robot ri.

Step 2. The threshold of the task pool size is automatically
adjusted using adaptive control strategy in Section 3.3.

Step 3. New tasks are constantly added to P. Jump to step 4
when the number of tasks in the task pool reaches the
threshold.

Step 4. The tasks in the task pool are assigned to the robots
using the CMA-ES method in Section 3.2, and for all robots,
the new task sequence assigned to robot ri is inserted at the
end of the current task sequence Ti.

Step 5. Clear the task pool P and jump to step 2.
The above solution in Figure 3 is executed by the central

controller, and the robot only needs to execute the tasks
according to the assigned task sequence. The parallel opera-
tion of the two parts enables the robots to be busy all the
time, which saves time and meets the requirement of real-
time storage system.

3.2. CMA-ES Algorithm. As mentioned in Section 3.1, tasks
are assigned to robots when the number of tasks in the task
pool reaches the threshold. This problem is regarded as an
optimization problem in a static environment. This is a
NP-hard problem, and the CMA-ES algorithm is used to
find the optimal solution. The successful application in
many fields [24–26] proves that the CMA-ES algorithm is
a good search algorithm.

3.2.1. Representation of Solutions. Referring to ref. [27], for
the task allocation problem withm tasks and n robots, a can-
didate to represent a task assignment scheme is X = ½x1, x2,
x3 ⋯ xm�. X contains m real numbers, and for each real
number xi, it satisfies 1 ≤ xi < n + 1, i = 1, 2, 3,⋯,m, where
xi means task i is performed by robot IntðxiÞ, and IntðxiÞ
means the integer of real number xi. If IntðxiÞ = IntðxjÞ, i ≠
j, this means that the task xi and xj are both assigned to
the same robot, and the task represented by the smaller
number between xi and xj is executed first. If xi = xj, the exe-
cution order of these two tasks is determined randomly.

For example, there are 8 tasks (represented by numbers
1, 2, 3,..., 8) and 3 robots (represented by numbers 1, 2, 3),
and an individual [1.7, 3.8, 2.2, 1.3, 2.8, 1.5, 3.3, 3.7] is
generated. Then, the task sequence assigned to robot 1
is 4⟶ 6⟶ 1. The task sequence assigned to robot 2
is 3⟶ 5. The task sequence assigned to robot 3 is 7
⟶ 8⟶ 2.

3.2.2. Fitness Function. Fitness function is used to evaluate
candidates. For the CMA-ES algorithm, individuals with
lower fitness value are more excellent. In Section 2, two opti-
mization goals are proposed for the whole system: one is the
time Ctime for the robots to complete all tasks; the second is
the mean driving distance Cdistance of all robots. Each planning
can be regarded as a subproblem of the whole. For each sub-
problem, in order to achieve the optimal overall performance,
these two goals are still considered; so, fitness function f is cal-
culated through the following equation [16]:

4 Journal of Sensors



f = αC′time + 1 − αð ÞC′distance, 0 ≤ α ≤ 1,

C′time = max
i
C′ rið Þ,

C′distance =
∑n

i=1C′ rið Þ
n

,

ð6Þ

where α is a constant that can be adjusted according to the
actual demand. If more attention is paid to the completion
time of a single order, α can be increased. If more attention
is paid to the energy consumption of all robots, α can be
reduced. C′ðriÞ is the cost of robot ri to execute the tasks in
the current task sequence first and then execute the tasks
according to the candidate. C′time is the maximum time taken
by the robots. C′distance is the mean distance traveled by all
robots. In the current moment, there may be unfinished tasks
in the task sequence. The robot must first complete these tasks
before performing the tasks assigned at the current moment.
Therefore, for C′ðriÞ, we divide it into two parts to calculate:

C′ rið Þ = C′1 rið Þ + C′2 rið Þ, ð7Þ

where C′1ðriÞ is the cost for the robot to complete the tasks in
the current task sequence, and C′2ðriÞ is the cost for the robot

to execute the tasks according to the candidate. C′1ðriÞ and
C′2ðriÞ are represented by the distance traveled by the robot
and calculated using the method described in Equation (1).

With this fitness function, we try to find the optimal
solution at that moment in each optimization and try to
approximate the global optimal solution by this method.

3.3. Automatic Adjustment of Task Pool. When the number
of tasks in the task pool reaches the threshold, the tasks in
the task pool will be assigned to the robots. The threshold
plays a decisive role in the efficiency of assignment. The
larger the threshold is, the more tasks will be involved in
the optimization, and then the more the planned scheme will
be close to the global optimal solution. If an optimization
contains all the tasks in the system, the optimal solution
found by the optimization will be the optimal solution of
the whole system. But orders in the warehouse are added
dynamically over time, so tasks are also generated dynami-
cally. As the threshold increases, the time required for the
task pool to be filled will also increase, and this situation will
occur: the robot has finished all the tasks assigned to it, but
the number of tasks in the task pool has not reached the
threshold; so, the next optimization cannot start, and the
robot can only wait. This leads to a waste of time and cannot
meet the real-time of the warehouse system. Moreover,

Initialize the task pool size using Equation 8;
Task pool P = {};

Foreach (the robot ri in all robots)
task sequence Ti of robot ri = {};

The threshold of the task pool size is
automatically adjusted using adaptive control

strategy in section 3.3.

if (size(P) < threshold)
when (the new task reached)

add the new task t into P;

The tasks in the task pool P are assigned to the robots
using CMA-ES method in section 3.2. 

Foreach (the robot ri in all robots)
Insert the new task sequence assigned to robot ri into the end of the current task sequence Ti;

Task pool P = {};

False

True

Step1

Step2

Step3

Step4

Step5

Figure 3: The flow chart of the combined solution based on adaptive task pool strategy and CMA-ES.

5Journal of Sensors



because each workstation has an order capacity limit, there
is also an upper limit on the total number of tasks in the sys-
tem, and if the task pool size exceeds this upper limit, the
number of tasks in the task pool will never reach the thresh-
old, and the system will be stagnant. Therefore, it is very
important to set a threshold of appropriate size.

Obviously, for different warehouses, the threshold
should be set differently depending on the actual situation.
Even for the same warehouse, the number of robots may
be adjusted, and the rate of order generation may vary at
different times; so, it is not appropriate to set the threshold
to a fixed value. Therefore, we design an adaptive control
strategy to dynamically adjust the task pool, as shown in
Algorithm 1.

First, the setting of the initial threshold is important,
which determines the speed of finding the optimal threshold.
We believe that the size of the initial threshold should be
related to the number of robots and the upper limit number
of tasks in the warehouse. The upper limit number of tasks
in the warehouse is related to the number of workstations
and the capacity of each workstation. So, we propose the fol-
lowing heuristic formula to calculate the initial threshold:

initialThreshold = γ ∗ stations + robotsð Þ
2

, ð8Þ

where γ is a constant representing the average number of
tasks per workstation in unit time, which is set according
to the actual situation. stations is the number of stations,
and robots is the number of robots. We set a time interval
I (It is a constant that can be set according to actual require-
ments), and every I seconds, the threshold is adjusted (line 1).
lastAction is used to record the last adjustment. We counted
the total number of tasks completed by the robot from the last
adjusted moment to the current moment, and the total num-
ber of tasks completed from the penultimate adjusted moment
to the last adjustedmoment, expressed by tasksCompleted and
lastTasksCompleted, respectively. If taskCompleted is 0, indi-
cating that the threshold has been set so high that the number
of tasks has not reached the threshold, then simply cut the
threshold in half and set lastAction to −1 (line 2, line 3, and
line 4). If tasksCompleted is greater than or equal to

lastTasksCompleted, it indicates that the last adjustment has
had a positive effect on the system, and the same adjustment
will be performed (line 5 and line 6). If tasksCompleted is less
than lastTasksCompleted, it indicates that the last adjustment
had a negative effect on the system, and the reverse adjustment
will be performed (line 7 and line 8). In addition, lastAction
will be reversed (line 9).

4. Experiments

We used RAWSim-O [22], an open source framework devel-
oped by Merschformann et al., as the experimental platform.
RAWSim-O is a simulation framework that simulates the
operation of an intelligent warehouse system and allows us
to test our own methods.

We used the warehouse layout shown in Figure 2. In the
warehouse layout, there are 32 robots and 550 shelves. The
storage positions of the shelves are at the middle area of
the layout. And there are four replenishment stations on
the left and four picking stations on the right. To simplify
the problem, we set the duration of a robot staying at a
workstation to a very small value of 0.1.

For the assessment of performance we take the sum of
SKUs (stock keeping unit) in both item bundles stored at
the replenishment stations and orders picked at the picking
stations as handled units. This represents the throughput
of the warehouse, and the higher the better. We also look
at the average distance traveled by robots to handle each
unit. This can represent the power consumption of the mul-
tirobot system.

In order to test the impact of task pool threshold size on
the allocation effect, we did 56 experiments, each experiment
corresponding to different pool sizes. Each experiment was
simulated for 24 hours with 10 repetitions.

Under different task pool sizes, the number of units
handled by robots is shown in the blue solid line in
Figure 4, and the average distance traveled by robots to han-
dle each unit is shown in the blue solid line in Figure 5. The
comparison results among different fixed threshold on han-
dled units and travel distance per unit are shown in Table 1.
The maximum number of handled units is 207583 when the
fixed threshold is set to 18. The minimum number of travel

Input: lastAdjustTime, currentTime, lastTasksCompleted, tasksCompleted, oldThreshold, lastAction
Output: newThreshold, lastAction
1: if currentTime − lastAdjustTime > I then
2: if tasksCompleted = 0 then
3: newThreshold⟵ oldThreshold/2
4: lastAction⟵ −1
5: else if tasksCompleted − lastTaskCompleted ≥ 0 then
6: newThreshold⟵ newThreshold + lastAction
7: else
8: newThreshold⟵ newThreshold − lastAction
9: lastAction⟵ −lastAction
10: else
11: newThreshold⟵ oldThreshold
12: return newThreshold, lastAction

Algorithm 1: Adaptive control strategy.

6 Journal of Sensors



distance per unit is 10.73 when the fixed threshold is set to
36, 45, or 47. According to Figures 4 and 5 and Table 1, it
is not good to set the threshold too large or too small, which
is consistent with our conjecture. If the threshold is set too
small, the solution will be too far away from the global opti-
mal solution; therefore, the number of handled units is
small, and the travel distance per unit is large. If the thresh-
old is set too large, the solution will be closer to the global
optimal solution; so, the travel distance per unit is small,
but the robot will have a long waiting time; therefore, the
number of handled units will be small.

To sum up, a bad threshold can be very inefficient; so,
setting the threshold manually is very risky. Therefore, a
method of automatically adjusting threshold is necessary.
We used the adaptive control strategy proposed by ourselves
to conduct the experiment again, and all conditions were
identical except the threshold. According to the workstation
capacity, γ in Equation (8) was set to 4; so, the initial thresh-
old was calculated as 32. The results are shown in Table 1.
We compared the results with the fixed threshold approach,

as shown in Figures 4 and 5. The red dotted line is the adap-
tive threshold method, and the blue solid line is the fixed
threshold method. Compared with fixed threshold 18, the
adaptive threshold method gets worse result in handled units
but better result in travel distance per unit. Compared with
fixed threshold 36, 45, and 47, the adaptive threshold
method gets better result in handled units but worse result
in travel distance per unit. Taken together, it can be seen
from the two figures that the adaptive threshold method
can be close to reaching the level when the threshold is set
to the optimal in both indexes. The experimental results
show that the proposed adaptive control strategy has good
application effect.

5. Conclusion

In order to solve the dynamic and real-time problem of mul-
tirobot task allocation in the intelligent warehouse system, a
combined solution based on adaptive task pool strategy and
CMA-ES algorithm is proposed in the paper. In the early

207583

204642

201046

200342

205372

192000

194000

196000

198000

200000

202000

204000

206000

208000

210000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

H
an

dl
ed

 u
ni

ts

Threshold of fixed threshold method

Figure 4: Comparison between adaptive threshold method and fixed threshold method on handled units. The red dotted line is the adaptive
threshold method, and the blue solid line is the fixed threshold method.

7Journal of Sensors



stage of the solution, the divide-to-conquer idea is used to
design a variable task pool that is used to store dynamically
added tasks. The variable task pool is designed to dynami-
cally divide continuous and large-scale task allocation prob-
lems into small-scale subproblems to solve them to meet
dynamic requirements. And an adaptive control strategy is
used to automatically adjust the threshold of the task pool
size in real time to achieve a trade-off among throughtput,
energy consumption, and waiting time, which has better
adaptability than manually adjusting the size of the task

pool. In the later stage of the solution, when the task pool
is full, tasks in the task pool will be assigned to robots using
the CMA-ES algorithm to find the optimal task assignment
solution for all the robots according to the fitness function
including the maximum time and the mean travel distance
required by all robots to complete all the tasks. By compar-
ing with fixed threshold method under 56 different task pool
sizes, the experimental results show that the handled units
can be close to reaching the optimal level, and the average
travel distance per unit is lower using adaptive threshold
method; so, adaptive threshold solution indeed has better
adaptability. This method can satisfy the dynamic and real-
time requirements and can be effectively applied to the intel-
ligent warehouse system.

However, because of the complexity and dynamics of the
warehouse environment, it may not be accurate to measure
the cost by Manhattan distance. Therefore, how to introduce
accurate robot motion model to evaluate the cost will be the
next work. Furthermore, the relationships among handled
units, travel distance per unit, the maximum time taken by
all robots to complete all tasks, and the mean distance trav-
eled by all robots need further study. In addition, the effect
of communication quality on allocation is not taken into
account and will be deeply studied.

10.82

10.73 10.73 10.73

10.79

10.7

10.75

10.8

10.85

10.9

10.95

11

11.05

11.1

11.15

11.2

Tr
av

el
 d

ist
an

ce
 p

er
 u

ni
t

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

Threshold of fixed threshold method

Figure 5: Comparison between adaptive threshold method and fixed threshold method on travel distance per unit. The red dotted line is the
adaptive threshold method, and the blue solid line is the fixed threshold method.

Table 1: Comparison between adaptive threshold method and
fixed threshold method on handled units and travel distance per
unit.

Method (initial
threshold)

Handled
units

Travel distance per
unit

Fixed threshold (18) 207583 10.82

Fixed threshold (36) 204642 10.73

Fixed threshold (45) 201046 10.73

Fixed threshold (47) 200342 10.73

Adaptive threshold (32) 205372 10.79

8 Journal of Sensors



Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work is supported by the Science and Technology Pro-
gram of Yantai, China (Grant No. 2019XDHZ085), Major
Basic Research Project of Natural Science Foundation of
Shandong Province, China (Grant No. ZR2018ZC0438),
National Natural Science Foundation of China (Grant No.
61673200), and Laboratory of Robotics in Ludong
University.

References

[1] M. Zhou and M. Y. Wang, “Analysis on the development of e-
commerce logistics service industry and countermeasures,”
Computer and Information Technology, vol. 20, no. 6,
pp. 10–12, 2012.

[2] S. X. Zou, “The present and future of warehouse robot,” Logis-
tics Engineering and Management, vol. 35, no. 6, pp. 171-172,
2013.

[3] J. J. Enright and P. R. Wurman, “Optimization and coordi-
nated autonomy in mobile fulfillment systems,” in Workshops
at the Twenty-Fifth AAAI Conference on Artificial Intelligence,
pp. 33–38, San Francisco, California, 2011.

[4] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating
hundreds of cooperative, autonomous vehicles in warehouses,”
AI Magazine, vol. 29, no. 1, p. 9, 2008.

[5] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxon-
omy of task allocation in multi-robot systems,” International
Journal of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[6] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allo-
cation: a review of the state-of-the-art,” Eds. Cham: Springer
International Publishing, vol. 604, pp. 31–51, 2015.

[7] B. P. Gerkey and M. J. Matarić, “Sold!: auction methods for
multirobot coordination,” IEEE Transactions on Robotics and
Automation, vol. 18, no. 5, pp. 758–768, 2002.

[8] M. Berhault, H. Huang, P. Keskinocak et al., “Robot Explora-
tion with Combinatorial Auctions,” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 2, pp. 1957–1962, 2003.

[9] H. W. Kuhn, “The Hungarian method for the assignment
problem,” Naval Research Logistics Quarterly, vol. 2, no. 1-2,
pp. 83–97, 1955.

[10] P. MacAlpine, E. Price, and P. Stone, “SCRAM: scalable
collision-avoiding role assignment with minimal-makespan
for formational positioning,” in Proceedings of the 29th AAAI
Conference on Artificial Intelligence, pp. 2096–2102, Austin,
Texas, USA, 2015.

[11] L. E. Parker, “ALLIANCE: an architecture for fault tolerant
multirobot cooperation,” IEEE Transactions on Robotics and
Automation, vol. 14, no. 2, pp. 220–240, 1998.

[12] B. B. Werger and M. J. Mataric, “Broadcast of local eligibility:
behavior-based control for strongly cooperative robot teams,”
in Proceedings of the 4th International Conference on Autono-
mous Agents, pp. 21-22, Barcelona, Spain, 2000.

[13] Y. Liu, X. Zhang, H. Li, and D. Qian, “Allocating tasks in
multi-core processor based parallel system,” in 2007 IFIP
International Conference on Network and Parallel Computing
Workshops, pp. 748–753, Liaoning, China, 2007.

[14] E. G. Jones, M. B. Dias, and A. Stentz, “Time-extended multi-
robot coordination for domains with intra-path constraints,”
Autonomous Robots, vol. 30, no. 1, pp. 41–56, 2011.

[15] J. Zhang and Y. Q. Cao, “Research on dynamic task allocation
for MAS based on hybrid genetic and ant colony algorithm,”
Computer Science, vol. 38, no. S1, pp. 268–270, 2011.

[16] J. J. Dou, C. L. Chen, and P. Yang, “Genetic scheduling and
reinforcement learning in multirobot systems for intelligent
warehouses,” Mathematical Problems in Engineering,
vol. 2015, 10 pages, 2015.

[17] W. Deng, J. Xu, H. Zhao, and Y. Song, “A novel gate resource
allocation method using improved PSO-based QEA,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23,
no. 3, pp. 1737–1745, 2022.

[18] X. Cai, H. Zhao, S. Shang et al., “An improved quantum-
inspired cooperative co-evolution algorithm with muli-
strategy and its application,” Expert Systems with Applications,
vol. 171, article 114629, 2021.

[19] W. Deng, J. J. Xu, X. Z. Gao, and H. M. Zhao, “An enhanced
MSIQDE algorithm with novel multiple strategies for global
optimization problems,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 52, no. 3, pp. 1578–1587, 2022.

[20] W. Deng, S. Shang, X. Cai et al., “Quantum differential evolu-
tion with cooperative coevolution framework and hybrid
mutation strategy for large scale optimization,” Knowledge-
Based Systems, vol. 224, article 107080, 2021.

[21] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the
time complexity of the derandomized evolution strategy with
covariance matrix adaptation (CMA-ES),” Evolutionary Com-
putation, vol. 11, no. 1, pp. 1–18, 2003.

[22] M. Merschformann, L. Xie, and H. Li, “RAWSim-O: a simula-
tion framework for robotic mobile fulfillment systems,” Logis-
tics Research, vol. 11, no. 8, pp. 1–11, 2018.

[23] L. Xie, N. Thieme, R. Krenzler, and H. Y. Li, Efficient Order
Picking Methods in Robotic Mobile Fulfillment Systems, 2019,
https://arxiv.org/abs/1902.03092.

[24] F. Stulp and O. Sigaud, “Path integral policy improvement
with covariance matrix adaptation,” in 29th International Con-
ference on Machine Learning, Edinburgh, Scotland, 2012.

[25] T. Geijtenbeek, M. Van De Panne, and A. F. Van Der Stappen,
“Flexible muscle-based locomotion for bipedal creatures,”
ACM Transactions on Graphics, vol. 32, no. 6, pp. 1–11, 2013.

[26] P. MacAlpine and P. Stone, “Overlapping layered learning,”
Artificial Intelligence, vol. 254, pp. 21–43, 2018.

[27] H. R. Zhou, W. S. Tang, and H. L. Wang, “Optimization of
multiple traveling salesman problem based on differential evo-
lution algorithm,” Systems Engineering Theory & Practice,
vol. 30, no. 8, pp. 1471–1476, 2010.

9Journal of Sensors

https://arxiv.org/abs/1902.03092

	Multirobot Adaptive Task Allocation of Intelligent Warehouse Based on Evolutionary Strategy
	1. Introduction
	2. Problem Formulation
	3. Method
	3.1. Architecture
	3.2. CMA-ES Algorithm
	3.2.1. Representation of Solutions
	3.2.2. Fitness Function

	3.3. Automatic Adjustment of Task Pool

	4. Experiments
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

