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This paper demonstrates an improved version of the Salp Swarm Algorithm (SSA) to solve the problems of slow convergence and
local minima of the original version. In the population initialization of this scheme, ten chaotic searches with dynamic inertia
coefficients are introduced to increase the diversity so that the probability of being trapped in local minima is reduced. Genetic
algorithms are then applied to improve the global search ability and convergence speed. The experiments with 12 test
functions show that the improved version achieves better accuracy and convergence speed over the original SSA. In the test
with robot path planning problem, the proposed algorithm shows improved performance in the average number of iterations,
path length, and average number of turns by 69.2%, 19.1%, and 43%, respectively, compared with the original SSA.

1. Introduction

Traditional mathematical methods are effective to solve linear
and differentiable optimization problems, but for more com-
plicatedproblems likenondifferentiable functions,more intel-
ligent algorithms are needed. Intelligent algorithms solve
optimization problems by imitating natural phenomena, for
example, Particle Swarm Optimization (PSO) [1] simulates
bird foraging behavior, Gray Wolf Algorithm (GWA) [2]
focuses on wolf predation behavior, and artificial bee colony
algorithm (ABC) [3] simulates bee foraging behavior.

The Salp Swarm Algorithm (SSA) [4] is a relatively new
swarm intelligence algorithm to simulate the foraging behav-
ior of the sea swarm slap. As a new heuristic optimization
algorithm, the SSA has the advantages of less parameter
requirements and effectiveness for both continuous and dis-
crete problems.

Salp is one kind of Salpidae with a transparent barrel-
shaped body similar to jellyfishes with a length of about
1~10 cm. Salps do not behave active locomotion, and the
movement is performed by pumping water through the
body as propulsion to go forward. The individual salp does

not forage very well, and they live in groups to get more
feeding. When salps prey in groups, multiple of them are
lined up to form a chain structure (salp chain). The first salp
in the chain is called the leader, and the rest is called the fol-
lower. The leader guides the whole chain, and the followers
are mobile following each other [4]. The leader leads the fol-
lowers to move towards the food source for global search,
while the followers go accordingly for a local search. In the
SSA, the position update of each follower will only be
affected by the position of the previous follower, and the
leader’s position update is only affected by the food source
position. The hierarchical system of the SSA makes the fol-
lowers cooperate closely with each other to increase the opti-
mization efficiency and reduce the chance of being trapped
in a local optimum. The SSA has been widely used in many
industrial applications such as variable speed wind turbine
[5], industrial design [6], extreme learning machine [7], fea-
ture selection [8], neural network [9], image segmentation
[10], and biomedicine [11–13].

Path planning is a key topic for the mobility of the robot
to navigate the robot automatically from one position to
another [14, 15]. Robots often face uncertain and complex
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operating environment, and in the meantime time, an effi-
cient path connecting one position to another in this envi-
ronment is required to be found quickly and accurately
[16, 17]. Depending on the operation task of the robot, the
optimal path of an environment is generally evaluated based
on the shortest distance or time, the minimum energy con-
sumption, or the highest safety rate. The path planning algo-
rithm with superior performance can plan the most efficient
path in the uncertain and complex environment, to increase
the working efficiency of the robot and reduce the wear and
tear of robot. Since one of the key technologies of mobile
robot is to look for the optimal path solution for a task, path
planning algorithm has become a research hotspot in recent
years [18].

Traditional algorithms to solve the path planning prob-
lem in known environments include artificial potential field
method [19–21], A∗ algorithm [22–24], Dijkstra algorithm
[25–27], and rapidly-exploring random tree (RRT)
[28–30]. However, the exploration performance of these algo-
rithms is generally poor, and it is difficult for them to find the
optimal path in an unknown environment. For this reason, a
swarm intelligence algorithm was introduced to make use of
the exploration and optimization performance to find the
optimal path, such as the Particle Swarm Optimization
(PSO) [31], the ant colony (AC) [32], the whale algorithm
for UAV path planning [33], and the water wave algorithm
for the path planning of underwater vehicles [34]. However,
the performance of the SSA for robot path planning has rarely
been reported in the literature.

This paper focuses on demonstrating an improved version
of the SSA and its application to path planning. The problems
with the original SSA such as the locomotion and slow conver-
gence will be overcome. The initialization of the population of
the SSA will be improved, and a set of dynamic inertia weight
coefficients are defined to maintain the diversity of population.
Genetic algorithm (GA) is then used to assist with the globaliza-
tion of search. In the experiment, the improved SSA method
will be tested on the 12 most popular test functions and com-
pared with five other evolution methods. The optimization of
robot path planning problem will also be tested with the pro-
posed method, and the comparison with other methods will
be shown. This paper is organized in six sections. The second
section reviews the related works for SSA and path planning.
The third section demonstrates the theory of the proposed algo-
rithm, and the fourth section tests the performance of the
improved SSA. The fifth section gives examples of the
application of the improved SSA to path planning, and a con-
clusion is made in Section 6.

2. Related Works

2.1. The Original Salp Swarm Algorithm (SSA). Similar to
other swarm intelligence algorithms, the SSA initializes the
population in an n-dimensional search space, and the fitness
function is regarded as the food source. The salp chain is
always trying to approach the food source and finally reach
the valuable food source in the search area, which is hope-
fully the global optimum. The procedure of the SSA can be
given as follows:

(1) Initialize the population according to the upper and
lower limits of each of the n dimensions, and it can
be written as

xim = lb mð Þ + rand N ,Dð Þ ∗ ub mð Þ − lb mð Þð Þ, ð1Þ

where Xi
m represents the ith salp of m-dimensional space, i

= 1, 2,⋯,Nm = 1, 2,⋯,D, N is the total number of salps
in the chain, and D is the dimension of the objective func-
tion. rand ðN ,DÞ represents a random number matrix of N
rows and D columns with elements evenly distributed
between 0 and 1. lbðmÞ represents the lower limit, and ubð
mÞ represents the upper limit. The initialization according
to Equation (1) will generate an xND matrix such that

X =

x11 x12 ⋯ x1D

x21 x22 ⋯ x2D

⋮ ⋮ ⋯ ⋮

xN1 xN2 ⋯ xND

2
666664

3
777775 ð2Þ

(2) The fitness value of each individual is calculated
based on the fitness function

(3) Determine the initial location of the selected food
source according to the salp with the best fitness
value

(4) Identify the leader and followers: the first scalp in the
chain is the leader, and the rest are followers

(5) Update the position of the leader according to Equa-
tion (3) such that

x1i =
Fi + c1 ubi − lbið Þc2 + lbið Þ, c3 ≥ 0:5,

Fi − c1 ubi − lbið Þc2 + lbið Þ, c3 ≥ 0:5,

(
ð3Þ

where x1i is the ith component of the leader and Fi repre-
sents ith element of the food source. c2 and c3 are random
numbers generated in the interval of [0, 1], which represent
the length and direction of the movement, respectively. c1 is
a coefficient for adjusting the exploration and exploitation of

the salp chain and can be written as c1 = 2e−ð4t/TmaxÞ2 , where t
is the current iteration and Tmax is the maximum number of
iteration

(6) Update the position of the followers:

Since the salp chain moves in the direction of the food
source during foraging, the update of followers depends on
the initial speed, iteration, and acceleration like the Newton’s
law of motion [4], such that

xij tð Þ =
1
2

xij t − 1ð Þ + xi−1j t − 1ð Þ
h i

, ð4Þ
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where xijðtÞ is the value of the jth component of the ith salp
in the chain at iteration t

(7) If an updated component moves over the boundary,
set the position of the boundary, and then, the food
source location is updated according to the optimal
salp

(8) If the result meets the accuracy requirements or if
the number of iterations is reached, output the cur-

rent position; otherwise, turn to step 4 for further
evolution

2.2. Robot Path Planning. The optimal path designed for a
robot is usually calculated considering the constraints like
time, distance, and energy consumption. The current most
commonly used path planning optimization method is based
on artificial intelligence algorithms. Deep learning has also
been introduced to path planning, but the adaptability to
environmental changes is relatively poor [35].

Table 2: Test results for the 12 functions listed in Table 1.

Test function Value types SSA WOA PSO ABC CSSA Proposed SSA

f1

Minimum 7.27e-29 9.27e-34 8.23e-24 2.39e-17 4.26e-34 7.23e-38

Average 9.45e-29 4.26e-34 7.92e-23 8.93e-17 1.28e-34 1.58e-38

Standard variance 4.66e-29 2.78e-34 1.25e-23 2.45e-17 7.21e-34 7.23e-38

f2

Minimum 4.98e-38 5.44e-38 7.21e-12 3.63e-2 1.77e-99 2.63e-148

Average 8.64e-38 9.48e-38 6.74e-12 5.67e-2 7.62e-99 9.33e-148

Standard variance 7.58e-38 6.55e-38 7.25e-12 4.23e-2 5.38e-99 8.47e-148

f3

Minimum 4.29e-23 5.11e-68 9.27e-21 3.47e-10 9.26-70 2.46e-115

Average 3.24e-23 1.27e-68 1.31e-21 6.26e-10 1.86e-70 8.77e-115

Standard variance 9.26e-23 6.67e-68 7.25e-21 3.77e-10 4.61e-70 6.55e-115

f4

Minimum 4.21e-25 5.58e-168 4.25e-149 1.70e-13 1.41e-140 9.25e-169

Average 9.93e-25 6.45e-168 4.33e-149 8.67e-18 8.92e-140 2.80e-169

Standard variance 8.45e-25 7.22e-168 9.75e-149 5.49e-18 7.20e-140 5.39e-169

f5

Minimum 6.72e-26 9.76e-68 2.43e-25 5.12e-12 5.80e-70 9.24e-112

Average 7.28e-26 2.73e-67 1.73e-24 7.48e-11 2.62e-69 1.50e-111

Standard variance 9.30e-26 7.77e-67 5.76e-25 2.66e-12 6.67e-70 6.90e-111

f6

Minimum 4.37e-07 1.57e-08 4.96e-08 3.24e-07 1.46e-08 8.24e-11

Average 7.61e-06 8.26e-08 6.44e-07 5.67e-06 8.43e-08 2.10e-10

Standard variance 2.78e-08 3.21e-08 8.33e-07 3.22e-06 3.49e-08 3.94e-10

f7

Minimum 7.22e-04 4.37e-09 8.66e-07 4.33e-03 8.25e-13 2.43e-18

Average 5.46e-03 8.26e-08 1.45e-06 5.55e-02 2.82e-12 9.44e-13

Standard variance 6.28e-04 3.15e-08 7.34e-06 3.36e-02 7.88e-14 7.10e-19

f8

Minimum 4.52e-02 2.76e-03 6.99e-02 5.44e-01 1.22e-05 3.77e-05

Average 6.25e-02 9.74e-03 3.22e-02 6.12e-01 2.64e-05 8.94e-04

Standard variance 1.13e-04 3.44e-04 4.54e-02 5.33e-01 6.74e-05 6.60e-05

f9

Minimum 9.95e-02 9.33e+01 7.26e-15 5.66e-12 6.53e+01 2.73e-15

Average 7.24e-01 9.66e+01 5.31e-14 7.81e-11 8.98e+01 1.54e-14

Standard variance 6.58e-02 5.43e-02 5.76e-14 6.54e-11 7.11e-02 9.12e-15

f10

Minimum 1.56e-11 3.28e-07 2.46e-13 2.69e-11 8.93e-13 1.19e-15

Average 4.21e-11 8.26e-06 7.11e-13 4.33e-10 1.22e-08 8.74e-14

Standard variance 8.72e-11 4.33e-06 2.36e-13 5.36e-10 5.69e-11 4.63e-12

f11

Minimum 5.46e-07 5.74e-05 1.93e-11 5.43e-07 4.44e-02 9.56e-34

Average 8.23e-07 8.73e-05 5.86e-10 6.72e-07 2.44e-01 1.72e-30

Standard variance 9.42e-07 7.74e-05 7.42e-10 5.64e-06 6.93e-03 6.72e-32

f12

Minimum 2.96e-04 3.66e-02 4.08e-08 6.45e-08 5.35e+01 3.54e-10

Average 3.37e-04 2.98e-01 2.76e-07 9.45e-07 8.70e+01 8.25e-10

Standard variance 4.29e-04 2.16e-02 5.45e-08 7.73e-08 4.24e-01 4.77e-11
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To find the optimal path in the obstacle environment for
a robot, the model of the mobile environment is required to
register. There are currently two types of methods for envi-
ronment modeling, one is the road sign method and the
other is the grid method. The road sign method is to line
up the feasible path map by connecting the labeled points
and the boundaries of obstacles, while the grid method
abstracts the mobile environment of the robot into a grid
space and marks all grids that belong to the path. Grid

method is more convenient to use and easier to implement,
and therefore, it is more popular than the road sign method
[36]. In this paper, an optimized grid modeling method is
calculated for robot path planning.

In the grid modeling of three-dimensional (3D) mobile
environment, a two-dimensional (2D) is marked with
grids of equal size to represent the 3D space, and each
grid is labeled with 0 or 1 representing without or with
an obstacle [37].
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Figure 1: Comparison of the convergence curves of average fitness value for f1.
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Figure 2: Comparison of the convergence curves of average fitness value for f2.
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The grid modeling is usually used to simulate a limited
area, and a coordinate system xOy is established with the
lower left corner as the origin and the horizontal and vertical
orientations are x axis and y axis, respectively. The step
length (l) of the robot represents the length of a single grid
in the x or y axis; therefore, the number of grids in each x
axis and y axis are nx = xmax/l and ny = ymax/l, respectively.
It is defined that each of the grids in the area is marked with
a label starting from the upper left corner in the way of from

left to right and from top to bottom, such that A = f1, 2,⋯,
Ng. Then, the relationship between the coordinates and
the label number can be given as:

xi = i − 1ð Þ mod nxð Þ + 1,

yi = ny − ceil
i
nx

	 

+ 1,

ð5Þ
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Figure 3: Comparison of the convergence curves of average fitness value for f3.
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Figure 4: Comparison of the convergence curves of average fitness value for f4.
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where i represents the ith label number, mod is the remainder
operation, ceil means rounding operation, nx , ny represent the
number of grids per row and column, respectively, and xi,yi
denote the ordinate of the grid center of the ith grid. In this
optimization task, it is expected to find the shortest Euclidean
distance between the current position ðx1, y1Þ and the target
position ðx2, y2Þ, which is regarded as the fitness vale, such

that hðxÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x2Þ2 + ðy1 − y2Þ2

q
[38].

3. The Improved SSA

In SSA, the leader is designed to make global exploration
while the follower makes a full local search, and in this
way, the chance of falling in a local optimum is greatly
reduced. Since the SSA requires fewer parameters than other
evolution optimization methods and therefore it is easier to
implement, however, like most swarm intelligence

0 100 200 300 400 500 600 700 800 900 1000
Iterations

10−120

10−100

10−80

10−60

10−40

10−20

100

Fi
tn

es
s f

un
ct

io
n 

va
lu

e

ABC
SSA
PSO

WOA
CSSA
BASSA

Figure 5: Comparison of the convergence curves of average fitness value for f5.
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algorithms, it is difficult for the SSA to converge at the later
stage of optimization.

In the optimization using SSA, the initialization of the
population is given within a certain range such that xim = lb
ðmÞ + rand ðN ,DÞ ∗ ðubðmÞ − lbðmÞÞ. Therefore, if the ini-
tial positions of the population are too concentrated, there

will be a lack of diversity, resulting in the convergence to a
local minimum. While if the initial positions are too scat-
tered, the convergence process will be greatly slowed down.
Besides, in the salp chain, the position of the individual is
updated from one to the next along the chain; in some spe-
cial cases, the value cannot be passed on, or in some cases,
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Figure 7: Comparison of the convergence curves of average fitness value for f7.
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Figure 8: Comparison of the convergence curves of average fitness value for f8.
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some of the salp individuals may pass on inaccurate position
values, and then, the optimization will fall into a local trap.
To overcome these problems, a modified version of the
SSA is required.

Since the convergence of the SSA is strongly influenced
by the initial population at a later stage of iteration, and
the random distribution of the initial population cannot
guarantee the diversity, the tent chaotic sequence can be

used to increase the randomness, diversity, and aperiodicity
of the initial population [39], such that

zk+1 =
2zk 0 ≤ zk < 0:5,

2 1 − zkð Þ 0:5 ≤ zk ≤ 1,

(
k = 0, 1, 2⋯: ð6Þ

In Equation (6), the initial value of zk can be randomly
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Figure 9: Comparison of the convergence curves of average fitness value for f9.
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Figure 10: Comparison of the convergence curves of average fitness value for f10.
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generated within the value range, and it can be converted
into the SSA variables such as

xim = lb mð Þ + rand N ,Dð Þ ∗ ub mð Þ − lb mð Þð Þ ∗ zk k = 0, 1, 2⋯:

ð7Þ

In this way, the procedure for initializing using tent cha-
otic mapping can be given as,

Step 1. According to the number of variables in the tar-
get function n, the initial value of zk in Equation (6) is
assigned with z0

Step 2. Generate chaotic sequence variables fzi,k i = 1, 2,
⋯ng according to Equation (7)
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Figure 11: Comparison of the convergence curves of average fitness value for f11.
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Figure 12: Comparison of the convergence curves of average fitness value for f12.
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Step 3. Use Equation (7) to map the chaotic variable zik to
the population solution space to complete the initialization

According to the update rule for the followers, if the jth
salp passes on incorrect information to the next, the move-
ment of all subsequent individual will be affected, especially
when it finds a local minimum, it will not be likely to move
out of this hole, and the whole chain will stay there forever.
To solve this problem, an inertia weight strategy is intro-
duced in the position update of the SSA [40], such that

ωt = ωmax − ωminð Þ Tmax − t
Tmax

	 

+ ωmin × Zk+1, ð8Þ

where ωmax and ωmin are the initial and final values of the
weights, Tmax is the maximum number of iterations, t is

the current number of iterations, and Zk+1 is the chaotic
mapping coefficient [39]. However, the mobile performance
of this linearly decreasing inertia adjustment strategy is not
satisfactory in the global search. Since the weighting factor
is decreasing, in the initial stage of search, the algorithm
tends to search globally. However, this duration is too short,
the global search performance cannot be fully exploited
before the weight factor becomes too small, and the whole
chain may have already been trapped in a local optimum.
In addition, when the values of ωmax, ωmin, and t are fixed,
the amplitude of ω is also fixed, resulting in a deterioration
in the performance of solving complex and nonlinear opti-
mization problems. Therefore, it is required that a large
weight is maintained to enhance the global search at the ini-
tial stage of optimization, while at the later stage, a small
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Figure 13: The simulation of path planning with the ABC method.
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Figure 14: The simulation of path planning with the PSO method.
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weight helps to focus on the local search. Inspired by deep
learning methods, this nonlinear mapping process can be
modeled with a Sigmoid function such that

ω = ωmax − ωmax − ωminð Þ 1
1 + e− Tmax−tð Þ/Tmax

	 
3
: ð9Þ

It can be seen that the output of Sigmoid function has a
large initial value, which can ensure the global search capa-
bility of the algorithm, and the output value will be reduced
gradually to the balance between the global and local search
strategy.

To increase the possibility of achieving a global opti-
mum, GA can be introduced in the later stage of the optimi-
zation by assigning a big mutation probability such as 0.1 in
this paper.

In this way, the optimization process with the improved
SSA can be divided into three stages, the first stage is when
t < ðTmax/2Þ, the improved SSA without the GA is used; at
the second stage, when ðTmax/2Þ < t ≤ ð2/3ÞTmax, if the
global output value does not change for 10 consecutive
times, the GA operation is used. When t > ð2/3ÞTmax, many
experiments show that it is very likely to fall into a local opti-
mum at this stage; therefore, a GA process is needed to help
with the global search.

4. Experiments and Analysis

To test the effectiveness and performance of the improved
algorithm, this paper compares the performance of the pro-
posed algorithm with the original SSA [4], the Chaotic Salp
Swarm Algorithm (CSSA) [41], and other intelligent algo-
rithms such as the WOA [39], PSO, and ABC.
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Figure 15: The simulation of path planning with the SSA method.
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Figure 16: The simulation of path planning with the WOA method.
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In the experiment, there are 12 functions to be tested,
among which f1 ~ f7 are unimodal functions for conver-
gence speed testing, and f8 ~ f12 are multimodal functions
for global search testing. The test functions are listed in
Table 1.

The tests are carried out on the platform of Matlab 2018a
on a PC with 16G RAM. To confirm the result, each testing
is independently run for 50 times to take the average. The
dimension of the test function is set to 50, and the number
of iterations is 2000. The parameter settings of other algo-
rithms are consistent with the corresponding references.
The test results are shown in Table 2.

From the experimental data, it can be seen that in the
unimodal function (f1 ~ f7), the proposed algorithm
achieves the best optimal value as well as the average value.
This test shows that the proposed algorithm has better opti-

mization stability and the optimal values achieved are at
least several orders of magnitude better than that of other
algorithms. For f2 function, the optimal value of the pro-
posed algorithm is nearly 110 orders of magnitude smaller
that of the original SSA. In the test with f 2 function, the
optimal value of the proposed algorithm is about 144 orders
of magnitude less than that of the original SSA and 20 orders
of magnitude less than that of the second best PSO algo-
rithm. In the test with functions of f1, f3, f5, f6, and f7, the
improved SSA has also achieved the minimum values among
several algorithms. It shows that the optimization accuracy
of the improved SSA has obvious advantage than other algo-
rithms for unimodal functions.

Among the five multimodal functions (f8 ~ f12) tested,
the results of the proposed method are significantly better
than other algorithms, except for the average value of f8 in
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Figure 17: The simulation of path planning with the CSSA method.
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Figure 18: The simulation of path planning with the BASSA method.
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which case the CSSA algorithm has achieved the best but
very close to the proposed method. In the test with function
f9, it was found that the WOA and the CSSA have been
trapped in local minima under the same number of itera-
tions as the proposed algorithm. In the test with functions
f10 ~ f12, the improved algorithm has achieved all the mini-
mum values, which shows better exploration ability in mul-
timodal function to avoid local optima.

Figures 1–12 show the convergence curves of average fit-
ness value for f1 ~ f12, respectively, and it can be seen that
the proposed method has the advantages of convergence rate
and optimization accuracy over all other algorithms. In the
test with the functions of f2, f3, f5, f7, and f11, the proposed
method can jump out of the local optimal solution at an ear-
lier stage than others. Among the 12 functions tested, only
the result for the function f10 is not optimal for the proposed
method, but it is very close to the optimal result. It is clear
from these experimental results that the proposed algorithm
has better performance in optimization accuracy and con-
vergence speed compared to the original SSA, as well as
the CSSA, WOA, PSO, and ABC. The global search perfor-
mance of the proposed method benefits from the increased
diversity of the population and the mobility at the later con-
vergence stage with the GA.

5. The Application in Robot Path Planning

This paper applies the proposed algorithm to the optimiza-
tion of path planning for robots, and for better evaluation,
the above methods are also tested and compared. In this
experiment, a 20 ∗ 20-grid map is used to simulate the robot
mobile environment, and the parameter settings of each
algorithm are listed as follows:

(1) ABC: the number of artificial bees is M = 50, and the
maximumnumber of attempts limit = 15

(2) PSO: the number of particles, M = 50, the constant
of inertia ωmax=0.8,ωmin=0.3, c1=0.5, and c2=0.5

(3) SSA: the number of salps is M = 50, and the individ-
ual dimension is d = 28

(4) WOA: the position dimension: 20, population size:
50, spiral coefficient b = 1, and selection probability
P = 0:5

(5) CSSA: the settings are consistent with those in the
literature [42]

(6) The proposed algorithm: the same as the SSA

For all methods, the total iteration number is 300.
In the test, a 20 ∗ 20-grid map is randomly generated,

and the simulated routes of all methods for robot path plan-
ning are shown in Figures 13–18, and the related results are
listed in Table 3.

From the simulation results, it can be seen that the
improved SSA achieves the shortest path length and is
23.6% shorter than ABC algorithm with the longest path
length and 9.83% shorter than the CSSA. The average num-
ber of iterations achieved by the proposed method is less
than half of that of the CSSA. This is due to the high optimi-
zation accuracy and better convergence rate of the proposed
method. The average number of turnings for the proposed
method is 43% less than the original SSA and 33.8% less
than the CSSA. This shows that the proposed algorithm
travels more straight in the current simulation environment,
effectively avoiding unnecessary turns. From the comparison
data, it can be seen that the improved SSA is a more efficient
way to solve the robot path planning problem.

6. Conclusion

This paper proposed an improved SSA to solve the problems
of locomotion and slow convergence of the original SSA. A
tent chaotic mapping procedure is introduced to the initial-
ization of the population, which effectively increases the
diversity. During the optimization, dynamic inertia weight
coefficients are used to maintain the diversity of population
and the balance between the global and local search. At a
later stage of optimization, GA is implemented to strengthen
the global search ability of the algorithm. The proposed
method is tested on the 12 most popular test functions and
compared with five other evolution methods. The results
show that the improved algorithm has better performance
in convergence speed and optimization accuracy. Finally,
the proposed algorithm is applied to the optimization of
robot path planning and compared with the above methods.
The experimental data shows that the proposed method
finds the optimal path faster than other intelligent algo-
rithms in the same environment with a better route and less
iterations.
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