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The SiamFC target tracking algorithm has attracted extensive attention because of its good balance between speed and
performance, but the tracking effect of the SiamFC algorithm is not satisfactory in complex background scenes. When SiamFC
algorithm uses deep semantic features for tracking, it has good recognition ability for different types of objects, but it has
insufficient discrimination for the same types of objects. Therefore, we propose an effective anti-interference module to
improve the discrimination ability of the algorithm. The anti-interference module uses another feature extraction network to
extract the features of the candidate target images generated by the SiamFC main network. In addition, we set up the feature
vector set to save the feature vectors of the tracking target and the template image. Finally, the tracking target is selected by
calculating the minimum cosine distance between the feature vector of the candidate target and the vector in the feature vector
set. A large number of experiments show that our anti-interference module can effectively improve the performance of SiamFC
algorithm, and the performance of this algorithm can be comparable to the popular algorithms.

1. Introduction

The field of computer vision has advanced rapidly in recent
years, and the direction of target tracking has become a
research hotspot for many research institutions and universi-
ties. Current target tracking is typically based on delimiting
the target area in the first frame of the video sequence and then
tracking the target in the subsequent frame [1]. Target track-
ing has a wide range of applications, such as autonomous
driving [2], video surveillance, and human-computer interac-
tion [3]. However, many problems still exist in the field of
target tracking, such as complex background, target occlusion,
and scale change [4].

Current mainstream target tracking algorithms can be
divided into two categories. One category is based on the Sia-
mese network [5–13]. Algorithms in this category are designed
using the Siamese network structure and have achieved good
results. The other category is based on a non-Siamese network
[14–18], which is mostly studied using correlation filter (CF)
[19–22]; however, because algorithms in this category are con-
stantly improving, their tracking speed and performance based
on CF cannot be well balanced. The majority of researchers

prefer a Siamese network-based target tracking algorithm,
and its classical algorithm SiamFC [5] has become a milestone
algorithm. It can effectively balance the speed and accuracy of
target tracking and has become the cornerstone of many
subsequent improved algorithms. However, these improved
algorithms [5–9] cannot effectively solve the intraclass inter-
ference problem of target tracking in a complex background
because they do not effectively distinguish the tracking target
from the interference target. Moreover, we believe that simply
relying on an improved network model to improve the anti-
interference ability of the target cannotmeet the requirements.
In some cases, the response value of the interference target in
the tracking process exceeds the response value of the tracking
target, as shown in Figure 1. However, this is inevitable
because a convolutional neural network (CNN) cannot obtain
such a high discriminant network model to avoid the overfit-
ting problem in the training process. If we want to further
improve the discrimination ability of the target while also con-
sidering the universality of the target tracking effect, we must
increase the number of training parameters and the training
set. These two requirements have significant limitations in
terms of current conditions.
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The similarities between these algorithms [5–8] are all
based on the screening of candidate targets, with the majority
of the screening aimed at selecting the target with the highest
score in the score map. SiamFC [5] is screened directly based
on the score map after cross-correlation operation, SiamRPN
[6] is screened directly based on the score map after nonmax-
imum suppression, and DaSiamRPN [7] is the same as
SiamRPN [6]. However, in the complex background, the
response value of the target is close to the interference target,
and even the response value of the interference target is higher
than that of the tracking target, which will inevitably affect the
tracking effect.

Based on this background, this study proposes an anti-
interference module and designs an appearance feature
extraction network. First, it extracts features of the tracking
target in recent and initial frames and then extracts features
of the candidate target in the current frame. Finally, it judges
the best tracking target by calculating the minimum cosine
distance of the feature vectors of the two parts and finally
realizes the effective judgment of the candidate target frame.

The main contributions of this paper are as follows:

(1) The anti-interference module is designed to improve
the robustness of the algorithm to complex back-
ground scenes

(2) An appearance feature extraction network which can
effectively extract the appearance features of the target
is designed. Multiple candidate boxes are extracted on
the basis of SiamFC, and the candidate boxes are input
into the appearance feature extraction network to
finally obtain the correlation vector

(3) The feature vector set is designed, which can save the
tracking target feature vector in recent frames and
the template image

(4) The cosine distance between the vector in the feature
vector set and the feature vector of the candidate tar-
get is calculated to determine the tracking target,
which solves the disadvantage that only template
image features can be used in SiamFC algorithm

and improves the performance of the algorithm for
long-time tracking

2. Related Works

2.1. Target Tracking Algorithm Based on Deep Learning. In
recent years, due to the continuous expansion of available data-
sets and the improvement in computing power, the advantages
of deep learning (DL) methods have gradually become evident.
DL methods are far more powerful than traditional algorithms
in terms of target tracking. In addition, the great potential of DL
direction has piqued the interest of an increasing number of
researchers. The advantage of a DL algorithm lies in the strong
feature extraction ability and representation ability of its net-
work model. At present, methods based on the DL network
model are mainly divided into the following categories: CNN
method, recurrent neural network (RNN) method, and genera-
tive adversarial network (GAN) method. The most popular DL
network model in the field of computer vision is CNNs, and
RNNs aremore commonly used in natural language processing.
Although GANs have some applications in image processing,
they are limited to data processing. DLwas first applied to target
tracking in [23], and a target tracking framework based on off-
line training and online fine-tuning was proposed. Several
subsequent algorithms have been improved on this network
framework and have achieved good results.

2.2. Convolutional Neural Network-Based Methods. In recent
years, CNNs have swept through the field of DL. From natural
language processing to image processing, computer vision has
also made great progress through the continuous improve-
ment of CNNs. In 2012, the success of the AlexNet network
model on the ImageNet classification dataset sparked a surge
in researchers’ interest in DL. There are three popular network
models: AlexNet [24], VggNet [25], and ResNet [26]. AlexNet
[24] has a network structure of only eight layers, of which five
layers are convolution layers and the other three layers are
fully connected layers. Compared with AlexNet [24], VggNet
[25] has more network depth, so the tracking effect is greatly
improved. However, with the increase in network depth, grid
degradation will occur. At this time, the emergence of ResNet
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Figure 1: Response scores of SiamFC algorithm. Red box target for interference target, and green box target for tracking target.
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[26] introduces neural networks in a new direction. ResNet
[26] connects network layers through the jump connection,
which effectively solves the problem of grid degradation when
the network depth is deepened. Finally, ResNet [26] won
ImagNet2015 [27]. In recent years, lightweight models have
attracted increasing attention. MobileNetV1 [28] uses depth-
wise (DW) separable convolutions, ignores the pooling layer,
and uses convolution with a stripe equal to 2. Compared with
V1, MobileNetV2 [29] introduces a residual structure. Before
DW, 1 × 1 convolution is used to increase the feature map
channel. After pointwise, a rectified linear unit (ReLU) is
abandoned and replaced with a linear activation function to
prevent the destruction of features by ReLU. MobileNetV3
[30] integrates the depth separable convolution of V1 and
the inverse residual structure of V2 and introduces the h-
swish activation function. EffNet [31] decomposes the DW
layer of MobileNetV1 into 3 × 1 and 1 × 3 convolutions. After
the first layer, pooling is adopted to reduce the amount of
calculation in the second layer. The smaller the size of the
model, the higher the accuracy is obtained. EfficientNet [32]
designs a standardized convolution network expansion
method to optimize the efficiency and accuracy of the network
from the three dimensions of balance resolution, depth, and
width. ShuffleNetV1 [33] reduces computation complexity
by grouping convolution and enriches channel information
by reorganizing channels. ShuffleNetV2 [34] mainly designs
and usesmore efficient CNN network structure design criteria.

CNNs typically extract the deep semantic features of
images through deep neural networks and then use the appro-
priate classifier to extract the target. At present, the full CNN is
the most popular; that is, there is no full connection layer in the
entire network model, which greatly reduces the number of
network parameters and increases the running speed. In
SiamFC [5] tracking algorithm, the networkmodel is improved
on the basis of AlexNet [24], removing the final full connection
layer and part of the convolution layer. Finally, the target track-
ing problem is transformed into a similarity matching problem,
and the location of the target is judged by a cross-correlation
operation. SiamRPN [6] algorithm introduces the RPN [35]
network to target detection based on the SiamFC algorithm,
significantly improving the accuracy of target tracking through
classification and regression. DaSiamRPN [7] optimizes the
imbalance of positive and negative samples in the training pro-
cess based on SiamRPN. SiamRPN + + [8] increases the net-
work depth based on SiamRPN [6] and has achieved good
results. CFNet [9] adds the CF layer based on the SiamFC [5]
structure to realize the end-to-end training of the network,
which proved that this network structure could use fewer
convolution layers of the network without degrading accuracy.
The main improvement of SiamFC++ [36] is to add a bound-
ary box regression branch and quality estimation branch based
on SiamFC [5]. In [37], the authors propose a multilevel simi-
larity model under a Siamese framework for robust TIR object
tracking, which solves the problem that only RGB images can
be used in the training process. Motivated by the forward-
backward tracking consistency of a robust tracker, self-SDCT
[38] proposes a multicycle consistency loss as self-supervised
information for learning feature extraction network from adja-
cent video frames. TRBACF [39] proposes a temporal regular-

ization strategy based on the correlation filter, which effectively
solves the problem that the model can not adapt to tracking
scene changes and improves the robustness and accuracy of
the algorithm.

2.3. Image Similarity Judgment. At present, there are several
ways to judge the similarity of images. The first method is
based on histograms. The histogram method judges the sim-
ilarity by describing the color distribution in an entire image,
but a histogram is too simple to capture the similarity of
color information and cannot use more information. The
second method is to calculate the mutual information about
two images. Although this method is accurate, it has great
limitations. It requires that the size of the two images must
be the same. If the two images are cut into the same size, it
is bound to lose a lot of information, thereby degrading
accuracy. The third method is the cosine distance judgment
method. Images are represented as vectors, and the cosine
distance between these vectors is calculated to determine
the similarity. The cosine distance pays more attention to
the direction of the vector to avoid the influence of the abso-
lute value of the vector on the similarity judgment. It is very
suitable for us to extract the target feature and use the vector
for similarity judgment.

3. The Proposed Algorithm

In the classical SiamFC [5] algorithm, an improved network
on AlexNet [24] is used as the backbone network of the
tracking network. The Siamese network is used to extract
the feature of the search and template images, respectively.
Finally, the position score map of 17 × 17 × 1 is obtained
by a cross-correlation operation, as shown in Figure 2.

However, the resolution of the feature map calculated
using the two feature branches in SiamFC [5] is too small.
Although it can effectively search the target, it cannot effec-
tively distinguish the target within a class. As shown in
Figure 1(b), the interference target even produces a higher
thermal value than the tracking target. Inspired by the appear-
ance feature module in DeepSort [40], we consider whether we
can construct another special appearance feature extraction
network to extract the appearance feature of the target to bet-
ter distinguish intraclass targets.

Thus, we design a new type of target anti-interference
module. The main body of the anti-interference module is
composed of a feature extraction network and similarity calcu-
lation. Unlike other algorithms for suppressing the interfer-
ence target, we choose the tracking results of several adjacent
frames of the tracking target to measure the tracking target
twice.

We will describe the overall framework of the algorithm
in Section 3.1. Section 3.2 focuses on the main framework of
the benchmark algorithm SiamFC [5]. Section 3.3 describes
the main network of our anti-interference module. Section
3.4 mainly describes the working mode of the anti-
interference module and how to determine the position of
the final target box.
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3.1. Overall Framework. The algorithm is mainly composed
of two parts. The first part is the main framework of SiamFC
[5], as shown in the red box in Figure 2. The main role is to
extract features and generate candidate targets. Different
from SiamFC [5], where only one target box is generated
in SiamFC [5], multiple candidate boxes are selected in our
algorithm. The second part is our anti-interference module,
such as the green box in Figure 2. The main function is to
process the multiple candidate boxes generated in the first
part to output the final target position. Figure 2 shows the
overall frame diagram.

3.2. The SiamFC Framework. The main framework of SiamFC
[5] is divided into two branches: template and search branches.
The main network of SiamFC [5] is improved on the basis of
AlexNet [24], removing the full connection layer and partial
convolution layer. There are only Conv and pooling layers in
the entire network structure, and the template branch shares
the same network parameters with the search branch, which
satisfies the definition of full convolution and twin network.
The processing of the original image in SiamFC [5] is as
follows: we select the first frame image of the video sequence
as the template image and other images as the search image.
We use 127 × 127-pixel template images and 255 × 255-pixel
search images. To facilitate the extraction of appearance fea-
tures by the anti-interference module, we cut the template
image to 128 × 128 pixels and the search image to 256 × 256
pixels. The specific feature processing process of SiamFC is as
follows. A template image of 128 × 128 × 3 is input into the
template branch to obtain the feature map of 6 × 6 × 128. Sim-
ilarly, a search image of 256 × 256 × 3 is input into the search
branch to obtain the feature map of 22 × 22 × 128. A template
image feature is used as the convolution kernel, and the two
feature maps are cross-correlated; sliding window detection is
performed on the features of the search image. Then, we obtain
a 17 × 17 × 1 score map about the target location information.
The cross-correlation operation formula is as follows:

F Z, Xð Þ = φ Zð Þ ∗ φ Xð Þ + bi: ð1Þ

φðZÞ and φðXÞ represent the extracted template and search
image features, respectively. The symbol ∗ indicates convolu-
tion operation, where bi denotes a signal that takes the value
b ∈ R in every location.

In the actual tracking process, our template branch only
needs to be executed once to obtain the features of a tem-
plate image. In the subsequent tracking process, information
about the target position can be obtained by convolution
operation between the extracted features of the search image
and the features of the template image. The position of the
target in the original image is obtained by upsampling
according to the score map of 17 × 17 × 1.

3.3. Extract Appearance Features. Figure 3 is our appearance
feature extraction network, which is also the main part of the
anti-interferencemodule. It is mainly composed of two convo-
lution layers and six residual blocks. The GOT10k [41] dataset
is used to train the residual network model offline and output
the normalized characteristics. Candidate boxes are reshaped
into 128 × 128 × 3 images, which are then input into the fea-
ture extraction network, producing 256-dimensional vectors.
Finally, the normalization operation is performed to facilitate
subsequent calculation.

3.4. Determination of Target Position by Minimum Cosine
Distance. First, the network extracts the appearance features
of five adjacent target frames and the initial frame and saves
them to the feature vector set. Then, the vector of multiple
prediction target frames in the current frame is extracted.
The best tracking target is judged by calculating the cosine
distance between the multiple candidate target features and
the feature vector set of the current frame. Then, the feature
vector set is updated according to the predicted target. The
specific flowchart is shown in Figure 4. There are typically
six vectors in the feature vector set, including five adjacent
frame vectors and one initial frame vector. The selection of
the prediction target box is based on the score map of 17
× 17 × 1 generated by SiamFC [5]. First, we normalize and
sort the score map of 17 × 17 × 1 and then select the maxi-
mum three values. Take out the candidate target boxes
corresponding to the three values. Then, their feature vectors
are obtained using the feature extraction network. By calcu-
lating the cosine distance between the feature vector set and
the feature vectors of the three prediction target boxes, the
matrix of 3 × 6 can be obtained. The formula for calculating
the single value of matrix Rði, jÞ is as follows:

R i, jð Þ = 1 − rTi r j i ∈ 1, 3ð Þ, j ∈ 1, 6ð Þ: ð2Þ

CNN

CNN

⁎
Candidate
target box

Template image :
128 × 128 × 3

6 × 6 × 256

22 × 22 × 256

17 × 17 × 1

Search image :
256 × 256 × 3

Appearance
features

extraction

Cosine
distance

calculation

Target
position

Figure 2: Overall frameworks.

4 Journal of Sensors



The value of each row of the matrix is calculated by lin-
ear weighting. The formula is as follows:

R i½ � = k1R i, 1ð Þ + k2〠
6

j=1
R i, jð Þ, i ∈ 1, 3ð Þ: ð3Þ

k1 and k2 are hyperparameters, typically k1 = 0:35 and
k2 = 0:65.

Select the smallest R½i� value as the final target location.
The cosine distance can judge the similarity between vectors
by calculating the angle between the directions of vectors,
which effectively avoids the effect of the difference in abso-
lute values of image pixels on the similarity judgment.

For update feature vector set, as shown in Figure 5, the
feature vector set saves the feature vectors of our last five
frames (as shown in Figure 5, blue vector) and template
pictures (as shown in Figure 5, red vector). When we deter-

mine the position of the target in the current frame, we save
the appearance feature vector obtained from the correspond-
ing target candidate box to our feature vector set and remove
the last feature vector.

4. Experiments

4.1. Experimental Configuration.We conducted experiments
on a Linux system, and the experimental code was written in
Python language and the PyTorch [42] framework. The
experimental system configuration is Inter Core i7-10700 k
CPU @ 3.80GHz×16, and a single GTX1070ti GPU.

4.2. Training Process. The training CNN part uses
ILSVRC15 [27] and GOT10k [41] datasets for training.
The appearance feature extraction network is trained using
GOT10k [41].

4.3. Test Process. The OTB2015 [43] dataset is used for per-
formance tests, and the VOT2016 [44] and VOT2017 [45]
datasets are used to test the universality of the algorithm.
To verify the effectiveness of the anti-interference module,
we first compare the discrimination ability of the anti-
interference module with the original algorithm, and then,
we conduct tracking experiments on public datasets
OTB2015 [43], VOT2016 [44], and VOT2017 [45] to prove
the effectiveness and universality of our algorithm.

4.4. Single Discriminant Ability Experiment. Figure 6(a) is
the first frame in the OTB2015 [43] video sequence “Board,”
where the green frame is the selected tracking target.
Figure 6(b) is the SiamFC [5] tracking failure frame, where
the red frame is the SiamFC [5] tracking failure position,
and the green frame is the ground truth of the tracking
target. To verify the effectiveness of our anti-interference

128 × 128 × 3 128 × 128 × 32 64 × 64 × 32 32 × 32 × 64 1 × 1 × 256

Figure 3: Deep appearance feature extraction network structure diagram.

Candidate
target box

Input feature
extraction
Network

Calculation of
cosine distance of

feature vector

Target position
feature vector

Output target
position according
to cosine distance

Feature
vector set

Update feature vector set

Figure 4: Flowchart of anti-interference module.
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Vector
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Remove

0

New feature vector
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Figure 5: Update feature vector set.
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module, we first input the initial frame part as Figure 6(c) into
our anti-interference module to obtain the feature vector.
Then, we extract the tracking failure frame part, as shown in
Figure 6(d), and the tracking target of the first frame, as shown
in Figure 6(e). After that, we input Figures 6(d) and 6(e) into
our anti-interference module to obtain the corresponding vec-
tor and then calculate the cosine distance using the feature
vector of the initial frame tracking target. Finally, the cosine
distance between the failure target and the initial frame is
0.73, and the cosine distance obtained from the ground truth
part is 0.92. The higher the similarity, the closer the cosine dis-

tance is to 1. Thus, our anti-interference module can effec-
tively judge the intraclass interference target, allowing our
algorithm to outperform the baseline algorithm SiamFC [5].

4.5. Experiments in OTB2015.The OTB2015 [43] dataset is the
benchmark dataset to test the performance of the target track-
ing algorithm. The dataset contains 100 manually annotated
video sequences. The dataset mainly has two evaluation
indexes: success and precision rates. The success rate is deter-
mined by whether the overlap rate between the bounding box
and ground truth obtained using a frame during the tracking

(a) (b)

(c) (d)

(e)

Figure 6: (a, b) The initial frame and SiamFC [5] tracking failure frame images, respectively. (c–e) The input images of the anti-interference
module.
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process exceeds a certain threshold; if so, the frame is regarded
as a successful tracking frame. The percentage of successful
frames in all frames is the success rate. The precision rate is
defined as the center point of the target bounding box
estimated by the tracking algorithm and the center point of
the target manually labeled ground truth, and the distance
between the two is less than the percentage of the video frames
in a given threshold. Different thresholds have different per-
centages, and the general threshold is set to 20 pixels.

Figure 7(a) shows the comparison of our algorithm with
other popular algorithms and benchmark algorithm SiamFC
[5] on the OTB2015 [43] dataset. Other algorithms are SRDCF
[46], Staple [47], CFNet [9], and fDSST [48]. Figure 7(b) shows
the experimental results on the dataset in the OTB2015 com-
plex background section. Figure 7 shows that the effect of our
algorithm on the overall dataset has been compared to several
existing popular algorithms. Our algorithm outperforms the
benchmark algorithm SiamFC [5] in terms of accuracy and
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Figure 7: (a) The comparison of our algorithm with other algorithms on the OTB2015 dataset [43]. (b) The comparison of our algorithm
with other algorithms on the OTB2015 [43] complex background dataset.
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success rates. In particular, our algorithm has a good tracking
effect in the case of complex background, which also shows that
our algorithm can effectively distinguish between intraclass tar-
gets, reducing themisjudgment rate. In terms of running speed,
SiamFC [5] is 80 fps, whereas our algorithm is 56 fps. Although
the tracking speed of our algorithm is lower than that of the
SiamFC algorithm, it still exceeds 30 fps, meeting the speed
requirements of real-time target tracking. Figure 8 shows the
comparison of tracking effects between our algorithm and
other algorithms.

4.6. Experiments in VOT2016. To verify the universality of the
improved algorithm, we also conducted experiments on the
VOT2016 [44] dataset. The VOT challenge is one of the most
influential competitions in the field of computer vision. The
VOT2016 [44] benchmark dataset consists of 60 video

sequences, and all are color sequences. There are three main
evaluation indicators in VOT2016 [44]: accuracy (A), equiva-
lent filter operations (EFO), robustness (R), and expected
average overlap (EAO). Accuracy is the accuracy of the target
tracking, that is, the average overlap between the target box
and the true value box during successful tracking. Robustness
(R) is defined as the number of tracking failures. EAO repre-
sents the average value of the intersection and union ratio
between the prediction box and the true ground-truth box in
the entire video sequence. EFO is used to measure the tracking
speed of the tracker.

We compare our algorithm with ten other popular algo-
rithms on the VOT2016 [44] dataset, including the benchmark
algorithm SiamFC [1] and nine other popular algorithms:
Staple [47], CCOT [49], TCNN [50], DDC [44], EBT [51],
STAPLEp [44], DNT [52], DeepSRDCF [53], and MDNet_N
[54]. The comparison results are shown in Table 1. The chart
shows that CCOT [38] has the best EAO of 0.331, our algo-
rithm has the best accuracy of 0.558, CCOT [48] has the best
robustness of 0.238, and STAPLEp [44] has the best tracking
speed EFO of 44.745.

From the comparison results, our algorithm outperforms
the benchmark algorithm SiamFC [5] in terms of EAO, accu-
racy, and robustness. In particular, the robustness of our
algorithm is greatly improved compared with the original
algorithm SiamFC [5]. This is because our anti-interference
module effectively reduces the number of tracking failures,
thereby improving the robustness of tracking. The accuracy
of the algorithm is also improved compared with SiamFC
[5], and it is better than other algorithms. This is because the
tracking robustness can be increased after screening candidate
targets through the anti-interference module. Second, our
anti-interference module uses the minimum cosine distance
to judge similar targets and processes the tracking target vector

Our
SiamFC
SiamRPN

GradNet
Groundtruth

Figure 8: Comparison of tracking effects between our algorithm and other algorithms.

Table 1: Comparison of VOT2016 algorithm results.

Tracker EAO A R EFO

Our 0.301 0.558 0.286 3.857

SiamFC [5] 0.277 0.549 0.382 5.444

Staple [46] 0.295 0.544 0.378 11.114

CCOT [48] 0.331 0.539 0.238 0.507

TCNN [49] 0.325 0.554 0.268 1.049

DDC [44] 0.293 0.541 0.345 0.198

EBT [50] 0.291 0.465 0.252 3.011

STAPLEp [44] 0.286 0.557 0.368 44.765

DNT [51] 0.278 0.515 0.329 1.127

DeepSRDCF [52] 0.276 0.528 0.380 0.380

MDNet_N [53] 0.257 0.541 0.337 0.534
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of recent frames in a weighted way, which reduces the proba-
bility of losing targets in the tracking process and improves the
performance of long-time tracking. Therefore, accuracy can be
improved. However, the accuracy has not been greatly
improved. We believe that this is because the SiamFC regres-
sion is not sufficiently accurate. Compared with other algo-
rithms, even though our indicators are not the highest, we
do a good job of balancing speed and performance. For exam-
ple, although the EAO value of CCOT reaches 0.331, its track-
ing speed is very slow; its EFO is only 0.507, whereas ours
reaches 3.857.

4.7. Experiments in VOT2017. In this experiment, we evaluated
the proposed algorithm on the VOT2017 [45] benchmark
dataset. Then, we compared its accuracy, robustness, and
EAO score with SiamFC [5] and the seven popular real-time
tracker algorithms in VOT2017 [45]. These trackers are
SiamFC, ECOHC [55], KFebT, ASMS, SSKCF, CSRDCF,
UCT [56], and MOSSEca. Table 2 presents the experimental
results. It can be seen from Table 2 that all indexes of our algo-
rithm are better than other algorithms, and the accuracy is
improved by 1.5% compared with the benchmark algorithm
SiamFC. Especially in terms of robustness, our algorithm has
great advantages over other methods; we believe that this is
because the anti-interference module reduces the error rate in
complex background. In addition, combined with the charac-
teristics of targets in recent frames, the robustness of the algo-
rithm for long-time tracking is also improved. The above
experiments showed that on the VOT2017 [45] dataset, the
proposed method is highly competitive with other most
advanced trackers.

5. Conclusions

In this study, a new anti-interference module is proposed.
Based on the benchmark algorithm SiamFC [5], another
feature extraction network is designed, and its intraclass dis-
criminant ability is trained on the GOT10k [41] dataset. The
cosine distance is used to select the best tracking target by
extracting the vector of the target frame. The experimental
results show that, compared with the original benchmark algo-
rithm SiamFC [5], our algorithm can well cope with the effect
of intraclass targets on tracking performance in a complex
background, thereby improving tracking accuracy; this also
proves the effectiveness of the proposed anti-interference mod-
ule. In the future, we will incorporate the anti-interference
module into more advanced algorithms for research.
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The test results already exist in the manuscript.
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