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We consider the secure state estimation of linear time-invariant Gaussian systems subject to dynamic malicious attacks. An error
compensator is proposed to reduce the impact of local error data on state estimation. Based on that, a new estimation algorithm
based on the Gaussian mixture model (GMM) aiming at dynamic attacks is proposed, which can cluster the local state estimates
autonomously and improve the remote estimation accuracy effectively. The superiority of the proposed algorithm is verified by
numerical simulations.

1. Introduction

Cyberphysical systems (CPSs), such as transportation net-
works and smart grids, integrate sensing, computing, and
control technologies with a communication infrastructure.
Tight integration and cooperation between cyber and
physical components are the features of CPSs [1]. However,
CPSs are vulnerable to any successful attacks especially net-
work attacks on the data and communication channels,
which causes serious harms to the national economy and
social security, for example, the Stuxnet storm reported in
[2], StuxNet malware [3], power blackouts in Brazil [4],
and Maroochy water bleach [5]. Due to the widespread
application of CPSs in many real-life critical infrastructures
[6], the security of CPSs has become an increasingly
important issue which has attracted attention from many
researchers in the past decades.

In the recent literature, the secure state estimation is an
important research direction of CPSs security. In [7], a
distributed state estimation method based on parallelized
stream computing is proposed, which can not only signifi-
cantly improve the speed of state estimation calculation
but also reduce the interregional convergence correlation
and the residual pollution. In [8], a new sequential estima-
tion method is proposed to improve the estimation accuracy,

which sequentially estimates states by the particle filter
(PF) and parameters by the separable natural evolution
strategy (SNES). The state estimation of three-phase power
system models is studied in [9]. In [10], a Bayesian net-
work based on the wireless power transfer (WPT) system
state estimation algorithm is proposed, which can estimate
the WPT system states in a distributed way using the
Bayesian tree structure. In [11], a robust generalized maxi-
mum likelihood (GM) estimator, which leverages modified
projection statistics and a Huber convex score function, is
designed to bound the influence of observation outliers while
maintaining its high statistical estimation efficiency. In [12],
a distributed dynamic state estimation method for micro-
grids incorporating distributed energy resources is presented.
In [13], a robust generalized maximum-likelihood Koopman
operator-based Kalman filter (GM-KKF) is designed, which
can estimate the rotor angle and speed of synchronous gener-
ators. In [14], a correlation-aided robust adaptive unscented
Kalman filter (UKF) for power system decentralized dynamic
state estimation with unknown inputs is presented, which
has lower requirement of number of measurements for
dynamic state estimation while achieving better robustness
against bad data. In [15, 16], the state estimation method
based on undamaged sensors is studied. In [17, 18], the state
estimation for different systems is studied based on the
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convex optimization methods. In [19], by modeling and
adopting a variety of models, a random Bayesian approach
is proposed to solve the state estimation against switching
patterns and signal attacks. In [20], the state estimation
against fixed target attacks, switched target attacks with dis-
turbance, and sparse sensor attacks are considered, and the
sufficient condition for the existence of the switched observer
is given. In [21], a fusion algorithm based on the Gaussian
mixture model is presented to solve the estimation of a linear
time-invariant Gaussian system under stealth attacks. How-
ever, the dynamic attacks are not considered. In [22], a
dynamic combination strategy and a distributed Kalman fil-
ter are proposed, which improve the robustness of the system
against random error data injection and replay attacks.

Most of the studies mentioned above have focused on
static attacks. However, dynamic attacks are very common
in real systems. Therefore, this paper considers the state esti-
mation for a networked system suffering from dynamic
adversaries as shown in Figure 1. The different sensors are
attacked randomly at each time instant, and it is assumed
that the number of attached sensors does not exceed half
of the sensors.

Inspired by [21], we have designed an error compensator
to reduce the impact of incorrect data on state estimation.
Based on that, a new GMM-based state estimation algorithm
is presented, which can effectively improve the state estima-
tion accuracy against the dynamic adversaries. The contribu-
tions of this article are listed as follows:

(1) A new error compensator is proposed to alleviate the
influence of wrong data on state estimation, which
can judge whether the beliefs generated by the
expectation-maximum (EM) algorithm are accurate
based on the observability of the system, and correct
the doubtful beliefs

(2) By introducing the error compensator, a new GMM-
based estimation algorithm is presented, which can
improve the estimation accuracy effectively. The
proposed algorithm can fuse the local data by adopt-
ing the modified beliefs as the weights of the local
data with the centralized Kalman filter

The rest of the paper is organized as follows. Section II
formulates the model of the considered system and the prob-
lem of interest. Section III proposes the error compensator
and the new GMM-based state estimation algorithm against
dynamic adversaries. In Section IV, the effectiveness of the
proposed algorithm is demonstrated by numerical simula-
tions. Conclusions are given in Section V.

Notation: ℕ and ℝ are the sets of positive integers and
real numbers, respectively. ℝn denotes the n-dimensional
Euclidean space. Sn

+ðSn
++Þ is the set of n × n positive semide-

finite (definite) matrices. We write X ≥ 0ðX > 0Þ when X ∈
Sn
+ðSn

++Þ. X ′ denotes the transpose of matrix X. E½·� is the
expectation of a random variable. N ðμ, ΣÞ is the Gaussian
distribution with mean μ and covariance matrix Σ, and
X ~N ðμ, ΣÞ denotes X follows the Gaussian distribution
N ðμ, ΣÞ. Diagf·g denotes a block diagonal matrix.

2. Problem Formulation

Consider the following networked system under attacks:

xk+1 = Axk +wk, ð1Þ

yi,k = Cixk + vi,k + ai,k, ð2Þ

where xk ∈ℝn denotes the system state, yi,k ∈ℝ
mi represents

the measured value from sensor i at time k, and ai,k ∈ℝmi is
attack signal. The number of sensors is denoted by N .
wk ∈ℝn is the process noise, and wk ~N ð0,QÞ. vi,k ∈ℝmi

is the measurement noise, and vi,k ~N ð0, RiÞ. Meanwhile,
it is assumed that E½wkwl′� = δklQ ðQ ≥ 0Þ, E½vi,kvj,l′ � = δijδkl
Ri ðRi > 0Þ, where i = jði ≠ jÞ, δi,j = 1ðδi,j = 0Þ. E½wkvi,l′ � = 0,
∀k, l ∈ℕ, i, j = 1, 2,⋯,N . The initial state x0 is indepen-
dent of wk and vi,k for all k ≥ 0 and x0 ~N ð0,Π0Þ. ðA, CiÞ
and ðA, ffiffiffiffi

Q
p Þ are detectable and controllable, respectively.

The malicious attack ai,k ∈ℝmi satisfies the following
assumptions:

Assumption 1. Any s (s ≤N/2) sensors can be corrupted by
the adversary, and the output values of the sensors are chan-
ged. Only when sensor i is unattacked, ai,k = 0.

Assumption 2. The number of attacked sensors s is
unknown, stochastic, and variable.

Assumption 3. The system parameters and noise statistics are
known for the adversary.

Assumption 4. ai,k is statistically independent of fwKgK>k
and fvi,Kg

K>k, respectively.

Remark 1. According to [23, 24], it is impossible to accu-
rately reconstruct the state of a system when more than half
the sensors are attacked. Thus, we assume that the maxi-
mum number of damaged sensors does not exceed N/2 in
this paper, i.e., the upper limit of s is N/2.
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Figure 1: The networked system under attacks.
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When the system is not attacked, the measurements at
time instant k can be stacked as

yk = Cxk + vk, ð3Þ

where

yk ≜ y1,k′ y2,k′ ⋯ yN ,k′
h i

′,

vk ≜ v1,k′ v2,k′ ⋯ vN ,k′
h i

′,

C ≜ C1′C2′⋯ CN′
h i

′,

R ≜Diag R1, R2,⋯, RNf g:

ð4Þ

Then, we adopt a centralized Kalman filter as the remote
estimator:

x̂−k = Ax̂k−1,

P−
k = APk−1A′ +Q,

Kk = P−
kC′ CP−

kC′ + R
� �−1

,

x̂k = x̂−k + Kk yk − Cx̂−kð Þ,
Pk = I − KkCð ÞP−

k ,

ð5Þ

where x̂−k and x̂k are the priori and the posteriori estimation
of the system state xk, respectively. P

−
k and Pk are the priori

and posteriori estimation error covariance, respectively. Kk
is the Kalman filter gain.

From [21], we know that the information-form Kalman
filter can be expressed as

x̂k = x̂−k + PkC′R−1 yk − Cx̂−kð Þ, ð6Þ

Pkð Þ−1 = P−
k−1ð Þ−1 + C′R−1C: ð7Þ

Similarly, the local Kalman filter for sensor i can be
written as

x̂i,k = x̂−i,k + Pi,kCi′R−1
i yi,k − Cix̂

−
i,k

� �
,

Pi,kð Þ−1 = P−
i,k−1

� �−1 + Ci′R−1
i Ci:

ð8Þ

It is noted that Pk and Pi,k can be calculated offline.
According to [25], the Kalman filter converges from any
initial condition exponentially when ðA, CiÞ and ðA, ffiffiffiffi

Q
p Þ

are detectable and controllable, respectively. The steady-

state values of local and centralized Kalman filter are
defined as

�Pi ≜ lim
k⟶+∞

Pi,k, �P
−
i ≜ lim

k⟶+∞
P−
i,k,

P ≜ lim
k⟶+∞

Pk, P− ≜ lim
k⟶+∞

P−
k :

ð9Þ

It is assumed that the system starts from the steady state
with Pi,0 = �Pi and P0 = P, and the fixed-gain of local and
centralized Kalman filters can be represented as:

Ki = �PiCi′R−1
i = �P−

i Ci′ Ci
�P−
i Ci′+ Ri

� �−1
,

K = PC′R−1 = P−C′ CP−C′ + R
� �−1

:

ð10Þ

The objective of this paper is to design a new GMM-
based estimation method for systems suffering from dynamic
adversaries.

3. The GMM-Based State Estimation

In this section, an error compensator and the GMM-based
state estimation algorithm against dynamic adversaries are
proposed.

3.1. Modeling and the EM Algorithm. For a Gaussian mixture
model with ℚ components [21], the mean and covariance of
the q-th component Qq ðq ∈ f1, 2,⋯,ℚgÞ are expressed as

μðqÞ and ΣðqÞ, respectively. πðqÞ is the mixture component
weights of Qq, and ∑ℚ

q=1π
ðqÞ = 1. In this case, the mixture

density of a Gaussian mixture model can be expressed as

p xð Þ = 〠
ℚ

q=1
p x ∣Qq

� �
Pr Qq

� �
= 〠

ℚ

q=1
π qð Þ f x ; μ qð Þ, Σ qð Þ

� �
,

ð11Þ

where pðx ∣QqÞ and Pr ðQqÞ are the Gaussian distribution
density and weight of the q-th component, respectively.
Function f ðx ; μ, ΣÞ is the probability density function (pdf)
for Gaussian random variables:

f x ; μ, Σð Þ = 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þn Σj jp exp −

1
2 x − μð Þ′Σ−1 x − μð Þ

� �
:

ð12Þ

At time instant k, we denote the means of the state vari-

ables for sensor i as μð1Þk under the unattacked scenario and

μð2Þk under the attacked-scenario, respectively. Σð1Þ
k and Σð2Þ

k
represent the covariance when sensor i is unattacked and
attacked, respectively. The local state estimation x̂i,k follows
different distributions depending on whether sensor i is
attacked or not. According to the definition of GMM and
the analysis of Kalman filtering in [25], it can be known that
when sensor i is unattacked (defined as the first component),
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x̂i,k follows the Gaussian distribution with the mean μð1Þk and

the fixed covariance Σð1Þ
k = �Pi, i.e., pðx̂i,k ∣Q1Þ ~N ðμð1Þk , �PiÞ,

∀i ∈N . When sensor i is attacked (defined as the second com-
ponent), the exact distribution of x̂i,k is unknown since the spe-
cific type and the starting time of attacks are unknown. In this
case, similar to [21], we can adopt a Gaussian distribution with

the first and second moments, i.e., pðx̂i,k ∣Q2Þ ~N ðμð2Þk , Σð2Þ
k Þ,

∀i ∈N, to approximate the distribution of all local estimates in
the second component. Then, x̂i,k can be described by the fol-
lowing 2-component Gaussian mixture model:

p x̂i,kð Þ = 〠
2

q=1
p x̂i,k ∣Qq

� �
Pr Qq

� �
= π

1ð Þ
k p x̂i,k ∣Q1ð Þ + π

2ð Þ
k p x̂i,k ∣Q2ð Þ

= π
1ð Þ
k f x̂i,k ; μ

1ð Þ
k , �Pi

� �
+ π

2ð Þ
k f x̂i,k ; μ

2ð Þ
k , Σ 2ð Þ

k

� �
,

ð13Þ

where πð1Þ
k and πð2Þ

k are the weights of the first and second com-
ponents at time k, respectively.

The observation data set is defined as Zk = fx̂i,kgNi=1.
According to [26, 27], it is known that the expectation-
maximization (EM) algorithm can be adopted to find the max-

imum likelihood estimates for the parameter Φk = fπðqÞ
k , μðqÞk ,

Σð2Þ
k g2q=1 using Zk = fx̂i,kgNi=1. The log likelihood is shown as

L Φk ;Zkð Þ = 〠
N

i=1
log π

1ð Þ
k f x̂i,k ; μ

1ð Þ
k , �Pi

� ��
+ π

2ð Þ
k f x̂i,k ; μ

2ð Þ
k , Σ 2ð Þ

k

� ��
:

ð14Þ

Generally, the EM algorithm is divided into two steps: the
expectation and maximization step. First, initializing the
parameter Φk at each time k, then the expectation step gener-

ates a belief γðqÞi,k ðq = 1, 2Þ based on Φk and x̂i,k for each sensor:

γ
1ð Þ
i,k =

π
1ð Þ
k f x̂i,k ; μ

1ð Þ
k , Σ 1ð Þ

k

� �
π

1ð Þ
k f x̂i,k ; μ

1ð Þ
k , Σ 1ð Þ

k

� �
+ π

2ð Þ
k f x̂i,k ; μ

2ð Þ
k , Σ 2ð Þ

k

� � , ð15Þ

γ
2ð Þ
i,k = 1 − γ

1ð Þ
i,k , ð16Þ

where γð1Þi,k and γð2Þi,k represent the probability of sensor i belong-
ing to the component Q1 and Q2, respectively.

Given all beliefs γð1Þi,k and γð2Þi,k , the parameters fπðqÞ
k ,

μðqÞk , Σð2Þ
k g2q=1 are reestimated in the maximization step:

π
qð Þ
k = ∑N

i=1γ
qð Þ
i,k

N
, ð17Þ

μ
qð Þ
k = ∑N

i=1γ
qð Þ
i,k x̂i,k

∑N
i=1γ

qð Þ
i,k

, ð18Þ

Σ
2ð Þ
k =

∑N
i=1γ

2ð Þ
i,k x̂i,k − μ

2ð Þ
k

� �
x∧i,k − μ

2ð Þ
k

� �
′

∑N
i=1γ

2ð Þ
i,k

: ð19Þ

The expectation and maximization steps iterate until
they converge to a certain value. This iterative procedure
maximizes the concave lower bound of the log likelihood
in (14).

3.2. The Error Compensator. In this subsection, an error
compensator is proposed to reduce the influence of incorrect
data on the state estimation.

According to 3.1, the EM algorithm can be used to calcu-
late the GMM parameters and find the maximum likelihood
estimation. However, the convergence and clustering results
of the EM algorithm are affected by the initial parameters. In
this paper, the first and second moments are adopted as the
initial parameters of the second cluster. Due to the random-
ness of dynamic adversary and its specific type is unknown,
the output of some attacked sensors may be similar to that of

normal sensors at some moments. In this case, γð1Þi,k will be

miscalculated as γð2Þi,k in the iterative process (15)-(19), since
the observed data are considered to be closer to the second
cluster by the EM algorithm. When the above case occurs,
the estimation accuracy will be reduced seriously because
the number of data available for fusion is less than N/2.
On the other hand, the measurements that are similar to
the true measurements can provide useful information for
the remote state estimation, which means that the data
belonging to the second cluster can be adopted to estimate
system state. Hence, a compensator is designed to solve the
above problem.

�γð2Þk represents the average of all γð2Þi,k at time instant k,
which can be calculated as follows:

�γ
2ð Þ
k = ∑N

i=1γ
2ð Þ
i,k

N
: ð20Þ

According to the EM algorithm, γð2Þi,k tends to 1 if and
only if sensor i is attacked, and the expectation step is

accurate, which causes ∑N
i=1γ

ð2Þ
i,k to approach s. When the

expectation step is miscalculated, ∑N
i=1γ

ð2Þ
i,k tends to N − s

since γð2Þi,k approachs 0 for the attacked sensor i. According
to Assumptions 1–4, the maximum number of damaged
sensors does not exceed N/2 (namely, s ≤N/2), which

means N − s >N/2. Hence, it can be known that γð1Þi,k and

γð2Þi,k are miscalculated if ∑N
i=1γ

ð2Þ
i,k >N/2. Based on the above

analysis, the compensator is designed as follows:

bγ 1ð Þ
i,k =

γ
1ð Þ
i,k , �γ

2ð Þ
k ≤ ε

γ
2ð Þ
i,k , �γ

2ð Þ
k > ε

8<: ,

bγ 2ð Þ
i,k = 1 − bγ 1ð Þ

i,k ,

ð21Þ
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where bγð1Þ
i,k and bγð2Þ

i,k are the modified beliefs, and ε ≥ s/N
represents a threshold, which can be adjusted according
to the performance requirements of the actual system.

3.3. The GMM-Based State Estimation Approach against
Dynamic Attacks. In this subsection, a GMM-based estima-
tion algorithm is proposed to deal with the dynamic attacks,
which can improve the estimation accuracy effectively.

x̂−k = Ax̂k−1, ð22aÞ

P−
k = APk−1A′ +Q, ð22bÞ

x̂k = x̂−k + 〠
N

i=1
bγ 1ð Þ
i,k PkCi′R−1

i yi,k − Cix̂
−
k

� �
, ð22cÞ

Pk = P−
kð Þ−1 + 〠

N

i=1
γ∧ 1ð Þ

i,k Ci′R−1
i Ci

" #−1

, ð22dÞ

where the initial values x̂0 and P0 are the steady-state values
of the remote estimator when k ≤ 0.

1 // Run Kalman filter to steady state.
2: Initialize x̂i,−∞ = 0, Pi,−∞ =Πi, x̂−∞ = 0, P−∞ =Π;
3: for k = −∞ : 0 do
4: // Local data reaches steady state.
5: For i = 1 : N do

6: Pi,k = ½ðAPi,k−1A′ +QÞ−1 + Ci′R−1
i Ci�

−1
;

7: x̂i,k = Ax̂i,k−1 + Pi,kCi′R−1ðyi,k − CiAx̂i,k−1Þ ;
8: end for
9: // The remote estimator reaches steady state.

10: Pk = ½ðAPk−1A′ +QÞ−1 + C′R−1C�−1 ;
11: x̂k = Ax̂k−1 + PkC′R−1ðyk − CAx̂k−1Þ ;
12: end for
13: // GMM clustering by the EM algorithm.

14: Set �Pi = Pi,0, Σ
ð1Þ
i = Pi,0

15: for k = 1 : +∞ do
16: for i = 1 : N do
17: x̂i,k = Ax̂i,k−1 + �PiCi′R−1

i ðyi,k − CiAx̂i,k−1Þ;
18: end for
19: // the EM algorithm.

20: Initialize πð1Þ
k , πð2Þ

k , μð1Þk , μð2Þk , Σð2Þ
k ;

21: while LðΦk;ZkÞ not achieve the maximum likelihood estimates do

22: The expectation step: calculate γð1Þi,k and γð2Þi,k according to Equation (15)-(16).

23: The maximization step: calculate fπðqÞ
k , μðqÞk , Σð2Þ

k g2q=1 by Equation (17)-(19).

24: end while
25: // the error compensator.

26: �γð2Þk =∑N
i=1γ

ð2Þ
i,k /N

27: for i = 1 : Ndo

28: if �γð2Þk > ε ðε ⩾ ðjsj/NÞÞ then
29: bγð1Þ

i,k = γð2Þi,k ;

30: bγð2Þ
i,k = γð1Þi,k ;

31: else

32: bγð1Þ
i,k = γð1Þi,k ;

33: bγð2Þ
i,k = γð2Þi,k ;

34: end if
35: end for
36: // Remote state estimation.
37: x̂−k = Ax̂k−1 ;
38: P−

k = APk−1A′ +Q ;
39: x̂k = x̂−k +∑N

i=1bγð1Þ
i,k PkCi′R−1

i ðyi,k − Cix̂
−
k Þ ;

40: Pk = ½ðP−
k Þ−1 +∑N

i=1γ∧
ð1Þ
i,k Ci′R−1

i Ci�
−1
;

41: end for

Algorithm 1: The GMM-based state estimation against dynamic attacks.
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Theorem 2. Consider the linear time-invariant system (1)-(2)
and the dynamic adversary satisfying Assumptions 1–4, and
the remote state estimation x̂k can be calculated by

Proof. According to the Definition 2 in [16, 28], if sðs ≤N/2Þ
sensors are attacked, the following system is still observable
in the absence of attacks:

xk+1 = Axk +wk,
y�s,k = C�sxk + v�s,k,

ð23Þ

where �s ⊆ f1, 2,⋯,Ng is the set of unattacked sensors, and
y�s,k is the measurement stacked by the set �s. Similarly, C�s

and v�s,k are the system parameter and the measurement
noise stacked by the set �s, respectively. The pair ðA, C�sÞ is
observable.

According to Section II, Equation (6) can be expanded as

x̂k == x̂−k + PkC′R−1 yk − Cx̂−kð Þ

= x̂−k + Pk

C1′

⋮

CN′

26664
37775′

R1 0 0

0 ⋱ 0

0 0 RN

26664
37775
−1 y1,k

⋮

yN ,k

26664
37775 −

C1′

⋮

CN′

26664
37775x̂−k

0BBB@
1CCCA

= x̂−k + Pk

C1′R−1
1

⋮

CN′ R−1
N

26664
37775′

y1,k − C1′ x̂−k
⋮

yN ,k − CN′ x̂−k

26664
37775

= x̂−k + 〠
N

i=1
PkCi′R−1

i yi,k − Cix̂
−
k

� �
,

ð24Þ

where the default weight of each sensor is equal to 1 when
the sensor is not attacked.

Based on the above analysis, we can calculate the remote
state estimation x̂k by adopting the undamaged sensors. The

belief bγð1Þ
i,k represents the probability that the sensor i is

undamaged. Then, we can fuse the local data by adoptingbγð1Þ
i,k as the new weight of the local data, and then the Equa-

tions (22a)-(22d) can be obtained.
The system is assumed to reach steady state before time

k = 0. The adversary can launch dynamic attacks at any time
when k ≥ 1. Starting from time k = 1, the local state estima-
tion x̂i,k is calculated utilizing the measurement of sensor i
at each time instant k. Based on that, the remote estimator
clusters the local state estimates and calculates the parameter
Φk by the EM algorithm according to Equation (15)-(19).
Then, the error compensator is used to correct the error

beliefs. Finally, based on the modified belief bγð1Þ
i,k , the local

data can be fused by Theorem 2 to obtain the state estima-
tion x̂k. The whole process is summarized in Algorithm 1.

4. Numerical Simulation

In this section, the effectiveness of the GMM-based esti-
mation algorithm is verified through numerical simula-
tions. Similar to literature [21], we consider a linear
time-invariant dynamic process which is measured by 15
sensors. The system parameters A and Q are randomly
generated from intervals [0.4, 0.99] and [0.5, 2], respec-
tively. Matrices Ci and Ri, i ∈N , are randomly generated
from intervals [1, 2]. The system reaches steady state
before t = 30, and the attack signal starts from time t =
31, assuming that s ð1 ≤ s ≤ 6Þ sensors are attacked by
ai,k at each time instant tðt ≥ 31Þ.
4.1. Example 1. In this example, the estimation accuracy of
GMM-based method with and without compensator against
dynamic attacks has been compared. Similar to [15], the
attack signal ai,k can be assumed to be a linear function of
the measurement noise:

ai,k = βvi,k +Θ, ð25Þ

where β and Θ are real number from the interval [-5, 5] and
[-10, 10], respectively. Meanwhile, ai,k satisfies Assumptions
1–4.
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Figure 2: The actual states and its remote estimation with different approaches.
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Set the threshold ε = 0:45 in the following example. In
Figure 2, the trajectories of the actual state and the states
estimated by the GMM-based estimation method with
and without compensator are plotted. It is shown that
the estimated states of the GMM-based method with
compensator (dotted line) are closer to the actual state
than that without compensator (red line). Figure 3 shows
the estimation error covariance for the GMM-based
method with and without compensator, respectively. It

is observed that the estimation error covariance of the
method without compensator (red line) is larger than that
with compensator (black line), which means that the
error compensator proposed in this paper can effectively
reduce the impact of faulty data on state estimation.
According to Figures 2 and 3, the estimation accuracy
of the GMM-based estimation method with the compen-
sator is higher than that without the compensator against
dynamic attacks.
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Figure 4: The number of attacked sensors at each moment when T ⩾ 31.
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The number of attacked sensors at each moment when
T ≥ 31 is plotted in Figure 4, and the state estimation and
corresponding error covariance of the GMM-based algo-
rithm when the compensator takes different thresholds are
shown in Figures 5 and 6, respectively. It is seen that the state

estimation accuracy is higher when ε = 0:45 and 0.65 than ε
= 0:15 and 0.95, which is indicated that the performance of
the remote estimator will deteriorate while ε is too large or
too small. Hence, the threshold can be adjusted according
to the actual performance requirements of the real system.
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Figure 7: The actual states and its remote estimation based on different methods.

10 20 30 40 50 60 70 80 90 100
t

0

5

10

15

Es
tim

at
io

n 
er

ro
r c

ov
ar

ia
nc

e

GMM-based estimation error covariance
Estimation error covariance based on distributed X2 detector
Estimation error covariance based on centralized X2 detector

Figure 8: Remote estimation error covariance based on different methods.

0
t

0

5

10

15

20

25

30

35

Es
tim

at
io

n 
er

ro
r c

ov
ar

ia
nc

e

=0.15
=0.45

=0.65
=0.95

10 20 30 40 50 60 70 80 90 100

∈

∈

∈

∈

Figure 6: Remote estimation error covariance with different thresholds.

8 Journal of Sensors



4.2. Example 2. Distributed and centralized χ2 false-data
detectors are common, and they determine whether an
attack exists based on the statistical characteristics of the
innovation yi,k − Cix̂

−
i,k and yk − Cx̂−k , respectively. From

[21], a well-designed dynamic attack can successfully bypass
the distributed χ2 detector but fails to remain stealthy to the
centralized χ2 false-data detector. In this subsection, we have
compared the proposed approach and the estimation
methods based on different χ2 false-data detectors.

Similar to [21], the attack signal ai,k is set as

ai,k = −2yi,k + 2Cix̂
−
k , ð26Þ

where ai,k satisfies Assumptions 1–4.
In Figure 7, the trajectories of the actual state and the

state estimated by estimation methods based on different
detectors are plotted, respectively. It is seen that the GMM-
based state estimation (black line) is closer to the actual state
than the state estimation based on the distributed and
centralized χ2 detector (red and green). Figure 8 shows the
estimation error covariance of the corresponding methods,
and it is observed that the GMM-based estimation error
covariance is much smaller than that based on the distrib-
uted and centralized χ2 detector. It can be seen that the
GMM-based estimation approach proposed in this paper
can improve the performance effectively.

5. Conclusion

This paper studies the state estimation problem against
dynamic malicious attacks. An error compensator is pre-
sented, which can reduce the influence of local error data
on state estimation effectively. Based on that, a new GMM-
based state estimation algorithm is proposed to improve
the estimation accuracy for the system suffering from
dynamic attacks. Finally, the effectiveness of the proposed
algorithm is verified by numerical simulations. We will
extend the GMM-based approach further to systems with
parametric uncertainties in the future.

Data Availability

Some or all data, models, or code generated or used during
the study are available from the corresponding author by
request (Cui Zhu).

Conflicts of Interest

The authors declare that they have no conflicts of interest
related to this work.

Acknowledgments

The author would like to thank the tutor and anonymous
reviewers for their suggestions, which improved the qual-
ity of work. This work was supported by the National
Natural Science Foundation of China (grant numbers
61603047, 61773334), the Scientific Research Project of
Beijing Municipal Educational Commission (grant number

KM201911232014), the Key Research Cultivation Program
of Beijing Information Science and Technology University
(grant number 2121YJPY221), and the Qin Xin Talents Cul-
tivation Program, Beijing Information Science and Technol-
ogy University (grant number QXTCPC202110).

References

[1] K.-J. Park, R. Zheng, and X. Liu, “Cyber-physical systems:
milestones and research challenges,” Computer Communica-
tions, vol. 36, no. 1, pp. 1–7, 2012.

[2] R. Langner, “Stuxnet: dissecting a cyberwarfare weapon,” IEEE
Security and Privacy, vol. 9, no. 3, pp. 49–51, 2011.

[3] J. P. Farwell and R. Rohozinski, “Stuxnet and the future of
cyber war,” Survival, vol. 53, no. 1, pp. 23–40, 2011.

[4] J. P. Conti, “The day the samba stopped [power blackouts],”
Engineering and Technology, vol. 5, no. 4, pp. 46-47, 2010.

[5] J. Slay and M. Miller, “Lessons learned from the Maroochy
water breach,” IFIP Advances in Information and Communica-
tion Technology, vol. 253, pp. 73–82, 2007.

[6] K. Kim and P. R. Kumar, “Cyber–physical systems: a perspec-
tive at the centennial,” Proceedings of the IEEE, vol. 100,
pp. 1287–1308, 2012.

[7] L. Shan, J. Yu, J. Zhang, Y. Li, E. Zhou, and L. Zhao, “Distrib-
uted state estimation based on the realtime dispatch and con-
trol cloud platform,” in 2018 2nd IEEE Conference on Energy
Internet and Energy System Integration (EI2), pp. 1–6, Beijing,
China, 2018.

[8] Y. Kobayashi and I. Ono, “Sequential estimation of states and
parameters of nonlinear state space models using particle filter
and natural evolution strategy,” in 2020 IEEE Congress on Evo-
lutionary Computation (CEC), pp. 1–8, Glasgow, UK, 2020.

[9] I. Polyakov, A. Pazderin, and O. Polyakova, “Computational
performance comparing of the state estimation problem state-
mentes in polar and rectangular coordinates,” in 2019 16th
Conference on Electrical Machines, Drives and Power Systems
(ELMA), pp. 1–4, Varna, Bulgaria, June 2019.

[10] M. M. Rana and N. Dahotre, “Bayesian network and semidefi-
nite programming based wireless power transfer manufacturing
system state estimation and regulation,” in 2021 23rd Interna-
tional Conference on Advanced Communication Technology
(ICACT), pp. 237–241, PyeongChang, Korea (South), Feb. 2021.

[11] J. Zhao, G. Zhang, Z. Y. Dong, and M. La Scala, “Robust fore-
casting aided power system state estimation considering state
correlations,” IEEE Transactions on Smart Grid, vol. 9, no. 4,
pp. 2658–2666, 2018.

[12] M. M. Rana, W. Xiang, and E. Wang, “IoT-based state estima-
tion for microgrids,” IEEE Internet of Things Journal, vol. 5,
no. 2, pp. 1345-1346, 2018.

[13] M. Netto and L. Mili, “A robust data-driven Koopman Kalman
filter for power systems dynamic state estimation,” IEEE
Transactions on Power Systems, vol. 33, no. 6, pp. 7228–7237,
2018.

[14] J. Zhao, Z. Zheng, S. Wang et al., “Correlation-aided robust
decentralized dynamic state estimation of power systems with
unknown control inputs,” IEEE Transactions on Power Sys-
tems, vol. 35, no. 3, pp. 2443–2451, 2020.

[15] S. Mishra, Y. Shoukry, N. Karamchandani, S. N. Diggavi, and
P. Tabuada, “Secure state estimation against sensor attacks in
the presence of noise,” IEEE Transactions on Control of Net-
work Systems, vol. 4, no. 1, pp. 49–59, 2017.

9Journal of Sensors



[16] W. Ao, Y. Song, C. Wen, and J. Lai, “Finite time attack detec-
tion and supervised secure state estimation for CPSs with mali-
cious adversaries,” Information Sciences, vol. 451–452, pp. 67–
82, 2018.

[17] X. Liu, Y. Mo, and E. Garone, “Secure dynamic state estima-
tion by decomposing Kalman filter,” IFAC (International Fed-
eration of Automatic Control), vol. 50, no. 1, pp. 7351–7356,
2017.

[18] X. Liu, Y. Mo, and X. Ren, “Security analysis of continuous-
time cyber-physical system against sensor attacks,” in 2017
13th IEEE Conference on Automation Science and Engineering
(CASE), pp. 1586–1591, Xi'an, China, Aug. 2017.

[19] N. Forti, G. Battistelli, L. Chisci, and B. Sinopoli, “Secure state
estimation of cyber-physical systems under switching attacks,”
IFAC PapersOnLine, vol. 50, no. 1, pp. 4979–4986, 2017.

[20] A. Y. Lu and G. H. Yang, “Secure state estimation for cyber-
physical systems under sparse sensor attacks via a switched
Luenberger observer,” Information Sciences, vol. 417, pp. 454–
464, 2017.

[21] Z. Guo, D. Shi, D. E. Quevedo, and L. Shi, “Secure State Esti-
mation against Integrity Attacks: a Gaussian Mixture Model
Approach,” IEEE Transactions on Signal Processing, vol. 67,
no. 1, pp. 194–207, 2019.

[22] F. Wen and Z. Wang, “Distributed Kalman filtering for robust
state estimation over wireless sensor networks under malicious
cyber attacks,” Digital Signal Processing, vol. 78, pp. 92–97,
2018.

[23] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and
control for cyber-physical systems under adversarial attacks,”
IEEE Transactions on Automatic Control, vol. 59, no. 6,
pp. 1454–1467, 2014.

[24] M. Pajic, J. Weimer, N. Bezzo et al., “Robustness of attack-
resilient state estimators,” in 2014 ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS), pp. 163–174,
Berlin, Germany, April 2014.

[25] B. D. Anderson and J. B. Moore, Optimal Filtering, Courier
Corporation, 2012.

[26] C. M. Bishop, Pattern Eecognition and Machine Learning,
Springer, 2006.

[27] T. K. Moon, “The expectation-maximization algorithm,” IEEE
Signal Processing Magazine, vol. 13, no. 6, pp. 47–60, 1996.

[28] M. S. Chong, M. Wakaiki, and J. P. Hespanha, “Observability
of linear systems under adversarial attacks,” in Proceedings of
the American Control Conference, pp. 2439–2444, Chicago,
IL, USA, 2015.

10 Journal of Sensors


	A GMM-Based Secure State Estimation Approach against Dynamic Malicious Adversaries
	1. Introduction
	2. Problem Formulation
	3. The GMM-Based State Estimation
	3.1. Modeling and the EM Algorithm
	3.2. The Error Compensator
	3.3. The GMM-Based State Estimation Approach against Dynamic Attacks

	4. Numerical Simulation
	4.1. Example 1
	4.2. Example 2

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

