
Retraction
Retracted: ECG-ViT: A Transformer-Based ECG Classifier for
Energy-Constraint Wearable Devices

Journal of Sensors

Received 19 December 2023; Accepted 19 December 2023; Published 20 December 2023

Copyright © 2023 Journal of Sensors. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article has been retracted by Hindawi following an investi-
gation undertaken by the publisher [1]. This investigation has
uncovered evidence of one ormore of the following indicators of
systematic manipulation of the publication process:

(1) Discrepancies in scope
(2) Discrepancies in the description of the research reported
(3) Discrepancies between the availability of data and the

research described
(4) Inappropriate citations
(5) Incoherent, meaningless and/or irrelevant content

included in the article
(6) Manipulated or compromised peer review

The presence of these indicators undermines our confidence
in the integrity of the article’s content and we cannot, therefore,
vouch for its reliability. Please note that this notice is intended
solely to alert readers that the content of this article is unreliable.
We have not investigated whether authors were aware of or
involved in the systematic manipulation of the publication
process.

Wiley and Hindawi regrets that the usual quality checks did
not identify these issues before publication and have since put
additional measures in place to safeguard research integrity.

We wish to credit our own Research Integrity and Research
Publishing teams and anonymous and named external
researchers and research integrity experts for contributing to
this investigation.

The corresponding author, as the representative of all
authors, has been given the opportunity to register their agree-
ment or disagreement to this retraction.Wehave kept a recordof
any response received.

References

[1] N. Shukla, A. Pandey, A. P. Shukla, and S. C. Neupane, “ECG-
ViT: A Transformer-Based ECG Classifier for Energy-Constraint
Wearable Devices,” Journal of Sensors, vol. 2022, Article ID
2449956, 9 pages, 2022.

Hindawi
Journal of Sensors
Volume 2023, Article ID 9873463, 1 page
https://doi.org/10.1155/2023/9873463

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9873463


RE
TR
AC
TE
DResearch Article

ECG-ViT: A Transformer-Based ECG Classifier for
Energy-Constraint Wearable Devices

Neha Shukla ,1,2 Anand Pandey ,1 Anand Prakash Shukla ,3

and Sanjeev Chandra Neupane 4

1CSE Department, SRM Institute of Science and Technology, Meerut Road, Modi Nagar, Delhi-NCR, India
2CS Department, KIET Group of institutions, Delhi-NCR, India
3Technical Education Department, Government of Uttar Pradesh, India
4Reconwithme, Nepal

Correspondence should be addressed to Sanjeev Chandra Neupane; sanjeev@reconwithme.com

Received 1 March 2022; Revised 4 May 2022; Accepted 16 June 2022; Published 31 July 2022

Academic Editor: Pradeep Kumar Singh

Copyright © 2022 Neha Shukla et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The advancement in deep learning techniques has helped researchers acquire and process multimodal data signals from different
healthcare domains. Now, the focus has shifted towards providing end-to-end solutions, i.e., processing these data and developing
models that can be directly implemented on edge devices. To achieve this, the researchers try to solve two problems: (I) reduce the
complex feature dependencies and (II) reduce the complexity of the deep learning model without compromising accuracy. In this
paper, we focus on the later part of reducing the complexity of the model by using the knowledge distillation framework. We have
introduced knowledge distillation on the Vision Transformer model to study the MIT-BIH Arrhythmia Database. A tenfold
crossvalidation technique was used to validate the model, and we obtained a 99.7% F1 score and 99.3% accuracy. The model
was further tested on the Xilinx Alveo U50 FPGA accelerator, and it is found fit for any low-powered wearable device
implementation.

1. Introduction

Cardiovascular disease is an umbrella term that refers to car-
diovascular disorders that are the leading cause of death
worldwide. According to the World Health Organization
(WHO), in 2017, Cardiovascular diseases (CVDs) were
reported as the leading cause of death worldwide (WHO
2017). The report indicates that CVDs cause 31% of global
deaths, out of which at least three-quarters of deaths occur
in low- or medium-income countries [1]. One of the pri-
mary reasons behind this is the lack of primary healthcare
support and the inaccessible on-demand health monitoring
infrastructure. Electrocardiogram (ECG) is considered one
of the essential attributes for continuous health monitoring
required for identifying those at serious risk of future cardio-
vascular events or death [2–4].

The waveform of the ECG signal is illustrated in
Figure 1. Every day, around 3 million ECGs are generated

worldwide [5]. ECG readings give much information regard-
ing the heartbeat’s pace and rhythm. The ECG is evaluated
clinically for a brief period using a graph of numerous con-
secutive cardiac cycles. The procedure starts with the discov-
ery of an R-peak. It is often the most prominent portion of
the ECG and hence the easiest to identify. The P-wave indi-
cates the sinus rhythm, whereas a prolonged PR interval
generally indicates a first-degree heart blockage [4, 6]. As a
result, cardiologists consistently use ECG to assess the
heart’s condition and performance.

However, these signals are primarily collected by skin-
contact ECG/BVP sensors, which may be uncomfortable
and unpleasant for long-term monitoring [2, 7, 8]. The
photoplethysmogram (PPG), an optical technique for mon-
itoring changes in blood volume at the skin’s surface, is
regarded as a close substitute for ECG monitoring, which
carries vital cardiovascular information [9]. For example,
studies have shown a strong correlation between several
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features obtained from PPG (e.g., pulse rate variability) and
similar metrics collected from ECG (e.g., heart rate variabil-
ity), highlighting the reciprocal information between these
two modalities. However, as smartwatches, smartphones,
and other similar wearable and mobile devices have
advanced, PPG has become the industry standard as a sim-
ple, wearable-friendly, and low-cost option for continuous
heart rate (HR) monitoring for daily usage [10–12]. None-
theless, PPG has inaccuracies in HR estimates and other lim-
itations compared to standard ECG monitoring equipment,
owing to skin tone, varied skin types, motion artifacts, and
signal crossover.

However, many deep learning (DL) solutions are avail-
able to solve the ECG classification problem but most use
manually crafted features. Some fully automated solutions
require high computational resources like GPUs and TPUs
[13–15]. So, they require high power consumption, i.e., they
cannot be implemented on energy-constraint devices
directly. These methods use a standard convolutional neural
network (CNN) as their backbone network as they can per-
form very well when the input data have regular structure
i.e., Euclidean. However, the ECG signals are non-
Euclidean time series in nature; hence, processing them with
conventional convolutional neural networks (CNNs) com-
promises accuracy. This motivates graph-based deep learn-
ing algorithms [16]. Graph neural network (GNN) is a
general term used to denote these algorithms. Transformers
are special categories of GNNs [17]. The development of
Internet-of-things (IoT) devices requires bringing these
complex deep learning architectures to energy and storage
constraint devices.

Generally, FPGA is most suitable for implementing deep
learning models as they achieve high resource utilization and
lower power consumption than graphics processing unit
(GPU) [18].

We have made the following contributions to this paper:

(i) A transformer neural network-based deep learning
model (ECG-ViT) to solve the ECG classification
problem

(ii) Cascade distillation approach to reduce the com-
plexity of the ECG-ViT classifier

(iii) Testing and validating of the ECG-ViT model on
FPGA

2. Background Study

The automated classification model can only be studied if a
large ECG database with annotations is available. The
MIT-BIH, ST-T, and AHA databases are used in the major-
ity of contemporary ECG research [6, 19]. There is a single
class for all of the ECG indications. Signal preprocessing is
the foundational step in enhancing the quality of the ECG
signal and the accuracy of the ECG analysis [20]. The subject
of this investigation has been thoroughly researched. Several
machine learning algorithms have been developed to assess
the quality of an ECG signal. These methods mostly rely
on ECG signal properties such as the RR interval and the
form of the P- and T-waves [21].

2.1. ECG Classification. Applying deep learning models to
ECG classification has gained growing attention [22, 23].
The state-of-the-art method for ECG heartbeat-level classifi-
cation recently showed that superior results are reached by
applying a ResNet model which classifies each heartbeat
class separately [19, 21, 24]. In this work, we focus on devel-
oping a transformer-based method that is used for ECG clas-
sification. The comparison results with state-of-the-art
methods have been shown in Section 4.

2.2. ECG Synthesis from PPG. To the best of our knowledge,
only [25] has been published for the particular problem of
PPG-to-ECG translation. This work did not use deep learn-
ing, instead used the discrete cosine transformation (DCT)
technique to map each PPG cycle to its corresponding
ECG cycle. First, onsets of the PPG signals were aligned to
the R-peaks of the ECG signals, followed by a detrending
operation to reduce noise. Next, each cycle of ECG and
PPG was segmented, followed by temporal scaling using lin-
ear interpolation to maintain a fixed segment length. Finally,
a linear regression model was trained to learn the relation
between DCT coefficients of PPG and corresponding ECG
segments. Despite several contributions, this study suffers
from a few limitations. First, the model failed to produce
reliable ECG in a subject-independent manner, which limits
its application to only previously seen subject’s data. Second,
the relation between PPG and ECG segments is often not
linear. Therefore, in several cases, this model failed to cap-
ture the nonlinear relationships between these two domains.
Lastly, no experiments have been performed to indicate any
performance enhancement gained from using the generated
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Figure 1: The illustrative waveform of the ECG signal.
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ECG instead of the available PPG (for example, a compari-
son of measured HR). Other works related to ECG and
PPG are [26–31], but they do not show how to synthesis
ECG from PPG.

2.3. Transformers in Image Classification. Transformers,
deep neural networks introduced by Vaswani et al. [32],
act as the reference models for the field of natural language
processing. There are multiple transformer blocks with the
same construction, as seen in Figure 2. An attention layer,
feedforward network, skip connection, and normalization
layer are present in each transformer block.

The self-attention mechanism of transformer is defined
using equation (1). Q, K , and V are the query, key, and value
vectors, respectively. d is the dimension of the model. It
computes the score between input vectors by multiplying
query vector to transpose of the key vector. Then, score is
normalized for the stability of the gradient by dividing it
with square root of dimension. In the original paper, there
were eight multihead attentions. Softmax function is used
to calculate the probabilities for classification, and the
obtained score is multiplied with weight value matrix.

Attention Q, K , Vð Þ = softmax Q · K⊤
ffiffiffiffiffi

dk
p

 !

· V : ð1Þ

Multihead attention is a technique for enhancing the
performance of the standard self-attention layer. Take note

that as we go through a sentence, we often want to concen-
trate on multiple other words in addition to the reference
word. A single-head self-attention layer constrains our
capacity to concentrate on one or more particular positions
without affecting our attention on other equally essential
locations. This is accomplished by assigning distinct repre-
sentation subspaces to attention layers. To be precise, dis-
tinct query, key, and value matrices are employed for each
head, and these matrices might project the input vectors into
a different representation subspace after training due to ran-
dom initialization. Equation Equation (2) shows the multi-
head process.

Multihead Q′, K ′, V ′
� �

= Concat head1,⋯,headhð ÞWo,

ð2Þ

where headi = attention ðQi, Ki, ViÞ.
2.4. Knowledge Distillation (KD). Knowledge distillation
(KD), commonly called student-teacher paradigm network,
is a model compression technique used to reduce the com-
plexity of neural networks. Rich supervision is critical when
developing a machine learning or image recognition
method, as it enables the model training in the present task
to be accelerated by using the learning experience from rel-
evant pretrained models. KD extracts several types of dark
knowledge/privileged knowledge to aid the model’s training
process from the “data” perspective [33]. Depending on the
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Figure 2: Structure of transformer as proposed by Vaswani et al. [32].

3Journal of Sensors



RE
TR
AC
TE
D

teacher and student’s training, the distillation technique is
categorized as offline, online, and self-distillation Figure 3.
In offline distillation, the teacher (complex) model is trained
independently, and its knowledge is passed to the student
(simpler) model, whereas in online distillation, both teacher
and student models are trained simultaneously [34]. In this
study, we have used self-distillation as it is more efficient
in handling real-world situations where a large capacity
teacher model is unavailable.

2.5. Field Programmable Gate Arrays (FPGA). Designers
have traditionally turned to field-programmable gate arrays
(FPGAs) to accelerate performance in hardware designs for
compute-intensive applications such as computer vision,
communications, industrial embedded systems, and increas-
ingly the Internet of Things (IoT). Engineers who need to
employ complex, compute-intensive algorithms often rely
on FPGAs to accelerate execution without compromising
tight power budgets [10, 11, 18]. FPGAs have emerged as a
dominant platform for speeding artificial intelligence algo-
rithms in edge-computing systems [14, 18, 35].

3. Methodology

Our work comprises mainly of three steps as demonstrated
in Figure 4. We first train the ViT model with smaller patch
size, as demonstrated by the accuracy which does not drop.
Then, we use the knowledge distillation approach to reduce
the complexity of the model. Further, the model is tested
on Xilinx FPGA.

3.1. Transformer Model Architecture. The Vision Trans-
former (ViT) is a pure transformer that is used directly to
image patch sequences for image categorization tasks. It
adheres as closely as feasible to the transformer’s original
design. ViT’s framework is shown in Figure 5. Following
the ViT paradigm, a number of ViT versions have been
developed to enhance performance on vision tasks. The pri-
mary techniques are to increase location, self-attention, and
architectural design. Recently, academics have begun to
focus on enhancing the modeling capabilities for local
data [36].
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Figure 3: (a) Traditional knowledge distillation. (b) Two-stage optimization of distillation, which has to pretrain a large-scale teacher model.
(c) Online distillation using either mutual learning or ensemble learning, which does not involve a teacher model.

Figure 4: Methodology of ECG classifier implementation on hardware.
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Self-attention layer, as a critical component of trans-
former, enables global interaction between visual patches.
Numerous academics have been working on improving the
computation of the self-attention layer. DeepViT suggests
establishing crosshead communication in order to regener-
ate attention maps in order to improve variety at various
levels. KVT introduces the k-NN attention to take use of
the proximity of picture patches and to disregard noisy
tokens by calculating attentions solely for the top-k compa-
rable tokens [37]. Refiner investigates attention expansion
in higher-dimensional space and uses convolution to enrich
the attention maps’ local patterns. We propose design simi-
lar to ViT without convolutional operations Figure 5.

3.1.1. Architectural Design. The ViT divides input pictures of
size 224 into 16 by 16 non-overlapping patches of 14 by 14
pixels and embeds them using a convolutional stem into vec-
tors of dimensionDemb = 64Nh. It then propagates the patches
across 12 blocks that maintain the patches’ dimension. Each
block is comprised of an SA layer followed by a two-layer
feed-forward network (FFN) with GeLU activation, both of
which have residual connections. The ECG-ViT is essentially
a ViT with the SA layers replaced by GPSA layers with a con-
volutional initialization in the first ten blocks.

Our ECG-Vit is based on the DeiT (Touvron et al., 2020)
[38], an open-source hyperparameter-optimized version of
the ViT. Due to its capacity to generate competitive results
without the use of external data, the DeiT serves as a good
baseline and is reasonably simple to train: the biggest model
(DeiT-B) takes just a few days of training on eight GPUs. To

simulate two, three, and four convolutional filters, we ana-
lyze three alternative ECG-ViT models with four, nine, and
sixteen attention heads, respectively. Their attention heads
are significantly more than those in Touvron et al., (2020)
[38]. DeiT-Ti, ConViT-S, and ConViT-B utilize 4, 7, and
13 attention heads, respectively. To get models of compara-
ble dimensions, we use two comparison techniques.

3.2. Knowledge Distillation. Traditionally, distillation works by
transferring information from a clumsy instructor model to a
nimble student model [39, 40]. As such, a large-scale model
must be trained in advance, on the basis of which alternative
knowledge definitions and transfer methodologies are recom-
mended to improve the student model’s performance [41, 42].
We augment the original embeddings with a new token, the dis-
tillation token (patches and class token). Our distillation token
is similar to the class token in that it interacts with other embed-
dings through self-attention and is produced by the network
after the final layer. The distillation component of the loss indi-
cates its intended use. As with a traditional distillation, the dis-
tillation embedding enables our model to learn from the
teacher’s output while staying complimentary to the class
embedding.

Interestingly, we notice that the learnt class and distilla-
tion tokens converge toward distinct vectors, with an aver-
age cosine similarity of 0.06 between these tokens. As the
class and distillation embeddings are calculated at each layer,
their similarity increases progressively across the network,
until they reach the last layer, where their similarity is great
(cos = 0:91) but still less than one. This is to be anticipated,
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Figure 5: The ViT model for ECG arrythmia classification.
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since they are attempting to create targets that are compara-
ble but not identical.

At a greater resolution, we employ both the genuine label
and teacher prediction during the fine-tuning step. We use a
teacher with the same target resolution as the lower-
resolution teacher, which is typically obtained using the
Touvron et al. [43] method. We have also tried using solely
true labels; however, this decreases the teacher’s advantage
and results in worse performance.

At test time, the transformer’s class or distillation
embeddings are coupled with linear classifiers and capable
of inferring the picture label. Nonetheless, our referent tech-
nique is a late merger of these two distinct heads, to which
we add the softmax output from the two classifiers.

Our distillation strategy results in a vision transformer
that is comparable to the top ConvNets in terms of
accuracy-throughput trade-off. Surprisingly, the distilled
model beats its instructor in terms of the accuracy-
throughput trade-off. Our best model on the MIT-BIH data-
set has a top-1 accuracy of 99.7%.

3.3. Hardware Design. The core of our deep learning algo-
rithm depends on general matrix multiplication step. It is a
combination of multiplication and accumulation (MAC unit)
of weights of the neural network as demonstrated in Figure 6.

MAC4 is obtained by combining four MAC units as
shown in Figure 7. By implementing 16 MAC4 units on
FPGA, we have obtained the ECG-ViT. There are a total of
64 operations performed by GEMM unit in 1 clock cycle
which uses 64 multiplier and adder as shown in Figure 5.

We had to provide 4 × 4 matrices p and q, which equates
to 32 scalars, to obtain 16 dot products of matrix r. Hence,
we need to transfer only 2 scalars per dot product from
memory on each update.

For efficient implementation, we have used 16-bit fixed-
point representation. We have approximated the
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Figure 7: MAC4 operations.

Table 1: ECG beat type present in MIT-BIH dataset.

ECG beat type AAMI

Ventricular premature beat VE

Supraventricular premature beat SVE

Atrial fibrillation AT
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Figure 6: (a) Independent MAC unit. (b) MAC operations of neural network.
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multiplication operations at the cost of accuracy to reduce
the energy consumption, inference speed, and less area occu-
pancy. We consumed 38% less area and 27% less energy to
implement the general matrix multiplication. Since the mul-
tiplier circuit is more expensive than the adder circuit,
approximations have been done for multiplication. While
testing, we have analyzed that there is not much drop in
accuracy.

4. Results and Discussion

Classifier performance was as follows: a thorough ablation
study of our ECG-ViT model is performed on the MIT-
BIH Arrhythmia Database (MITDB), a widely used bench-
mark. We preprocessed the data to obtain the sample at
128Hz. Four classification tasks were proposed by the Asso-
ciation for the Advancement of Medical Instrumentation
(AAMI) as shown in Table 1.

For these four classification tasks, we tested our pro-
posed approach, and we report the results when tested on
the records reported on in. Table 2 demonstrates the com-
parison of sensitivity, positive predicted value, and F-score
of our ECG-ViT algorithm and Wiens and Guttag [44].
Our method clearly outperforms the classifier used by [4].

We compared our ECG-ViT with Cong et al. [45] on
parameter of mean precision and mean accuracy as demon-
strated in Table 3. All four classification tasks such as VE,
SVE, AT, and U have been compared. Our classifier has clearly
outperformed the previous classifier [4] by a significant margin.

5. Conclusion

In this paper, we provided a new way of implementing the
ECG IoT monitoring system based on transformers. The
model was compressed using knowledge distillation to
reduce its complexity. The implemented algorithm was
tested on Xilinx Alveo U50 FPGA and outperformed exist-
ing state-of-the-art methods. We have obtained accuracy of
99.7%. In the future work, we plan to reduce the area for
hardware implementation i.e., to make it area aware so that
it could be implemented on wearable devices to diagnose
heartbeat.

Data Availability

The dataset can be found from the below mentioned link
https://physionet.org/content/mitdb/1.0.0/.
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