
Research Article
A Fast Direct Position Determination Algorithm for LFM Signal
Based on Spectrum Detection

Han Ren ,1,2 Huijie Liu ,1 and Rujiang Guo 1

1Innovation Academy for Microsatellites, Chinese Academy of Sciences, Shanghai 201210, China
2University of Chinese Academy of Sciences, Beijing 100049, China

Correspondence should be addressed to Rujiang Guo; guorjsat@sina.com

Received 27 October 2021; Revised 29 April 2022; Accepted 4 May 2022; Published 18 June 2022

Academic Editor: Everardo Vargas-Rodriguez

Copyright © 2022 Han Ren et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For the purpose of simultaneously estimating and locating the linear frequency modulation (LFM) emitter with unknown
parameters, an innovative approach, i.e., Fast Direct Position Determination (FDPD), is introduced. The proposed algorithm is
based on maximum likelihood estimation (MLE) and spectrum detection. To improve the accuracy and overcome the dramatic
complexity of plain maximum likelihood formulation, we further derive the objective function equation of Direct Position
Determination (DPD) algorithm and present an enhanced strategy to solve the highly nonlinear optimization problem. By
combining the two-step localization method, one-step localization method, and short-time Fourier transform (STFT), our
approach realizes jointly estimation of the transmitted signal parameters and emitter localization. Simulation results show that
the proposed method is superior compared to the existing DPD, and two-step localization algorithms in terms of localization
error and computational complexity, especially for low signal-to-noise ratio (SNR).

1. Introduction

Localization of emitters is a fundamental demand in
many application fields, such as radar [1, 2], sonar [3,
4], global navigation satellite systems (GNSS) [5, 6],
wireless sensor network [7, 8], and seismic exploration
[9, 10]. Linear frequency modulation (LFM) signals,
known as large time-bandwidth product and high resolu-
tion signals, are frequently used in localization systems
and have attracted increasing attention of many scholars.
As stealth technology and low intercept technology get
prosperous and mature, passive emitter localization tech-
nology has gradually developed from the traditional sin-
gle station to using several widely distributed receiver
stations. This paper considers a passive localization prob-
lem for an emitter by multiple diffusely separated
receiver stations.

In general, the localization methods contain two main
categories of two-step localization method and one-step

localization method. Algorithms of two-step localization
method [11–20] are commonly composed of two steps:
first, each receiver station measures and computes the
parameters related to the position of the target. The
parameters involved in position include time difference
of arrival (TDOA) [11–13], angle of arrival (AOA)
[14–17], frequency difference of arrival (FDOA) [18–20],
etc. The second step is to construct equations using the
parameters to estimate the position of the target. Both
steps of two-step method might be optimal; given their
input, two-step method is still suboptimal. Since the cor-
relation between different receiver stations is ignored, the
precision of the parameter measurement in the first step
is limited. Moreover, the parameters may be virtually
absent in some of the receiver stations due to the signal
strength fluctuation and different path attenuation,
leading to data association and performance deterioration
issues, especially in low signal-to-noise ratio (SNR)
scenarios.
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One-step localization method [21–35] processes the
observed signals in the central processor without parame-
ter extraction and then constructs the cost function only
related to the position of the emitter. This kind of localiza-
tion algorithms finally obtain the position of the emitter
through the maximum likelihood estimation (MLE), the
least squares, the grid search, gradient-based methods,
etc. Therefore, it is also referred to direct position determi-
nation (DPD) [21–24]. In 2004, Weiss first proposed
direct position determination technology [21], analyzed,
and compared the DPD performance with AOA for sig-
nals with known (DPD-known) and unknown waveforms
(DPD-unknown) [22, 23]. Over the past dozen years, mul-
tiple DPD algorithms have been presented to enhance per-
formance of passive localization system based on different
approaches including the maximum likelihood (ML) [25,
26], the time frequency analysis (DPD-STFT-w) [27], the
multiple signal classification (MUSIC) [28, 29], the expec-
tation maximization (EM-DPD) [30, 31], the minimum
variance distortionless response (MVDR) [32–34], and
the time-varying delay [35]. Compared with the one-step
approaches, the DPD algorithms directly estimate the ini-
tial position of the target according to the received signals
in the central station, avoiding the process of correlation
of parameters of different receivers. Moreover, DPD can
locate the signals (simultaneous signals with same fre-
quency, etc.) which are difficult to be processed by tradi-
tional methods. At the same time, because the cost
function of DPD is only related to the position of the
emitter, it has higher localization accuracy and better
robustness at lower SNR on account of making full use
of the prior information of the signals which are coming
from the same emitter [23]. However, since the DPD algo-
rithms deal with the original sampled signals rather than
the analytic solutions of the emitter, the computational
complexity increases rapidly and the estimation perfor-
mance of waveform parameters deteriorates drastically
when the SNR is lower than a threshold point, i.e., the
“threshold effect.”

This paper addresses passive localization of an LFM
emitter with unknown signal parameters. Aiming at the
problem of “threshold effect” and high computational com-
plexity of DPD algorithms at low SNR, we proposed a Fast
Direct Position Determination (FDPD) algorithm. The pro-
posed algorithm can realize the combination of emitter
localization and parameter estimation of the LFM signal.
The main procedures of this approach include the following:

(i) Firstly, the signal spectrum is obtained through
short-time Fourier transform (STFT) and other
operations (linear fitting, the least square method,
etc.); then, the SNR is calculated

(ii) Compared the SNR with the threshold point, the
cooperative localization of two-step method and
one-step method is combined to finally achieve the
optimal localization. The performance of the two-
step method and one-step method is similar at high
SNR, we choose the two-step method owing to its
less computational complexity. Chan algorithm

[36] and Taylor algorithm [37], which are two rep-
resentative algorithms of two-step localization
method, are selected to complete collaborative local-
ization: Chan algorithm is used to estimate the ini-
tial position coordinates, regarding it as the initial
value, and Taylor series expansion algorithm is used
to obtain the further position coordinates

(iii) At low SNR, the initial frequency, chirp rate, and
other signal parameters are estimated by time fre-
quency analysis, thus we can capture the entire
parameter set of the LFM profile of the signal and
obtain an objective function. Then, a four dimen-
sional search (4D) is carried out at the position
coordinates obtained by Chan and Taylor algo-
rithms. To solve the highly nonlinear optimization
problem (four-dimensional search), we turn the
four-dimensional search into a two-dimensional
parameter estimation combined with grid search.
The search range is determined by the error analysis
of Chan and Taylor algorithms. Simulation results
show that the proposed algorithm reduces the com-
putational complexity, and the positioning accuracy
is better than Chan, Taylor, DPD, and other tradi-
tional algorithms

The rest of this paper is organized as follows. Section 2
introduces the model of the LFM signal for widely separated
receiver stations. In Section 3, the localization problem for-
mulated in an ML estimation paradigm is clarified. Section
4 presents the proposed FDPD algorithm in detail. Section
5 provides the numerical simulations. The conclusions are
drawn in Section 6.

2. Signal Model

Consider a 2D Cartesian coordinate system where a nonco-
operative stationary emitter transmitting signals. We let the
vectors plðxl, ylÞ, ðl = 1, 2,⋯, LÞ represent the positions of L
widely separated receiver stations. The transmitter position
is denoted by the vector of coordinates pðx, yÞ. As shown
in Figure 1, the emitter transmitted an LFM signal sðtÞ.
Then, the signal is intercepted by the receiver stations and
transmitted to the center processor.

The LFM signal is modeled as

s t ; f0, k, Tp

� �
= exp j2π f0t +

1
2 kt

2
� �� �

, 0 < t < Tp, ð1Þ

where f0 denotes the initial frequency of the LFM signal, k is
the chirp rate, and Tp is the time duration. The signal
observed by the lth receiver station is given by

rl tð Þ = blαl pð Þs t − τl pð Þ − t0 ; f0, k, Tp

� �
+ nl tð Þ: ð2Þ

rlðtÞ is a time-dependent vector, bl is an unknown com-
plex scalar representing the attenuation coefficient related
with regard to the path from the emitter to the receiver
stations, and αlðpÞ is the lth array response to signal trans-
mitted from position p. sðt − τlðpÞ − t0 ; f0, k, TpÞ is the
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signal waveform, transmitted at time t0 and delayed by
τlðpÞ. The vector nlðtÞ represents the independent and
identically distributed zero-mean complex Gaussian white
noise with corvariance matrix Rl = σl

2I, and each receiving
channel is independent of each other. τlðpÞ can be calcu-
lated by [35]

τl pð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − xlð Þ2 + y − ylð Þ2

q
c

, ð3Þ

with c denoting the speed of light.
After sampling, the continuous signal of Equation (2)

can be expressed in a vector form

rl jð Þ = blαl pð Þsl jð Þ + nl jð Þ, 0 ≤ j ≤Ns − 1, ð4Þ

where

sl jð Þ ≜ s t − τl pð Þ − t0ð Þjt=jT ,
rl jð Þ = rl tð Þjt=jT ,
nl jð Þ = nl tð Þjt=jT :

ð5Þ

with Ns denotes the number of the samples, f s denotes
the sampling frequency, B is the signal bandwidth, and T
is the time duration of the received signal, thus Ns = T ∗ f s
(f s ≥ 2B).

3. Problem Formulation about Direct
Position Determination

Derived from [38], the MLE of the unknown parameter vec-
tor can be estimated by examining the likelihood ratio, with
H1 corresponding to the target-present hypothesis. When
the distribution characteristics of noise �nl are known, MLE
can be used [21, 39]. Here, we assume that �nl is the identi-
cally distributed zero-mean complex Gaussian white noise,
with correlation matrix Rl = σl

2I. In addition, the receiver

stations are distributed widely enough to warrant mutual
independence of noise vectors,

�nl⊥ �nl ′ , l ≠ l′: ð6Þ

According to Equation (4), we can construct the proba-
bility density function (PDF) as

P �r H1 ; p, t0jð Þ =
YL
l=1

P �rl H1 ; p, t0jð Þ

= C1
YL
l=1

exp −1
2 �rl − bl�slð ÞHR−1

l �rl − bl�slð Þ
� �

:

ð7Þ

where C1 is a constant, and ½:�H represents the operation of
conjugation transpose. Thus, the likelihood ratio function
can be obtained as

L �r ; p, t0ð Þ = P �r H1 ; p, t0jð Þ
P �r H0jð Þ

= C1
C0

exp −1
2 �rl − bl�slð ÞHR−1

l �rl − bl�slð Þ + 1
2�r

H
l R−1

l �rl
� �

:

ð8Þ

Let ∂LðrlÞ/∂bl = 0, bl = �slHR−1
l �sl/�slHR−1

l �sl, Rl = σ21I, and
j�sj2 = 1. Finally, we can get the maximum likelihood function
as follows:

L �r ; p, t0ð Þ∝ 〠
L

l=1

1
σ2l

�slH�rl
		 		2� �

= 〠
L

l=1

1
σ2
l

〠
Ns−1

k=0
ejωk τl pð Þ½ ��s∗ k½ ��rl k½ �

					
					
2

:

ð9Þ

Remarkably, we observe from Equation (9) that the
parameters to be estimated in the objective function
include the transmitter position, the signal parameters,
and the time t0. It is a highly nonlinear optimization
problem whose closed-form description of the analytic
optimum solution is difficult to obtain. The numerical
solution based on grid search for the region of interest is
an alterative. However, the high-dimensional grid search
will become computationally prohibitive when the needed
localization accuracy increases. If the SNR is lower than
a threshold point, the estimation errors rise quickly, i.e.,
the “threshold effect.” Based on the above arguments, a
novel algorithm is investigated in the subsequent sections
to trade off algorithm performance for implementation
complexity.

4. Algorithm Description

In this section, we present a computationally efficient
approach to solve a highly nonlinear optimization problem
in passive localization. First, we employ STFT technique to
extract the valid spectrum fragment of the transmitting sig-
nals and then further estimate the instantaneous frequency,

LFM signal

LFM signal
LFM signal LFM signal

Emitter (x, y)

Receiver 1 (x1, y1)

Receiver 2 (x2, y2)

Receiver 3 (x3, y3) Receiver L (xL, yL)

Figure 1: Sketch map of an emitter and L widely distributed
receiver stations.
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spatial power, and other signal parameters. After extracting
peak points of the power spectrum, aiming at the disadvan-
tages of low precision of two-step method and high com-
plexity of DPD algorithm at low SNR, we adopt
corresponding objective functions to extract the emitter
positions. The algorithm is described in detail below.

4.1. Estimation of Signal Parameters and Spectrum Detection.
Under the circumstance of low SNR, the localization per-
formance of DPD algorithm will deteriorate significantly.
In order to improve the localization performance, in this
subsection, we adopt the time-frequency analysis method
to estimate the relevant parameters and detect the
spectrum.

4.1.1. Parameter Estimation Based on Time Frequency
Analysis. To estimate the LFM signal parameters, the most
important step is to estimate instantaneous frequency (IF)
from the received signal. The IF expression of the LFM sig-
nal is as follows:

f IFl f m tð Þ ≜ f0 + kt, 0 ≤ t ≤ Tp: ð10Þ

After sampling, f IFl f mðtÞ can be written in a vector form as

f IFl f m ≜ f IFl f m t0ð Þ,⋯, f IFl f m tαð Þ,⋯, f IFl f m tNp−1

 �h i

, ð11Þ

where 0 ≤ α ≤Np − 1, and Np is the number of samples of
the LFM signal with Np = Tp ∗ f s.

As can be seen from the above equations, IF is formed by
linear combination of initial frequency f0 and chirp rate k. A
large number of IF samples can be obtained through estima-
tion, and the corresponding f0 and k can be estimated from
the IF samples by means of parameter fitting.

For the LFM signal, short-time Fourier transform
(STFT) performs analysis on the signal in the time win-
dow and can intuitively reflect the trend of the frequency
and the change of spectrum along with time, thus the ini-
tial frequency and chirp rate of the signal can be estimated
efficiently, which has a good effect on the estimation accu-
racy, especially at low SNR [40–45]. The common STFT is
defined as

Hf τ, fð Þ =
ð
s τð Þh t − τð Þ exp j2πf τð Þdτ, ð12Þ

where hðτÞ is the time window function, which is called
analysis window as well.

Substituting Equation (12) into the expression of the
LFM signal [42], then the STFT for the LFM signal sðtÞ is
defined as

STFTs t, fð Þ = exp −j2π f − f0 + kτð Þτ½ �f g
× exp −jπkτ2

� �
h f − f0 − kτð Þ, 0 ≤ τ ≤ Tp,

ð13Þ

where

h fð Þ ≜〠
α

exp −jπkτ2
� �

g τð Þ exp −j2πf τð Þ: ð14Þ

By taking the square of the module of hð f Þ, the spectrum
(SP) of the LFM signal can be written in the following form:

P τ, fð Þ ≜ STFTs t, fð Þj j2 = h f − f0 − kτð Þj j2: ð15Þ

The Gaussian window is chosen as the analysis window
so that jhð f Þj2 is a Gaussian function in essence. jhð f Þj2 is
symmetry about the line f = 0 and achieves the maximum
value at f = 0. The above formula shows that the LFM sig-
nal’s spectrum STFTsðt, f Þ obtains the maximum value at
frequency point f0 + kτ at each discrete time τ. Therefore,
the IF of the LFM signal can be acquired by finding the
max point at each discrete time τ.

Hence, we can get the IF estimation as the following
expression:

f IFl f m τð Þ = argmax P τ, fð Þ½ �:
f

ð16Þ

Figure 2 shows the real value and estimated value of the
instantaneous frequency after linearly fitting by the least
square method when SNR = −5dB. Thus, the estimated
values of chirp rate and initial frequency can be calculated
from the fitted straight line.

4.1.2. Extraction of the SP of the LFM Signal. The SP of the
observed signal of the lth receiver station can be expressed
as [38]

P t, fð Þ =
P t, fð Þ, t0 < t < t0 + τl pð Þ,
n t, fð Þ, else,

(
ð17Þ

where nðt, f Þ represents the SP of noise.
After adding the moving window function hðτÞ, the

extracted LFM signal can be written as

Plfm r, p, t0, Tp

� �
= 1
L
〠
L

l=1
Plfml r, p, t0, Tp

� �
: ð18Þ

The SP of the LFM signal observed and extracted by
the lth receiver station in Equation (17) is shown in
Figure 3.

On the basis of the above process, the 2D distribution
of the chirp signal’s STFT is converted into 1D relation-
ship between frequency and time, which displays a coarse
line in the time-frequency plane. It can be seen from
Figure 3 that when SNR is at -5 dB, the spectral intensity
of the LFM signal is much greater than that of the noise.
It can be clearly seen from the figure that the time-
frequency characteristics of the LFM signal reflect the
sum of power spectral in each window. Summing the
maximum value of spectrum of each window helps to esti-
mate the parameters of the LFM signal and realize the
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spectrum detection. The localization algorithms after spec-
trum detection will be introduced in the subsequent
sections.

4.2. The Localization Algorithm Based on Spectrum
Detection. According to the “threshold effect” of DPD
algorithm, the localization accuracy will deteriorate sharply
when the SNR is lower than -5 dB [21]. The mean (or root
mean square) of miss distance will also increase rapidly.
At high SNR, DPD, Chan, Taylor algorithms have similar
performance in localization, but when the SNR is lower
than the threshold point, DPD methods have been dem-
onstrated to outperform two-step methods. For most of
the DPD algorithms require grid search in the final, which
increases computation complexity and transmission
demand in the case of lacking prior information. There-

fore, Chan and Taylor algorithms are first used for coarse
location. Then, grid search is carried out on the basis of
the results of the coarse location, which can greatly reduce
the workload. The complexity analysis will be detailed in
the next subsection. The whole FDPD algorithm process
is as follows.

4.2.1. Localization at High SNR. According to [46], in pas-
sive multistation localization, after obtaining TDOA mea-
surements by Chan algorithm [13, 36], the distance
differences between the emitter and the base stations are
obtained, thus multiple TDOA measurements form a set
of estimated equations about the emitter. We assume ðx̂,
ŷÞ is the estimated position of the emitter and ðxl, ylÞ, ðl
= 1, 2,⋯, LÞ is the known position of the lth receiver
station, then the emitter position can be calculated by
the following formula:

x̂

ŷ

" #
=

x21 y21

x31 y31

" #−1

×

1
2 K2 − K1 − R21

2� �
− R21R1

1
2 K3 − K1 − R31

2� �
− R31R1

2664
3775,
ð19Þ

where

xl1 = xl − x1, yl1 = yl − y1,

Rl1 = Rl − R1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xl − x̂ð Þ2 + yl − ŷð Þ2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − x̂ð Þ2 + y1 − ŷð Þ2

q
,

Kl = x2l + y2l :

ð20Þ

It has been shown that the iterative algorithms (Stan-
dard least squares, hyperbolic least squares, etc.) require
a definition of the initial parameters, which can signifi-
cantly affect solution accuracy and computational time
[47]. Therefore, to ensure the solution accuracy, the posi-
tion calculated by Chan algorithm is selected for initial
position ðx0, y0Þ of MS for Taylor expansion of the Taylor
algorithm [37]. Then, the weighted least square (WLS)
method [48, 49] is used to obtain the least squares estima-
tion of Z as follows:

Z = GTφ−1G
� �−1

GTφ−1h, ð21Þ

where ½:�T represents the transpose operator, and φ is the
covariance matrix of the measurement value of TDOA.
The value of the TDOA measurements covariance matrix
is estimated under the assumption that there are large
numbers of samples, or equivalently, long observation
time. Therefore, the Cramer-Rao matrix bound (CRMB)
of the estimated TDOA vector is used to represent the
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Figure 2: The IF estimated value and real value of LFM signal
when SNR = −5dB.
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value of the matrix [50].

φ =
2Tp

2π

ðB
0
ω2 S ωð Þ2

1 + S ωð Þtr N ωð Þ−1� �(

× tr N ωð Þ−1� �
Np ωð Þ−1 −Np ωð Þ−111TNP ωð Þ−1� 

dω
�−1,

Z = P0 R1½ �T ,

h =

R21 − R2 − R1ð Þ
R31 − R3 − R1ð Þ

⋮

Rl1 − Rl − R1ð Þ

2666664

3777775,

G =

x1 − x
R1

−
x2 − x
R2

y1 − y
R1

−
y2 − y
R2

x1 − x
R1

−
x3 − x
R3

y1 − y
R1

−
y3 − y
R3

⋮ ⋮
x1 − x
R1

−
xl − x
Rl

y1 − y
R1

−
yl − y
Rl

26666666664

37777777775
:

ð22Þ

where B is the bandwidth of the signal and trð ∗Þ is the
trace of matrix ∗. SðωÞ is the signal power spectrum, Nð
ωÞ = diag fN1ðωÞ,N2ðωÞ,⋯,NMðωÞg is the noise power
spectral matrix, NpðωÞ is the lower right M − 1 by M − 1
partition of the matrix NðωÞ, and 1 is a vector of unity
which has the same size as NpðωÞ.

The selection of the initial value of iterative Taylor-series
expansion method has a great influence on the location
result. If the initial value is not appropriate, the Taylor algo-
rithm will not converge. On the other hand, Chan algorithm
has fast operation speed and low computation complexity.
Although the Chan algorithm reduces the localization accu-
racy in poor channel environment, the localization results
can still reflect the general characteristics between the posi-
tion of the radiation source and the measured value, which
is conducive to the convergence of Taylor algorithm. There-
fore, we choose Chan algorithm to calculate the TDOA mea-
sured values, and the localization results of Chan algorithm
are taken as the initial value of Taylor series expansion algo-
rithm, then several iterations are carried out.

Hence, this paper adopts the collaborative localization of
Chan and Taylor algorithms using Equations (19)-(22) at
high SNR, which can not only ensure the small error of the
initial value of the Taylor expansion, so as to ensure the
localization accuracy, but also greatly reduce the amount of
calculation.

4.2.2. Localization at Low SNR. When the SNR is low, the
DPD algorithm is used on the basis of the location results
of Chan and Taylor algorithms. To get more accurate wave-
form parameters, STFT is used to assist signal parameter
estimation. DPD algorithm can obtain better localization
accuracy on the basis of more accurate signal parameters

estimation. In order to obtain more accurate positions, here,
an objective function is constructed for grid search.

The IF of the LFM signal is estimated from Equation
(16), so as to estimate the initial frequency and chirp rate,
and then substituted into the following function, which
describes the fitting error per unit time at different positions,
window width, and starting time, the function is given by

F r, p, t0, Tp

� �
=
∑α

df IFl f m τð Þ − kτ − f0

� �2
Tp

, ð23Þ

where 0 ≤ α ≤Ns − 1, Ns is the number of samples. ∑α

½ df IFl f m ðτÞ − kτ − f0�
2
is referred to the minimum cost func-

tion, thus Fðr, p, t0, TpÞ denotes the mean minimum cost
function, i.e., the fitting error per unit time at different posi-
tions. From Equation (15), 1/L∑L

l=1ðð1/σ2
l Þj�slH�rlj2Þ repre-

sents the total likelihood ratio function of the signal, which
reflects the sum of spectral power in all windows. ∑α∑

L
l=1

maxf ðPðτ, f ÞhðτÞÞ reflects the summation of the maximum
SP within the sliding window. To obtain higher parameter
estimation accuracy, the following objective function is
defined:

L �r ; p, t0ð Þ = 1
L
〠
L

l=1

1
σ2l

�slH�rl
		 		2� �

×
∑α∑

L
l=1 max

f
P τ, fð Þh τð Þð Þ

F r, p, t0, Tp

� � :

ð24Þ

Compared with the function in Equation (9), the objec-
tive function includes more factors of indicating the param-
eter estimation by means of STFT, which is maximized by
Fðr, p, t0, TpÞ. Then through grid search, we can estimate
the emitter position p, initial time t0, and signal pulse width
Tp more accurately. In most instances, four-dimensional
search cannot be considered as a viable solution to solve a
highly nonlinear optimization problem. Therefore, we used
an efficient decoupled strategy to solve the problem. The
basic idea of the strategy is to turn the four-dimensional
search into a two-dimensional parameter estimation com-
bined with grid search. Specifically, based on STFT, a two-
dimensional estimator is firstly designed to extract the initial
frequency f0 and chirp rate k of the LFM signal in the time-
frequency domain. Then, a four-dimensional search, includ-
ing the previously estimated waveform parameters, is carried
out, and the position of the emitter, the corresponding trans-
mitted time, time duration, and initial frequency can be
obtained by the search.

For determining when and which method should be
used, that is, to decide whether the emitter signal is in high
or low SNR environment, Equation (15) in 4.1.1 can be uti-
lized. By means of maximizing the spectrum at each win-
dow, it can be seen that the maximum spectrum of the
LFM signal is obviously different from the maximum spec-
trum of the noise. The spectrum difference between the
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LFM signal and the noise can be calculated and then com-
pared with the threshold point to determine whether the
emitter signal is at high or low SNR. The simulation diagram
of the maximum spectrum value changing over time is
shown in Figure 4.

The general pseudocodes of the proposed FDPD algo-
rithm are shown in Algorithm 1.

5. Simulation Results

In this section, simulations are brought forward to verify the
performance of the proposed algorithm. Four receiver sta-
tions used in the simulation are located at (0,0)m (m denotes
meter), (6000,0)m, (6000,6000)m, and (2400,6000)m,
respectively. The approximate coordinates of the radiation

Input: The observed signal r, the base station coordinates, space of grid search (Nx ×Ny) for p;
Output: Estimated parameters and the position of the radiation source;
1: For l=1 ··· L do
2: Compute the SP for lth observed signal.
3: Compute the maximum SP of the lth observed signal
4: Compare the maximum SP difference between the LFM
5: Signals and noise signal with the threshold value.
6: End for
7: If the maximum SP difference> threshold then
8: Compute the emitter position p using Equation (19)–(22).
9: End if
10: If the maximum SP difference< threshold then
11: For l=1 ··· L do
12: Compute the emitter position initial p1 using
13: Equation (19) - (22).
14: Determine the search range (Nx ×Ny) by the
15: Error analysis of Chan and Taylor algorithm.
16: For i = 1⋯ ðNx ×NyÞ do
17: Estimate the IF of the lth observed signal using Equation (16).
18: Estimate the initial frequency and chirp rate.
19: Extract the IF and compute the fitting error every time
20: Window per unit time at different position.
21: Compute the objective function value using Equation (24).
22: Find the maximum of the objective function and compute the
23: Emitter position p.
24: End for
25: End for
26: End if

Algorithm 1: Summary of the FDPD Algorithm.
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Figure 4: The maximum SP in each STFT window with time of -15 dB.
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source are (6000,4500)m. We perform extensive Monte
Carlo simulations. In the following analysis, the results are
collected and processed by averaging M Monte Carlo exper-
iments. Simulation parameters are shown in Table 1, where
M is the number of Monte Carlo experiments.

For each Monte Carlo experiment, we assume that the
error between the estimated position ðx̂l, ŷlÞ of the emitter
and the actual position ðx, yÞ is calculated as follows:

pl =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibxl − xð Þ2 + ŷl − yð Þ2

q
, ð25Þ

where pi is the estimation of p of the ith Monte Carlo trial.
The mean error (ME) of the estimated position is

obtained by the statistics of M Monte Carlo experiments.
ME is defined as

ME = 1
M

〠
M

l

pl: ð26Þ

The root mean square error (RMSE) of the estimated
parameters is defined as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/M∑M

i
bθ l − θ


 �2
r

θ
× 100%: ð27Þ

where θ denotes the parameter to be estimated, such as chirp
rate and initial frequency.

5.1. Analysis of Simulation Results. In Figure 3, we extract
the 1D frequency-time curve of the LFM signal based on
STFT and perform STFT on the transmitted signalrlðtÞ, the
spectrum of which is symmetry aboutf = 0. In order to get
the SNR for spectrum detection, according to 1/L∑α∑

L
l=1

maxf ðPðτ, f ÞhðτÞÞ in Equation (18), the amount of maxi-
mum SP within the sliding window can be viewed as a factor
of SP. The simulation of the variation of the maximum SP in
each STFT window with time is shown in the following
figure.

It can be seen from Figure 4 that when the SNR is -15 dB,
the maximum SP value of the LFM signal is obviously differ-
ent from the maximum SP value of the noise signal. Then,
the SP differential is calculated and compared with the
threshold point to determine the signal environment.

Figures 5 and 6 are simulation comparison diagrams of
FDPD and common direct localization algorithms.

As can be seen from Figures 5 and 6, the DPD-known
algorithm can acquire the optimal localization perfor-
mance for the case that the transmitted signal is
completely known to the receivers. Therefore, the perfor-
mance of DPD-known can be viewed as an upper bound
for other algorithms. Moreover, in high SNR environment,
namely, higher than 0dB, all the four algorithms achieve
superior localization accuracy and perform nearly equally.
When the SNR is below the threshold point, the ME and
RMSE of these algorithms rise quickly as SNR decreases.
As SNR decreases, the accuracy of the DPD-unknown

Table 1: Simulation signal parameters.

LFM signal parameter Parameter values

Pulse width 20 μs

Band width 20MHz

Sampling frequency 100MHz

Initial frequency 10MHz

Chirp rate 1MHz/μs

SNR (dB)
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Figure 5: The MEs of the estimated emitter position for four
different algorithms.
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Figure 6: The RMSEs of the estimated emitter position for four
different algorithms.
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deteriorates rapidly. When the emitter signal is unknown,
FDPD and DPD-STFT-w algorithm has better localization
accuracy compared with DPD-unknown algorithm, which
can ensure the accuracy that the RMSE is less than
100m when the SNR is above -5 dB. However, considering
the extremely high computational complexity of DPD
algorithms (DPD-STFT, EM-DPD, etc.), Chan and Taylor
algorithms are used for coarse localization, and parameters
are estimated on the basis of them, then the objective
function is maximized by using the estimated parameters
which are more accurate. This will greatly reduce the
amount of calculation, so it is called fast DPD (FDPD)
algorithm. The complexity analysis of FDPD algorithm
and DPD, DPD-known and DPD-STFT-w algorithms will
be described in detail in the next section.

5.2. Analysis of Complexity. The complexity of Chan and
Taylor algorithms is Oðn2ðL − 1ÞÞ, where n is the character-
istic dimension. In this paper, n is equals to 2. L denotes the
number of receiver stations. When L is 4, the complexity is
Oð12Þ, which is relatively low under the simulation back-
ground of this paper.

The complexity of DPD and DPD-STFT-w algorithm is
composed of the complexity of two-dimensional search,
complexity of maximum likelihood estimation, and least
square iterative fitting. The complexity of maximum likeli-
hood estimation least square iterative fitting is Of ðL,NsÞ
and OðLNsðNs + 1ÞÞ, respectively, both of which increase
with the number of receiver stations L and the number of
samples Ns. Hence, the overall computational complexity
of DPD algorithm is OðNx1Ny1NpNτððLNsðNs + 1Þ +Of ðL,
NsÞÞÞÞ, where Nx1

and Ny1
denote the number of meshes

on the x-axis and y-axis, respectively. Compared with DPD
algorithm, DPD-STFT-w algorithm needs to take STFT of
the observed signal from every receiver station, whose com-
putation complexity is ðLNSτ/ΔτÞ. Therefore, the overall
computational complexity of DPD-STFT-w algorithm is Oð
LNsτ/Δτ +Nx1

Ny1
NpNτððLNsðNs + 1Þ +Of ðL,NsÞÞÞÞ,

where τ is the window width of STFT, Δτ is the gliding step
length of STFT, Np is the total number of samples of the
LFM signal, and OðN toÞ is the computational complexity
of the estimation of t0.

For the complexity of two-dimensional search is reduced
significantly, then the complexity of FDPD algorithm is Oð

LNsτ/Δτ +Nx2
Ny2

NpNτððLNsðNs + 1Þ +Of ðL,NsÞÞÞÞ,
where Nx2

,Ny2
denotes the number of meshes on the x-axis

and y-axis, respectively. It can be seen from the complexity
of the three localization algorithms that the complexity is
determined by two-dimensional grid search, thus the pro-
posed FDPD method reduces the meshes on the axes
through combining parameter estimation, time frequency
analysis, STFT, and two-step method with DPD algorithm.

The complexity of these algorithms is summarized in
Table 2.

It can be seen from Table 2 that the complexity of FDPD
algorithm has been greatly reduced under the condition of
similar positioning accuracy. The combination of coarse grid
and fine grid is considered in our FDPD algorithm to realize
the balance between the number of grid points and the local-
ization accuracy. Therefore, compared with DPD, DPD-
STFT-w, and most of the direct localization algorithms, it
can save more than 90% of the time.

6. Conclusions

In this paper, we consider the passive localization of an LFM
signal emitter with unknown signal parameters. The prob-
lem is formulated as a highly nonlinear optimization prob-
lem at the beginning; then, the FDPD approach for jointly
estimating the position of the emitter and its transmitted sig-
nal parameters is presented. The FDPD method combines
two-step method (Chan algorithm, Taylor algorithm) and
one-step method (DPD algorithm) with short-time Fourier
transform to ensure the localization accuracy and greatly
reduces the computational complexity compared with DPD
algorithm. Spectrum detection is aimed at improving the
“threshold effect” of DPD algorithm. When the SNR is
higher than the threshold point, it can achieve almost the
same localization performance as the DPD algorithm when
the signal parameters are known. When the SNR is lower
than the threshold point, the computational complexity
can be saved more than 90%. Simulation results show that
the proposed method is obviously superior to the traditional
localization algorithms. However, the FDPD method is cur-
rently only supported in terms of several types of signals and
some specific conditions. Further work is underway to con-
sider the boundary conditions and the scenario with multi-
ple emitters transmitting complex signals, including
NLFM, BPSK, and QPSK.

Table 2: Computation complexity of the three different algorithms.

Algorithm Total operations Mean runtime (seconds)

Chan and Taylor O LNs Ns + 1ð Þð Þ 0.05

DPD O Nx1
Ny1

NpNτ LNs Ns + 1ð Þ +Of L,Nsð Þ� �� �
 �
105.11

DPD-STFT-w O
LNsτ

Δτ
+Nx1

Ny1
NpNτ LNs Ns + 1ð Þ +Of L,Nsð Þ� �� �� �

145.80

F-DPD O
LNsτ

Δτ
+Nx2

Ny2
NpNτ LNs Ns + 1ð Þ +Of L,Nsð Þ� �� �� �

3.77
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