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Inspired by the notion of swarm robotics, sensing, and minimalism, in this paper, we study and analyze how a collection of only
1D depth scans can be used as a part of the minimum feature for human body detection and its segmentation in a point cloud. In
relation to the traditional approaches which require a complete point cloud model representation for skeleton model
reconstruction, our proposed approach offers a lower computation and power consumption, especially in sensor and robotic
networks. Our main objective is to investigate if the reduced number of training data through a collection of 1D scans of a
subject is related to the rate of recognition and if it can be used to accurately detect the human body and its posture. The
method takes advantage of the frequency components of the depth images (here, we refer to it as a 1D scan). To coordinate a
collection of these 1D scans obtained through a sensor network, we also proposed a sensor scheduling framework. The
framework is evaluated using two stationary depth sensors and a mobile depth sensor. The performance of our method was
analyzed through movements and posture details of a subject having two relative orientations with respect to the sensors with
two classes of postures, namely, walking and standing. The novelty of the paper can be summarized in 3 main points. Firstly,
unlike deep learning methods, our approach would require a smaller dataset for training. Secondly, our case studies show that
the method uses very limited training dataset and still can detect the unseen situation and reasonably estimate the orientation
and detail of the posture. Finally, we propose an online scheduler to improve the energy efficiency of the network sensor and
minimize the number of sensors required for surveillance monitoring by employing a mobile sensor to recover the occluded
views of the stationary sensors. We showed that with the training data captured on 1m from the camera, the algorithm can
detect the detailed posture of the subject from 1, 2, 3, and 4 meters away from the sensor during the walking and standing
with average accuracy of 93% and for different orientation with respect to the sensor by 71% accuracy.

1. Introduction

Analysis of human posture and recognition of its movements
and action are some of the key elements in various fields such
as health, entertainment, and security. Despite the current
advances, the field still faces many challenges due to variation
in human postures, its appearances, the partial occlusion, the
presence of complex background, and variation in illumina-
tion conditions. Similar general recognition challenges have
been identified in other fields such as agriculture [1, 2], con-
struction [3], and manufacturing [4].

Traditionally, RGB cameras are employed to detect the
presence and recognition of the human body. Recently, var-
ious tools and approaches from signal processing, deep
learning, and artificial intelligence to sensor networks and
robotics have shown great promise. However, these
approaches usually rely on a large amount of data for their
training and implementation [5–13]. The introduction of
time-of-flight sensor, i.e., depth sensor, has also contributed
significantly to associating sensed information in the con-
struction of the spatial point cloud information from the
scene. The key advantages of the depth sensors are their
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robustness against environmental effects such as illumina-
tion changes or color inconsistency [14–22].

Inspired by the notion of swarm intelligence [23], in this
paper, we explore and study a novel notion of RoI (region of
Interest) to segment the human body in each frame associated
with the sensor and robotic network. The proposed RoI model
is inspired by the human perception system for reducing the
effect of unwanted distractors in the scene [24]. These models
gained broad attraction due to their ability to enable the track-
ing system to focus on the possible positions of the tracked tar-
get. In this paper, a method is proposed where changes are
detected using the sampled point cloud representation within
RoI. In order to reduce the associated computational complex-
ity, we utilize selective point cloud sampling. We refer to such
a sampling approach as 1D scans. The employment of 1D
scans allows minimization of the sensed information through
the sensor and robotic network.

However, since the depth frame is noisy and contami-
nated with outliers and flying pixels, a series of preprocess-
ing steps need to be carried. FFT profile of 1D scans has
been used within the framework of SVM classifier to identify
the real changes in the scanned profile. If a change has been
detected on any of the reference 1D scans, RoI windows are
anchored within the location of changes in that 1D scan. The
size of the extracted window can vary depending on the
position and size of the detected change and its distance with
respect to the depth sensors. As such, the proposed method-
ology can be extended to detect more than one person. After
reliably detecting the position of the subject with respect to
the sensor, we utilize the predefined number of scans to esti-
mate subject orientation with respect to the sensor, and our
goal is to use the minimum number of scans to accurately
estimate the orientation of the subject which consequently
decreases the computational complexity that is aligned with
minimal sensing. Finally, we showed that our method can be
employed in calibration-free scenarios by multiple sensors in
a sensor network to extend the field of view of the monitor-
ing area. In addition, the proposed sensor network contains
a robot sensor to freely move around in the monitoring envi-
ronment and cover the areas out of the field of view of the
stationary sensors.

The remaining of the paper is organized as follows. In
Section 2, a review of recent related literature is presented.
Section 3 presents an overview of the change detection
method and the extraction of RoI window. Section 4 pre-
sents the structure of the proposed classifier to detect human
posture in a sensor and robotic network. Multisensor sched-
uling and using robot sensors are explained in Section 5. The
experimental results associated with the effectiveness of
using the minimum number of training data for detection
both in the view of stationary sensors and mobile sensors
are discussed in Section 6 along with details of the real-
time implementation of the paper. Discussions and conclu-
sions are presented in Section 7.

2. Related Work

The emergence of depth sensors allows the incorporation of
synchronized spatial information of the scene which can

improve the detection and segmentation tasks. In the litera-
ture, three main approaches have been proposed to incorpo-
rate depth data. The first approach uses depth along with
RGB as a piece of auxiliary information [25, 26]. In this
approach, the main data are extracted from the RGB frames,
and then the depth information is utilized to improve and
complement the data through RGB images. In the second
approach, both depth and RGB frames are considered to
extract the relevant features [27]. In [28], the depth data is
fused to yolo structure [29] in three different stages (early-
stage, mid-stage, and late-stage) and showed that the best
results can be achieved by fusing the depth information in
the middle layers of yolo. In the third approach, only depth
frames are utilized to accomplish the assigned task [30–33].
In [34], it is shown that the efficiency of using depth infor-
mation can be better than the results of RGB information
in some tracking scenarios.

Using deep-learning on RGB-D images is also increas-
ingly becoming popular. [35] presents one of the earliest
human pose detections using random forest technique.
Many approaches are trying to extract human silhouettes
and human poses using various structures of CNN [28, 36,
37]. [33] used only depth frames to locate the head of the
subject in the scene and then utilized depth map, multiorder
depth template, and height difference map as inputs to be
fed into a pretrained CNN. [36] extracted convolutional fea-
tures on the depth map and then used k -th nearest neigh-
borhood to find the corresponding parts of humans in
different depth frames. The skeletal points are mainly
extracted from the depth data and then employed for action
or pose detections [38–41]. People reidentification is another
widely explored area by using depth data [42] as a process in
which an individual is tagged and identified in a multisensor
field. [43] provided a synthesized dataset for people reidenti-
fication including depth and RGB information. Using depth
information such as depth similarity is assisting on segmen-
tation tasks in [44]. They used CNN for object segmentation
by taking advantage of depth similarity [44]. Many of the
above methods used RGB trained convolutional neural net-
works as the basis of the training. However, the different
nature of the depth information suggests the benefit of using
different models between RGB and depth information. This
also motivates the usage of depth information for feature
learning which can also lead to a complementary feature
learning for the recognition process.

An important aspect of this paper is to propose a method
that can reduce the amount of sensed data for pose estima-
tion and tracking in relation to complete RGB image point
cloud for skeleton model reconstruction. The notion of min-
imal data for tracking using weak detection sensors (those
which provide simple crossing information) is discussed in
[45]. Minimal sensing is an important issue in many applica-
tions including robotics [46], quadrotor flight [47], remote
sensing [48], and vision [49]. To address the requirements
of minimal sensing, two main strategies have been utilized
in this paper. First, only part of the depth map has been used
as an input for estimating the pose of the subject. The per-
formance of this approach is experimentally demonstrated
which shows the relationship between the number of depth
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scans (extracted from depth map) and the estimation accu-
racy. Second, it is shown that the collected training data at
the location of one meter from the sensor plane can result
in a good pose estimation accuracy when the subject is
placed further than one meter (up to four meters) from the
sensor. In the proposed method, we do not extract any skel-
eton points to be used as a part of pose detection; instead, we
are using a collection of 1D scans. To the best of our knowl-
edge, majority of the state of the art in pose detection algo-
rithms are based on extraction of skeleton points ([50, 51])
which requires a more complex steps compared to extracting
based on series of 1D scans.

As a part of the adaptive active sensing strategy, we uti-
lized a robot equipped with a depth sensor to dynamically
extend the field of view of the monitoring, relative to the
position of the stationary sensors. The robot can move to
some adaptively defined trajectory based on the prediction
of the subject’s movements. In [52], the authors used a
mobile robot in a supermarket environment to detect the
human body and distinguish between two main postures as
standing and squatting. They cluster the point clouds to seg-
ment the human body. They then divided the segmented
point cloud into four main regions to separate the standing
from squad postures. They used surface normal associated

with patches of the point cloud as features to be fed to
1vs1-SVM classifier for human nonhuman classification
and different postures. In [53], a depth sensor mounted on
a mobile robot is used to estimate the posture of the subject
for lying down, sitting, standing, and bending over.

In this paper, we take advantage of a novel RoI window
to improve real-time performance and minimize the neces-
sary information for pose detection and tracking. The pro-
posed method consists of four stages. (1) change detection,
(2) RoI extraction, (3) classification, and finally, (4) data
fusion from multiple sensors and a robot. The first part of
the algorithm is responsible for the basic extraction of any
potential movement in the scene followed by steps to
remove any noise and outliers leading to deciphering the
most reliable changes in the scene. Most importantly,
instead of subtracting the complete depth data, we introduce
the new method by incorporating a collection of 1D scans
(i.e., by taking advantage of one single row of the depth
image at a time). This is our minimalization approach to
sensing information and can be employed in many applica-
tions with limited resources. After the change detection step,
the RoI area is built to contain the depth points belonging to
the detected object. The frequency feature characteristics of
the detected change are then extracted and incorporated into
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Figure 1: (a) Depth image of the background. (b) Depth image of the foreground. (c) Point cloud of the foreground and the selected scan
showed by green points. (d) Selected scan from the background and the foreground and their subtractions.

3Journal of Sensors



the body detection and posture classifier. These extracted
features along with their spatial information are utilized in
the network of sensors were the most qualified sensor(s)
are assigned to track and monitor the body. Finally, a robot
sensor is utilized to find the subject in an uncovered moni-
toring area with the help of the schedular. This paper pro-
vides the method to use a smaller dataset and by using
FFT features, we are able to predict the unseen situations
(subjects positioned at different locations with respect to
the sensors) reasonably accurate. In addition, we have used
an schedular to improve the energy efficiency of the system
and minimize the number of sensors required to monitor
the surveillance environment.

3. Preliminaries: Overview of Change Detection
and RoI Extraction

A novel change detection algorithm for event monitoring
was previously proposed by the authors using only depth
information [54]. In this section, we present an overview of
this algorithm with newly added features relevant to the
objectives of this paper. This is an important phase of the
algorithm which allows the definition of an RoI window
for processing only data points to be defined within the
RoI which are confined to the tracked subject. This is also
a part of the overall minimalization framework by focusing

on a part of the frame instead of the whole frame in reducing
computational overheads. The detected change is then used
as a seed region in order to segment the foreground and fur-
ther define the RoI. In the following subsections, we first
present details of the change detection algorithm and then
outline the RoI extraction method.

3.1. Change Detection Algorithm. Initially, we assume that
we have a set of depth images which correspond to a fixed
background. Ideally, the subtraction of the foreground and
the background should result in detecting the changes in
the scene. However, depth images are usually very noisy
and unstable. In addition, imperfections of depth images
such as missing points result in ambiguity in the measure-
ments. Denoising and smoothing of the depth images were
the main topics of many past works such as [55, 56]. How-
ever, these methods are usually time-consuming and not
practical for real-time applications. In work [54], we showed
that how learning the features which can include distance
and angle from sensor center can improve the noise removal
process. This information can be used to compute the
amount of contribution of each pixel by estimating the
chance of a pixel affected by noise using a statically model
of the sensor placed at different positions with respect to
the monitoring environment. In this paper, we utilize a sim-
ilar concept but instead, we train a model to learn the
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behavior of the noise and use that it to mitigate its impact.
We focus on finding changes in a single selected 1D scan
in order to associate them with changes in the scene. A 1D
scan contains only 1 row of the depth image, which implies
that it has a lower dimension than the original depth image.
Let D =Dði, jÞ (for example, for Microsoft Kinect V2, i = f
1, 512g, j = f1,422 g ) be the depth image (i.e., [512,424]);
then, a 1D scan which is a row of the depth image can be
defined as SaðjÞ where j = f1,422g and 1 < a < 512 are the
scan indicator.

Figures 1(a) and 1(b) show the depth frame of back-
ground and foreground, respectively. Figure 1(c) illustrates
the corresponding point cloud to the foreground where the
green points belong to the selected scan. Figure 1(d) shows
the scans obtained from the background and the foreground
(top image), along with their subtraction (bottom image). As
can be seen, the simple subtraction of the two scans results
in multiple false change detections due to the presence of
numerous noise and outliers. In order to eliminate the noise,
we proposed previously to determine the weight of each point
that contributes to the detected changes based on its position
with respect to the depth sensor. We estimate changes in each
pixel by formulating a noise band corresponding to the pixel
to be affected by noise. In this paper, we proposed to learn
the behavior of noise and train a SVM model to classify noise
and no noise for detecting changes.

Figure 2 shows the steps which are followed in order to
reliably detect any changes in the scene and remove the

faulty detections. In the first step, a 1D scan of both back-
ground (Figure 2(a)) and foreground (Figure 2(b)) is
obtained which are shown in Figures 2(c) and 2(d)), respec-
tively. Then, the subtraction of these scans is utilized to iden-
tify the candidates of the potential change (shown in
Figure 2(e)). To decrease the effect of missing points and
outliers, we perform a sliding window IQR (interquartile
range) outlier removal technique [57] which is explained
below.

Let 4 < ω < 422 be the size of the sliding window, in a
current window W = Saðb : b + ωÞ (where ω is the size of
the sliding window, W is the window, and b is the window
start position in the scan). In IQR techniques, we will change
the value of WðjÞ to the median M if WðjÞ <m −Q2 or W
ðjÞ >m +Q1 where Q1 is the upper quadrant of w and Q2
is the lower quadrant, and m is its median. The result after
IQR outlier removal technique is shown in (Figure 2(f)),
where some of the falsely detected changes (false positive)
are eliminated from the results. In this stage, we need to
cluster the changes of the scan to split up each change in
the scene. To do so, the rate of variation in depth value is
computed along with the direction of 1D scan (if j = 0 is
the start of the scan, its direction is in the direction of
increasing order of the index). Finally, by applying a selected
threshold to the magnitude of the result, it is possible to
detect each of the independent changes. Figure 2(g) illus-
trates two detected clusters in blue and green color. How-
ever, the detected change in blue is a false positive and
should not be accepted as a change (Figure 2(h)).
Figure 2(g) shows the position of each cluster in the point
cloud where the blue points are false positive.

Finally, by performing fast Fourier transform (FFT) on
each cluster, the frequency features are extracted and nor-
malized between zero and 1 (shown in Figure 2(i)). Using
these feature vectors as an input to a supported vector
machine (SVM) classifier, the pixels that are candidates for
change can be classified into two classes of accepted change
and nonaccepted. In the training phase, since the depth
image is noisy, the nonacceptable changes happened more
frequently. Hence, to make the training data balanced (have
an approximately equal number of images in each set), we
downsampled the nonaccepted changes in the training set.
Figure 2(j) illustrates the result of the approach to find the
reliable change on the scene.

The number of scan can vary depending on the applica-
tion and its position can be different for consecutive frames
to make sure that the whole changes of the scene will be cov-
ered at the end.

3.2. Foreground Segmentation Using RoI Extraction. The
position of the changes in the scene can be used as depth
cues for RoI extraction using a collection of primary 1D
scans instead of the full depth frame. Here, we perform scans
defined by sbi : bi = a ± α i where a is the position of the pri-
mary scan and α is the increment factor between the consec-
utive scans and is determined based on the estimated depth
of the object in the foreground.

Figure 3 illustrates the steps needed in order to extract
the RoI following Figure 2(h). Points from any new scans
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are not collected when they are determined to have the lower
expected value of belonging to the same detected object. For
example, if the detected change in the scan sa is in the range
of l1 and l2 (determined in the scan the change has been
detected), then the RoI in the immediate next scan would
be from ½l1 − τ, l2 + τ� where τ is the extending factor that
can be determined based on the estimated depth of the
object under consideration. The extraction of change in the
new scan will be done using the same steps as subsection
phase 1 in Figure 2. Detected points (if any) in this new scan
are recorded as changes and will be added to the set fore-
ground (Figure 3(b)). Finally, the outlier will be removed
from the detected object along all three dimensions. The
result of the outlier removal is shown in Figures 3(b)–3(d)
which is confined to the human body. Using this approach,
other objects (rather than humans) can also be detected by
classifying any changes to the human or nonhuman class.
This can further be used as a part of human posture
estimation.

4. Human Posture Estimation

In this section, we will use the frequency features of 1D scans
to detect and further classify body posture. As a part of an
illustration and experimental studies, we aim to detect and
track the subject in a network of sensors consisting of two
stationary depth sensors and one mobile robot equipped
with a depth sensor. Two classes of information from each
tracked subject are investigated: first, information regarding
how to distinguish between the relative locations of the sub-
ject with respect to each sensor and the robot, and second,
information related to movement details, e.g., the movement
of the legs while the subject is walking. Our main objective is
to study how minimization of the number of training data of
a subject is related to the rate of recognition. Furthermore,
we aim to explore how using training data obtained at a sin-
gle location with respect to a sensor can affect the accuracy
of posture estimation throughout the whole monitoring
area. The main features utilized in this paper are mainly
the frequency profile of the separately performed scans from

the subject point clouds. In the following, details associated
with the feature extraction are presented.

4.1. Feature Extraction. The purpose of this study is to dis-
tinguish various details between classes of body posture. In
works [58, 59], we showed that the frequency features can
be used to accurately classify the general overall postures of
the subject, e.g., sitting, standing, or lying down. However,
no further analysis was carried in regard to the level of detail
associated with each posture (e.g., the location of the subject
with respect to the sensor of the relative pose of limbs).
Additionally, it is possible to define various body postures
as key postures where one can interpret several intermedi-
ates once between any two consecutive key postures. Two
main analyses are studied in this work. Firstly, we analyze
and distinguish between different relative locations of the
body with respect sensor. This distinction is very important
in many scenarios such as in determining the direction of
movements. An example of this application is to estimate
the location of the subject in order to guide the mobile robot
sensor toward proximal locations with respect to the subject
when the subject is out of the field of view of the stationary
sensors. We define two seed orientations of the subject with
respect to the sensor as shown in Figure 4(a) which are 0-
degree and 90-degree. Naturally, there are many increments
of angular orientations but here we are only concerned with
two main classes as the main anchor for other angular orien-
tations. In the other words, other orientations can be inter-
preted through incremental mappings. Our second
objective is to distinguish the various poses of a posture.
For example, as part of poses associated with a walking
sequence, we focus to find out if the subject keeps a leg
one in front of the other (posture during walking) or both
legs are on the ground and close to each other (posture dur-
ing standing, Figure 4(b)).

The first step toward our objectives is feature extraction.
Figure 5 illustrates our approach to extracting features of
each posture. The first step is to detect the subject body
(foreground) using the method which was presented in the
previous section. Let Nsf be the number of scans that

Walk Stand
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(a)

Walk Stand

90°

(b)

Figure 4: Two classes of main orientation with respect to the depth sensor in two postures of walking and standing.
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belongs to the subject s in frame f . In each frame, Nsf can be
different depending on the size of the subject and its position
with respect to the depth sensor. For the purpose of posture

detection, n number of these scans are utilized where n <Nsf .
We will analyze and discuss the contribution of n to our
performance evaluation results. Having a constant number
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of scans for all subjects in all of the tracking frames helps
to keep the constant size feature vector during the training
and testing phases at different locations.

Before extracting the frequency features, we first map the
human body to a new coordinate system in which the origin
is located on the body coordinate frame, i.e., the origin of the
body coordinate frame system and its orientation is defined
in the plane passing through the human body. The rotation
matrix for mapping the sensor coordinate system to the new
coordinate system (passing through the human body) can be
calculated using principal component analysis (PCA) of the
points belonging to the subject, and the fact that one of the
axes of the coordinate of the frame is perpendicular to the
calculated plane. The origin of the coordinate system will
be located at O = fmedðxijÞ, medðyijÞ, min ðzijÞg. The new
coordinate system of the example in Figure 5(a)) is shown
in Figure 5(c)). Figure 6 illustrates the plane and the result
of the change in the coordinate system.

One of the important advantages of frequency feature
extraction is that the noise can be filtered easily by cutting
off the higher frequency components. Figure 7 illustrates
the effect of this property using an example. Figure 7(a))
shows the original scans. After taking the FFT and removing
the higher frequencies (cut off frequency is f = 50) and con-

verting it back through inverse FFT, the scans are smoother
and hence contain only the main information regarding the
orientation or posture of the subject. Besides, the feature
number for each scan remains similar and independent of
the number of points in each scan.

Let Sai where ai = ½1⋯ n� be one of the selected scans
from the subject point cloud. We up sample each scan to I
≥max ð∀n

i=1sizeðsaiÞÞ where I is constant for all the scans
of all the subjects in all of the frames. This step is necessary
to ensure that the extracted frequencies contain the signal
information, and the features are similar in all samples of
scans.

In the next step, we perform the FFT of each signal after
filtering out the higher frequency components and keeping
only m first dominant frequencies. Finally, the selected fre-
quencies in a given 1D scan are also employed as a part of
the enhanced features for the classification.

4.2. Classification Algorithms. In this subsection, we present
details of the classification methods based on the extracted
frequency features. The importance of classification based
on frequency features in comparison with the spatial domain
features is that it is not dependent on the amplitude of the
signal. This offers two advantages: (a) it is less dependent
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on the body shape of the subject, and (b) it is independent of
the position of the subject with respect to the sensor.
Figure 8 shows an example of frequency features of two sub-
jects in the same postures. The first image belongs to a
woman at age 25 while the second and third ones belong
to a woman in her 30 with a higher mass body. The corre-
sponding scans are shown by red points in each image,
and the correlations between the frequencies of the scans
are also shown in the image. The correlation between the
frequencies suggests a high similarity between the scans
taken from different subjects in the same posture. These
two features are explored in order to reduce the number of

training sets which is one important step for minimalization
purposes.

The training set is obtained at a single location in the
monitoring area. For the training data set, a single subject
is asked to stand in front of a sensor at a distance of 1m
from the sensor plane. The test dataset is then collected from
various subjects at different locations with respect to the sen-
sors. Figure 9 illustrates the locations where the test images
are captured (blue areas) and also shows the location of
the single training dataset (red area).

For both training and testing datasets and each subject,
we perform n scans and for each of the scans (as performed
above), we computed the first m frequency profiles that are
utilized as the features. The effect of setting different values
for m and n is also analyzed and is presented in the next
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section. As a result, for each subject in a frame, a total of n
×m features are extracted. These features are used for clas-
sification purposes to detect details associated with the
movement of the body. We use the extracted features as ½1
, n ×m� array as an input to a k-nearest neighbour classifica-
tion algorithm. The distance between each sample is calcu-
lated by Manhattan distance with k = 3. For testing, the
subjects are asked to freely move and stand in different
places toward both stationary sensors and the robot. The
result of each sensor detection is presented in Section 6.

5. Sensor Network Scheduler

Using multiple sensors can assist in increasing the field of
view (FoV) of the monitoring area and can also improve
the accuracy of the tracking. In addition, when sensing is
also distributed between stationary and mobile sensing plat-
forms, it allows the creation of an adaptive monitoring envi-
ronment where the overall field of view can be adjusted and
reconfigured. However, taking multiple images from differ-
ent sensors will not necessarily improve the accuracy of the
tracking. The movement of the target can trigger more than
one sensor, and hence a scheduler is needed to manage the
sensors and select the most qualified stationary sensors or
reconfigure the position of the mobile sensors. In this sec-
tion, we present our method for scheduling multiple sensors.
Let f n1 be the frame when the subject enters the field of view
of one of the stationary sensors. Let the orientation of the
subject with respect to the sensor to be α = f0, 90g (one of
two main orientations shown in Figure 4) with its position
with respect to the sensor frame f1 be defined as fxf 1, yf 1,
zf 1g , and the subject’s position in the frame f m2

is fxfm,
yfm, zfmg. The sense of direction of movement of the subject
with respect to the sensor can be classified as (a) movement
toward a stationary sensor, (b) movement toward the other
stationary sensor or the current position of a mobile robot
sensor, and (c) movement away from the current coverage
of the stationary sensors. Given the above scenarios, the
scheduler should perform two tasks: first, it should assign
the most qualified sensor for the posture estimation and sec-
ond, it should plan to navigate the mobile robot sensor
toward a direction that can have the subject in its FoV when
moving away from the current coverage of the stationary
sensors. In the following, first, we present the algorithm
which defines the most qualified sensor which can be used
for tracking, and then we define the mobile sensor naviga-

tion algorithm which enables us to keep the subject in the
FoV of the mobile sensor and hence extending the coverage
area.

5.1. Sensor Rating for Tracking. Figure 10 illustrates an
example of an instance of multisensor scenario along with
a mobile sensor with each sensor FoV and accuracy of pos-
ture estimation. The objective of the design of the sensor
scheduler is to better manage the accuracy in estimating
details associated with the posture of the subject (such as
the position with respect to sensors and the state of move-
ment). Two main factors can affect the accuracy of the esti-
mation: (1) the position of the target with respect to the
sensor and (2) the accuracy of the classifier. As the subject
gets closer to the sensor, it results in a higher resolution of
observation of the sensed information. As a result, it can
lead to a more accurate posture estimation and some spe-
cific orientations of the subject (as will be discussed in Sec-
tion 6.3). Table 1 shows the features of stationary and the
robot sensor.

Table 1: Comparison between two sensors type used in our experimental setup name Microsoft Kinect V2 (stationary sensors (k1 and k2))
and Astra Orbbec (robot sensor).

Sensor
k1 k2 R1

Stationary Stationary Robot

Type Kinect V2 Kinect V2 Orbbec Astra

Technology ToF ToF Structured light

Height 120 cm 120 cm 30 cm

Distance range 0.5-8 (effective 4) 0.5-8 (effective 4) 0.6-8m

Resolution 512 × 424 512 × 424 640 × 480
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Figure 11: The process of selecting sensor modes and role of
scheduler.
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Sensors constantly perform scans to detect any changes
in the environment for every T = t1 where T is the period
of capturing. If a sensor has detected no changes in the k
− th frame, it enters the “deep-sleep” mode for a period of
T = t2 where t2 > t1. On the other hand, if a change occurs
in the field of view of any of the sensors, it then computes
the distance of the subject to the sensor. The sensor that is
the closest to the target is assigned to the task of further
detecting the subject and its posture estimation while other
sensors enter the “light-sleep” in which T = t3 where t1 < t3
< t2. Let the distance of the subject with respect to a sensor
be measured as d (in meter) and let its average accuracy in a
test dataset for detection at distance d be given as A%. For a
given orientation of the target with respect to a sensor, we
can now define a tracking score as

S = a1A +
a2
d

+ a3θ, ð1Þ

where s ≤ 1 is the scor,e and a1, a2, and a3 are the normaliza-
tion factors so that the optimized condition provides S = 1.
Sensors which can detect the target will calculate their dis-
tance, percentage accuracy, and relative orientation toward
the subject, and the one with a closer distance takes over
the tracking task. This approach can provide an advantage
for continuous tracking while avoiding unnecessary switch-
ing between sensors. The scheduler reduces energy con-
sumption while keeping the accuracy of the posture
estimation accurate. Figure 11 shows the process of selecting
the mode for each stationary sensor and the role of scheduler
with an example.

5.2. Mobile Sensor Selection. A sensor which is mounted on a
mobile platform (e.g., robot) is utilized in order to extend the
monitoring area. It can provide sensed information about
the subject when the stationary sensors are not able to. It
can be used to increase the accuracy of detection of the tar-
get in the FoV of stationary sensors in the presence of a low
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Figure 12: (a) The location of stationary sensors (K1 and k2) and two predefined location of the robot (p0 and p1). The trajectory of the
subject’s movement is shown by purple dashed lines. (b) Score of each of the sensors (S1 and S2 and the robot in position 0 and position
1 SRp0 and SRp1). Two predefined position is determined for the robot, where SRp0 and SRp1 are the score of the robot sensor on any of
theses positions. (c) The score of each of the position of the robot calculated by equation (2).
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tracking score (i.e., the low value in S as introduced in equa-
tion (1)). In these events, the mobile robot sensor can move
to a location that can offer a higher value of tracking score
for better monitoring of the subject. As such, the predicted
direction of movement of the subject defined by the station-
ary sensors can be utilized to plan the trajectory of the
mobile sensor in the monitoring area (to be presented in
the next section). Figure 12 illustrates an example of the
robot trajectory and the performance of the scheduler to
track the subject. Here, we assume some predefined loca-
tions in the monitoring area to navigate the mobile robot
sensor to those locations. These locations are selected based
on the estimation of the next position of the subject where
the robot will be navigated to one of these predefined loca-
tions. Besides, the robot’s navigation to new locations is pro-
grammed to minimize the attention to the robot sensor (i.e.,
the path passes closer to the walls). The same algorithm of
change detection has been used by the mobile sensor to

detect the movement of the subject when entering its field
of view. Using the mobile sensor is beneficial especially to
minimize the number of stationary sensors by avoiding put-
ting any sensors in less crowded areas or less used areas.

5.3. Navigation of the Mobile Sensor. To navigate the robotic
sensors to the locations which are within the range of the
subject, the schedular uses the position of the subject with
respect to each of the stationary sensors. The goal is to keep
the S (in equation (1)) as maximum as possible (close to
one). Meanwhile, the robot should avoid unnecessary
movements in order to preserve energy and to be incon-
spicuous and out of the way of the subject. Some prede-
fined locations are determined for the robot sensor in
order to cover the out of the field of view areas of the sta-
tionary sensors. As the subject moves toward any of these
positions, the schedular would predict the best location
for the robot to be navigated to.

Figure 13: The designed GUI related to the custom API design in order to collect the required dataset.
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Assume we have defined M predefined locations for the
robot, our problem is to find the new position of the robot as
pprob which we can be formulated as follows:

newpos = argmax max
0≤l≤M

sprobl

� �
,

sprob = ςprob max max
Kn:1≤n<N

�
Skn Psujpre

� �
, Srob Psujpre

� �� �
,

ð2Þ

where newpos is the next position that the robot should move
to, skn is the score of the stationary sensor kn, and Srob is the
score of the robot sensor (calculated in equation (1)). psujpre
is the predicted position of the subject and sProbot is the
score of each robot position. Equation (2) determines the
next location of the robot among predefined locations.
The decision is based on the ranking which maximizes the
overall score of the sensors (as defined in equation one).
In this equation ς = 1:1, if the prob = probcurrent(calculate the
value of f for the current position of the robot), it is equal
to one; otherwise, psujpre is the prediction of the new position

of the target.

To find out the position of the robot, a rough estimation
of the subject is needed. To achieve this, Kalman filter has
been utilized to predict the next position of the subject.
The estimated parameters are x and y of the subject based
on their current and previous positions. Figure 12(b) illus-
trates the score of each of the sensors (S1 and S2 and the
robot in position 0 and position 1 SRp0 and SRp1) from the
scenario depicted in Figure 12(a). Figure 12(c) shows the
score of each of the positions of the robot calculated by
equation (2).

It is worth emphasizing that in our proposed method, we
are not fusing the data; instead, we are using the scoring
methodology to select the most accurate sensor. In fact, the
purpose of using multiple sensor is to expand the field of
view of the monitoring system.

6. Experimental Study and Evaluation

In this section, we study the experimental results following
the methods and methodologies presented in the previous
section. We will first explain the data which has been utilized
in this research followed by their evaluation.

6.1. Dataset Collection. There exists a large number of data-
sets containing various human postures and actions. How-
ever, the scope of this paper does not fit within any of
those, and hence we collect our dataset. The reason is that
we are looking for a piece of very detailed information about
human posture. While often the published datasets are used
to classify images based on the higher level of information
they contain (e.g. as related to action classification), it makes
it hard to filter out the information that is needed for this
study. Therefore, we collected our dataset. To do so, we
design and implement an API to collect the dataset (it will
be made public in the near future). Figure 13 shows the
screenshot of the API. It is implemented in a modular way
so that it can be exchanged with any other sensors rather
than Kinect V2. In addition, the API can synchronize multi-
ple sensors using universal clock of the internet in a distrib-
uted matter. The collected dataset contains 5 subjects from
age 25 to 35 and 3 women and 2 men with different body
shapes. Figure 14 shows the setup of sensors and the location
where the experiment is carried out. The experiment is col-
lected in various locations including a clutter lab where the
sensors’ FOV was restricted by various objects or a hallway
where it is captured out of range of the sensor.

Figure 14: Various experimental setups used in this paper show the position of the stationary camera in the laboratory setup and a hall-way
combined with the stationary cameras and the mobile one. The later experiments were carried in the actual living space.

Table 2: The accuracy of the proposed change detection algorithm
in different distances from the camera and its comparison with the
method proposed in [54].

D (m form
sensor plane)

Sensor type
Noise characteristic
method (proposed

method)

Sensor
characteristic
method ([54])

4 Kinect 96.65 88.58

4 Astra Orbbec 95.54 80.23

3.5 Kinect 97.24 94.35

3.5 Astra Orbbec 95.32 87.5

3 Kinect 97.24 95.6

3 Astra Orbbec 96.2 88.3

2.5 Kinect 98.84 95.6

2.5 Astra Orbbec 98 90.32

≤2 Kinect 98.84 95.6

≤2 Astra Orbbec 98 94.52
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6.2. Change Detection. The proposed change detection algo-
rithm used the characteristics of the noise to differentiate
between the change and false positive (noise). We are com-
paring the proposed method with [54] that uses the charac-
teristic of the time of flight sensor to differentiate between
noise and change detection due to real changes in the scene.
The results of the comparison between the two methods are
shown in Table 2. Two types of sensors are utilized for the
comparison. The first sensor is a Microsoft Kinect V2 which
uses time of flight technology for capturing the depth, and
the second sensor is the Orbbec Astra depth sensor which
uses structured light technology for capturing depth data
(the detailed feature of each sensor is shown in Table 1).
The example of detected change by any of the sensors used
in this experiment (two stationary sensors (K1 and K2)
and a robot sensor R) is shown in Figure 15. D is the distance
between the subject and the sensor plane. The results show
the change detection when the scene captured by the Orbbec
sensor is improved distinctly while the change detection in
the depth map captured by Kinect sensor is slightly better
than the method in [54]. The metric that is shown in the
tables are rec = TP/TP + FN .

6.3. Parametric Analysis and Evaluation. As we discuss in
Section 4, the size of the feature vector is n ×m where n is
the number of scans, and m is the number of frequencies
(cut off frequency). Without upsampling of the scans, we
analyze the influence of these two factors (namely, n and
m) on classifying the orientation of the subject with respect
to the sensor. Figure 16 shows the effect of the number of
scans on the result. In this scenario, the value of m kept con-
stant. As can be seen in the table, the higher the number of

k1 k2 Robot

Figure 15: The point cloud captured by K1 and K2 and robot (R) where the changes are shown by red, green, and blue points, respectively.
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Figure 16: The accuracy of the classification vs. the number of
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However, after 15 scans, the accuracy curve levels.

Table 3: The accuracy of orientation detection in different
scenarios where the training set is capture data 1m from the
sensor plane and the test is from a different subject in distance
1m in scenario 1, and the captured test set is in a distance of 1m,
2m, and 3m from sensors’ plane in Sc2, Sc3, and Sc4, respectively.

Number of FFT profile Model Sc 1 Sc 2 Sc 3 Sc 4

FFT profile = 5 KNN 51.13 62.61 52.94 63.24

CNN 64.31 71.30 62.75 62.50

FFT profile = 10 KNN 53.38 61.74 64.71 83.09

CNN 6817 80.87 79.74 58.09

FFT profile = 15 KNN 7138 95.65 90.20 46.32

CNN 72.99 77.39 66.67 38.24

FFT profile = 20 KNN 80.39 94.78 70.59 38.24

CNN 7846 84.35 60.78 38.24

FFT profile = 25 KNN 85.53 92.17 56.86 38.24

CNN 81.35 85.22 56.21 38.24

FFT profile = 30 KNN 86.82 88.70 56.21 38.24

CNN 82.32 84.35 52.94 38.24

FFT profile = 35 KNN 85.85 86.09 56.86 38.24

CNN 83.92 82.61 49.67 38.24

FFT profile = 40 KNN 85.53 8783 56.86 38.24

CNN 83.60 74.78 49.02 38.24

FFT profile = 45 KNN 84.24 87.83 56.86 38.24

CNN 81.99 73.91 49.67 38.24

FFT profile = 50 KNN 83.28 88.70 58.17 38.24

CNN 81.99 76.52 52.29 38.24

FFT profile = 100 KNN 83.92 90.43 56.86 38.24

CNN 81.99 79.13 52.94 38.24

FFT profile = 150 KNN 83.92 89.57 58.17 38.24

CNN 81.99 81.74 53.59 38.24
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scans leading to higher accuracy. However, after increasing
the number of scans to more than 20, the result is not
improved significantly. The reason is that the extra scans
are mostly adding redundant information which cannot
improve the model drastically. In this figure (Figure 16),
the test and train datasets both are collected from one sub-
ject in the validation.

The other element in the proposed approach is the cut
off frequency. Table 3 shows the result of the classification
accuracy with various cutoff frequencies. We also have
defined four different scenarios:

(1) Scenario 1: both training and test set are from 1m
from the sensor plane (grid 1 in Figure 9) while the
subject is different in each set

(2) Scenario 2: the training set captured 1m from the
sensor plane while the test set is captured at a dis-
tance of 2m from the sensor plane (grid numbers
2, 5, and 6 in Figure 9)

(3) Scenario 3: the training set captured 1m from the
sensor plane while the test set is captured at the dis-
tance of 3m from the sensor plane (grid numbers 3,
6, 9, 11, and 13 in Figure 9)

(4) Scenario 4: the training set captured 1m from the
sensor plane while the test set is captured at the dis-
tance of 4m from the sensor plane (grid numbers 4,
7, 10, 12, and 14 in Figure 9). To provide a compar-
ison with deep learning approaches, a convolutional
neural network with 3 fully connected convolutional
layers and 1 fully connected layers has been used for
classification purposes. The input of the network is a
matrix of the n scans and m FFT profiles. As we
expected, the CNN is less accurate than the KNN
as they usually need the high amount of data

As can be seen, the higher value of m results in lower
accuracy since it contains irrelevant information and noise.
The lower cut-off frequency has a better result especially
when farther the distances are. In addition, the higher value
of m causes overfitting of the models. This issue can be
avoided by increasing the number of images in the training
set.

Table 4 shows the results when an extra step of upsam-
pling is added. This results in achieving higher accuracy in
estimating the orientation of the subject.

To classify the posture of the subjects in one of two
defined classes as walking (where one of the legs is in front
of the other) and standing (where two legs are next to each
other), we utilized the KNN model as well. Here, we have
defined three scenarios as well:

(1) Scenario 1: the training set is captured in 1m from
the sensor plane (grid 1 in Figure 6) while the test
set is captured at the distance of 2m from the sensor
plane (grid numbers 2, 5, and 6 in Figure 6)

(2) Scenario 2: the training set is captured at 1m from
the sensor plane while the test set is captured at the
distance of 3m from the sensor plane (grid numbers
3, 6, 9, 11, and 13 in Figure 6)

(3) Scenario 3: the training set is captured at 1m from
the sensor plane while the test set is captured at the
distance of 4m from the sensor plane (grid numbers
4, 7, 10, 12, and 14 in Figure 6)

Table 5 shows the final result of estimating two defined
postures.

6.4. Multisensor Evaluation and Scheduling. In this section,
we have defined two different scenarios to evaluate the per-
formance of the scheduler which are shown in Figures 17
and 18. For this study, we have an observation room with
a dimension is 5 by 3 meters. Figures 17(a) and 18(a) show
the trajectory of the subject in the field of view in each sce-
nario shown in purple dashed lines. Each of these two sce-
narios was repeated 3 times, and the average score values
are shown in Figures 17(c) and 18(c), respectively. In the
first scenario shown in Figure 17(a), the monitoring area is
covered by two stationary sensors with some overlap; how-
ever, parts of the monitoring environment remain uncov-
ered. The stationary sensors are 4 meters apart, and the
robot sensor is located 5 meters from the first sensor. Two
positions are defined for the robot sensor to complete the
monitoring coverage. The subject started from sensor K1
field of view and move toward the uncovered area as the
subject moves outside the field of view of the sensor, and
the schedular navigates the robot sensor to the next position.
Figure 17(c) shows the scores of each of the sensors and the
robot. In this scenario, as the subject moves outside of the
sensor’s FOV, the score of each sensor will be reduced until
the robot is relocated by the scheduler to a new position with
a better overview of the subject with an improved score.
When the subject enters a visible area of the stationary cam-
eras, the robot will then discontinue its tracking and goes to

Table 4: The final accuracy of estimating the orientation of the
subject after adding upsampling layer in different scenarios where
the training set is captured in 1m from the sensor and the test is
from a totally different subject in distance 1m in scenario 1, and
the captured test set is in a distance of 1m, 2m, and 3m in Sc2,
Sc3, and Sc4, respectively.

Details Sc1 Sc 2 S3 Sc 4

FFT profile = 25
Scans = 25 93.65 95.65 96.73 86.76

Table 5: The final accuracy of estimating the posture of the subject
in different scenarios where the training set is captured in 1m from
the sensor and the test is 2m, 3m, and 4m in Sc1, Sc2, and Sc3,
respectively.

Sc1 Sc2 sc3

Orientation 0 FFT profile = 25
Scans = 25 78.28 75.52 56.4

Orientation 90 FFT profile = 25
Scans = 25 79.09 72.16 48.44
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its initial location. In the second scenario shown in
Figure 18, the subject enters the field of view of the second
sensor and moves toward the robot when the subject is not
discovered by any of the sensors anymore, and their score
is reduced shown in Figure 18(c). The robot moves to the
second predefined position based on the estimation of the
previous subject movement and continue to monitor the
subject. The scores that are shown in Figures 17(c) and
18(c) are the value calculated by equation (1) separately by
each sensor, and the color is assigned to each number from
zero as red and one as green.

6.5. Real Time Implementation. The schedular and the whole
setup is implemented real-time using ROS framework. The
setup includes two Microsoft Kinect V2 and one mobile
robot which includes one Orbbec depth sensor. The commu-
nication of stationary depth sensors and a mobile robot is
established using ROS framework. The details of the com-
munications and message passing of the sensors are shown
in Figure 19. The time complexity for the change detection
algorithm can be calculated by considering that each scan
is taken from one place, and W is the width of the depth
map. FFT complexity analysis results in Oðwlg2wÞ in scan-
ning. The complexity for change detection using SVM
model and pose detection algorithm for n scans would be
Oðnwlg2wÞ. The scheduler complexity depends on the num-

ber of stationary sensors (K), robot sensors (R), and the
position of robot sensor (P). The scheduler should find the
most qualified sensors at OðK + RÞ in the worst case scenario
and determine the best position for the robot sensor with
O(P). The use of Kalman filter for forecasting each robot
sensor that has only 2 parameters will result in the complex-
ity of the robot sensors to be OðRÞ which should be deter-
mined for each position, and hence the complexity of the
scheduler would be OðK + R + PRÞ. Table 6 shows the list
of hardware and software components used in this study
where Table 7 shows the comparison of depth sensors used
in the study regarding their range, resolution, frame rate,
and FOV.

6.6. Summary of Evaluation. In this section, we have evalu-
ated our proposed method in various scenarios. First, we
compared our change detection algorithm with that of [54]
in Table 2. Then, we showed how the different parameters
are impacting the proposed algorithm in Table 3 as the result
and by selecting the best parameters, we showed the perfor-
mance of the proposed posture detection in detailed posture
estimation and orientation toward the sensor in Tables 4 and
5, respectively. Then, we evaluate our proposed scheduler in
two separate scenarios with two stationary sensors and 1
mobile sensor. Finally, we showed the flow of real time
implementation of the proposed work.
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Figure 17: (a) The setup with trajectory of the subject moving in the monitoring area. (b) The image of actual setup. (c) The representation
of sensor’s situation in cooperating for target tracking, the shaded green shows that the target is tracked by the sensor. Blue is the
presentation of detection, and the red showed no detection of the target.
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Figure 19: The details of network sensor communication.

Table 6: The equipment, software, frameworks, and programing languages used in this study.

Hardware
Kinect V2.0 (stationary sensor) ×

2
Orbbec Astra (robot sensor) × 1

Software and frameworks and programming language ROS Open Kinect, open NI Python, C++, C#.net
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Figure 18: (a) The setup with trajectory of the subject moving in the monitoring area. (b) The image of actual setup. (c) The representation
of sensor’s situation in cooperating for target tracking, the shaded green shows that the target is tracked by the sensor. Blue is the
presentation of detection, and the red showed no detection of the target.

Table 7: Comparison of sensors used in the study.

Name Range (m) Resolution Framerate FOV (degrees)

Kinect V2 8 (reliable till 4.5) 512 × 424 30 89 × 71

Orbbec Astra 0.6–8 640 × 480 30 60 × 49:5
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7. Conclusions and Future Work

In this study, we proposed a novel and efficient method to
minimize the training data that can be utilized for data mini-
mization in a network of depth sensors. We use the notation
of 1D scans and their frequency features to detect the
changes in the sensors’ FoV and estimate the posture and
position of the subject with respect to the sensor. Using 1D
scans offers two main advantages. Firstly, they reduce the
necessary pixels of the depth map and hence improve the
computation complexity and increase the time efficiency of
the system in a network of stationery and robot sensors. Sec-
ondly, they enable to efficient use the frequency features of
the depth maps to decrease the sensitivity of variant distance
between the sensor and the subject which leads to a reduc-
tion in the number of training data.

A dynamic RoI model based on a novel change detection
method has been designed on the top layer of 1D scans in
order to detect the changes in the scene and separate the
background from the foreground. In [59, 60], we showed
that using 1D scans is beneficial over skeleton point extrac-
tion methods which are generally state of the art in pose
detection. In addition, we have shown that using only 20
1D scans provides a good estimation of the posture.

Finally, we proposed a scheduler to handle multiple sta-
tionery and robot sensors to save energy and increase the
accuracy of the monitoring. Our proposed network contains
two stationary ToF sensors (Kinect V2) and one robot struc-
tural light sensor (Astra Orbbec). The schedular is responsi-
ble to assign the most qualified sensors for the tracking and
estimation task based on the scoring schematic. A score of
each sensor is calculated based on the accuracy of the pos-
ture estimation and the location of the sensor with respect
to each sensor. In addition, the schedular navigates a robot
sensor to extend the monitoring area and improve the accu-
racy of posture estimation. Some predefined locations are
determined for the robot sensor and based on the estimation
of the score of the whole system, one of those locations will
be selected, and the robot is navigated to the new location if
needed. A Kalman filter has been utilized to improve robot
navigation by estimating the future location of the subject
in the monitoring area. It should be noted that in the current
setup, the robot is used to cover the less crowded areas of the
monitoring environment. If the subject frequently moves to
the uncovered areas, the criterion for the energy efficiency
proposed in this work would not be satisfied. In addition,
we assumed that the moving trajectory of the robot is a clut-
tered free environment. Otherwise, various available colli-
sion detection algorithms can be utilized for enhancing the
planned trajectory.

In future work, the robot can benefit from various navi-
gation methods to follow the subject directly, e.g., [61]. More
postures and subject orientations toward sensors can be
defined using the same proposed method, and also the data
set can be enhanced using more various subjects. Further-
more, the extended method can be utilized to estimate and
track multiple subjects occupying more comprehensive pos-
tures and locations in the monitoring area. The RGB camera
also can be used to enhance the accuracy of the estimation;

however, it might increase the computational complexity
of the proposed method.

In addition to depth and RGB monitoring systems, using
a wearable sensor is another alternative to detect and analyze
the human posture; among them, methods such as [62–69]
can be mentioned. Although the accuracy of these methods
is very promising, they need the voluntary cooperation of
the subject, and they are prone to be forgotten. A compari-
son of these methods can provide a benchmark for the accu-
racy that is possible to achieve by vision-based methods such
as the depth sensor proposed in this paper.

Nomenclature

sa: 1D scan from depth profile
S: Overall score of each sensor in monitoring system
prob: Position of the robot
sprob : Score of the position of the robot
psujpre : Probability of subject position.
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