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Floods, as one of the natural hazards, can affect the environment, damage the infrastructures, and threaten human lives. Due to
climate change and anthropogenic activities, floods occur in high frequency all over the world. Therefore, mapping of the flood
areas is of prime importance in disaster management. This research presents a novel framework for flood area mapping based
on heterogeneous remote sensing (RS) datasets. The proposed framework fuses the synthetic aperture radar (SAR), optical, and
altimetry datasets for mapping flood areas, and it is applied in three main steps: (1) preprocessing, (2) deep feature extraction
based on multiscale residual kernel convolution and convolution neural network’s (CNN) parameter optimization by fusing
the datasets, and (3) flood detection based on the trained model. This research exploits two large-scale area datasets for
mapping the flooded areas in Golestan and Khuzestan provinces, Iran. The results show that the proposed methodology has a
high performance in flood area detection. The visual and numerical analyses verify the effectiveness and ability of the proposed
method to detect the flood areas with an overall accuracy (OA) higher than 98% in both study areas. Finally, the efficiency of
the designed architecture was verified by hybrid-CNN and 3D-CNN methods.

1. Introduction

Recently, climate and human impact on the ecosystem trig-
ger natural hazards such as drought, floods, and wildfire with
higher frequency [1–3]. Among these types of disasters,
floods are considered as the most devastating and costly
disaster worldwide [4, 5]. Mainly, flood is triggered by down-
pour, while other factors such as topography and altitude,
slope, distance from river, and sediment transport index
(STI) can affect the occurrences of the flood [6–8]. For the
past years, many lives and agriculture crops were affected
by floods in the whole world [9, 10]. Therefore, accurate

and timely flood mapping is vital for emergency response
planning during and after a flood [11–14]. Moreover, the
flood mapping can be used as a base map in the future events
for rescue, compensation insurance, and prediction of flood
extension.

Advances in remote sensing (RS) technologies and evo-
lution in smart sensors and charge-coupled device cameras
providing higher resolution, wider coverage, lower cost, con-
tinuous information, and timely revisiting mean that earth
observation and its regular monitoring become viable
[15–18]. RS is deployed in many applications such as disas-
ter mapping [19–22], environment monitoring [23, 24], land
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Figure 1: Continued.
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use/cover mapping [25–30], and forest mapping [31, 32].
Due to improvement of spatial and temporal resolution of
satellite imagery and availability of synthetic aperture radar
(SAR) dataset, disaster mapping based on RS data has been
converted into a hot topic [33, 34].

Meanwhile, algorithm development and computer sci-
ences revolutionized the accuracy and time of different sen-
sors’ data processing in various fields such as RS, prediction
of natural disaster, feature detection, and biomedical [35,
36]. The machine learning (ML) algorithms are among the
most popular methods in the image processing and com-
puter vision. The ML learns from the feature patterns within
the input dataset (data samples as training dataset). In other
words, the ML is a mathematical expression that represents
data in the context of a problem. The ML methods are
applied in two main categories: (1) supervised method by
predicting some output variable associated with each input
sample and (2) unsupervised method that does not need
any sample data and provides a prediction by considering
input feature dataset. The ML methods are widely deployed
in many applications based on different sensors and datasets
such as quasidistributed smart textile [37], simultaneous
assessment of magnetic field intensity [38], paddy rice seed

classification [39, 40], anime film visualization [41], eggplant
seed classification [42], regional digital construction [43],
flood mapping [44], and flood prevention [45]. Although
the ML methods have provided promising results in many
abovementioned applications, they suffer from lower cover-
age and generalization [1]. Accurate performance of ML
highly depends on the input feature map which is a time-
consuming process to extract suitable and informative fea-
tures, especially in hazardous situations. In essence, flood
hazard occurs in vast areas, and availability of various sen-
sors from satellite platform can be an optimal solution for
flood management. In this scenario, development of deep
learning- (DL-) based methods led to overcome most of
ML methods’ limitations by using multilayer architectures
[8]. DL methods are capable of extracting deep feature from
the big input data automatically and are suitable for multi-
sensor dataset classification in a vast area such as flooded
zones.

Flood area mapping is one of the most important appli-
cations of the satellite imagery in natural hazard monitoring
[46–49]. Recently, much research has been done for flood
mapping based on multispectral optical dataset and SAR sat-
ellite imagery. For example, Cian et al. [50] proposed rapid
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Figure 1: Map of study areas: (a) map of Iran; (b) first study area and location of flood areas in the Aq Qala county; (c) second study area
and location of flood areas in the Khuzestan county.
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flood monitoring algorithm based on the normalized differ-
ence flood index (NDFI) and normalized difference flood in
vegetated areas index (NDFVI). The indices were applied on
multitemporal SAR imagery for predicting flood areas.
Then, the flood map was generated by thresholding of pre-
dicted areas and postprocessing manner. D’Addabbo et al.
[51] designed a flood mapping toolbox (DAFNE) based on
Bayesian networks. The DAFNE approach fused the multi-
source RS dataset for flood mapping and equipped by several
modules for probability flood mapping: (1) image segmenta-
tion by K-means algorithm, (2) electromagnetic modeling
module to compute the probability of flood occurrence
based on input data, (3) image modeling module for estimat-
ing the probability of a pixel of image with respect to flood
conditions, (4) ancillary data (geomorphic flooding index
and distance from the river) module for modeling the ancil-
lary data contribution with respect to the flood condition,
and (5) probabilistic flood map computation module (the
final steps of the DAFNE) to estimate the flood probability.

Sharma et al. [52] described the use of computational mod-
ules to design event-driven flood management. Uddin et al.
[53] proposed an operational methodology for flood map-
ping based on Sentinel-1 imagery. For this end, the RGB
(red-green-blue) clustering technique was used for segmen-
tation of the dataset, and then, a rule-based classifier was
deployed for making decision on the clusters to classify flood
or nonflood polygons. Annis and Nardi [54] showed how by
integrating VGI and 2D hydraulic models into a data assim-
ilation framework helped to improve real-time flood fore-
casting and mapping. Sarker et al. [55] presented a flood
extent mapping method based on the convolution neural
network (CNN) using Landsat-5 imagery. The proposed
CNN included three convolution layers for deep feature
extraction with a filter size of the first and second layer as
3 × 3 and for the last layer as 1 × 1. Feng et al. [56] showed
a flood mapping framework by employing the optical dataset
boarded on an unmanned aerial vehicle (UAV). The pro-
posed framework was applied in three steps: (1)
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Figure 2: The used dataset in flood mapping for Aq Qala province: (a) Sentinel-1; (b) Sentinel-2; (c) DEM; (d) distribution of sample data.

4 Journal of Sensors



48°0'0'' 48°30'0''

48°0'0'' 48°30'0''

32
°0

'0'
'

31
°2

0'0
''

32
°0

'0'
'

31
°2

0'0
''

0 3 6 12 18
Kilometers

N

(a)

Figure 3: Continued.
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preprocessing (registration, mosaicking, and orthorectifica-
tion), (2) texture feature extraction, and (3) image classifica-
tion based on random forest (RF) classifier. Li et al. [57]
presented a real-time flood mapping by the Suomi national
polar-orbiting partnership- (Suomi-NPP-) visible infrared
imaging radiometer suite (VIIRS) dataset. The algorithm
tried to remove nonflood objects (shadow, cloud, ice, etc.)
and map the flood areas based on change detection and deci-
sion tree (DT) classification. In a recent paper by Prins and
Niekerk [58], they used Sentinel-2 imagery, aerial imagery,
and LiDAR (light detection and ranging) for crop-type map-
ping. By fusing these datasets, together with ML algorithms,

they could improve the overall accuracy (OA) [58]. The ML-
based algorithms are capable of extracting complex features
[59]. Gebrehiwot et al. [60] employed CNN for flood extent
area mapping by using a UAV dataset. The used architecture
was based on visual geometry group (VGG) fully convolu-
tional network (FCN-16s). Denbina et al. [61] compared
the performance U-Net and SegNet architectures for flood
extent mapping with the UAV-SAR dataset. Their result
demonstrated the higher accuracy of the U-Net model rather
than SegNet. Mateo-Garcia et al. [7] evaluated the perfor-
mance of simple CNN and U-Net architecture for flood
extent mapping using Sentienl-2 satellite imagery. The
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Figure 3: The used dataset in flood mapping for Khuzestan province: (a) Sentinel-1 for postflood; (b) Sentinel-2 for preflood; (c) DEM; (d)
distribution of sample data.

Table 1: The descriptions of datasets for flood mapping in study areas.

Data Aq Qala Khuzestan Pixel size (m)

Sentinel-1 (postflood) 2019-03-29 2019-04-08 10

Sentinel-2 ( preflood) 2019-03-11 2019-03-17 10

ALOS altimetry data version 3.2 Released on January 2021 30

Data size 5226 × 8192 13416 × 10580 —

8 Journal of Sensors



performance of the DL-based method was compared with
flood mapping by thresholding the normalized difference
water index (NDWI). The results of flood mapping showed
that the U-Net algorithm had higher efficiency compared
to thresholding of the NDWI.

Similarly, many other researchers widely used RS satel-
lite datasets for flood mapping [62–64]. The results of flood
mapping demonstrated the high potential of the multispec-
tral RS dataset for flood mapping. However, there are some
challenges in flood mapping using optical data that can
affect the accuracy of mapping. Mainly, the challenges of
flood mapping include (1) discrimination between the per-
manent water bodies and streams from flood; (2) timely
and accurate detection of flooded areas as the flooded zones
are usually covered by cloud; (3) constant thresholding for
flood area detection in most of the algorithms (while the
diversity of objects in a heterogeneous region does not sup-

port the constant thresholding for the whole region); (4) for
change detection-based methods using RS imagery, access to
optimal revisiting time dataset especially after flood is hard,
leading to a delay on rapid flood mapping; and (5) the hand-
crafting feature (textural feature) extraction is a time-
consuming process. Therefore, fusion of multisensor data-
sets and exploiting a robust model are primary solutions
[65–67].

To minimize the abovementioned challenges, the present
DL framework is proposed. This research demonstrates a
novel framework for flood mapping based on fusion of opti-
cal satellite imagery, SAR satellite dataset, and altimetry
data. The Sentinel-1 SAR satellite imagery can penetrate
clouds and has high potential for detection of water bodies.
The Sentinel-2 satellite imagery is considered as an optical
multispectral dataset with good temporal resolution. There-
fore, the fusion of Sentinel-1 and Sentinel-2 can be comple-
mentary for flood mapping. Generally, the fusion of
multisource datasets can be applied at three levels: (1) pixel
level, (2) decision level, and (3) feature level [67–70]. The
pixel-level fusion usually is used for enhancing of the spatial
resolution of a low-resolution dataset by the pan dataset,
such as pan-sharpening techniques [71]. The decision-level
fusion is applied for integrating the result of many decisions
[72, 73]. One of the limitations of decision-level fusion is its
complexity to select a suitable method for fusion and set
their parameters. The feature-level fusion is one the best
techniques for fusion of the multisource datasets for specific
application such as classification [29, 70, 74], flood mapping
[75, 76], and damage mapping [77–80]. Due to the big struc-
ture of datasets in the present study, the best solution for
multisource dataset integration is feature-level fusion. DL-
based methods provide promising results as a robust tool
in RS and image processing communities [24, 81]. The DL
algorithm can automatically extract the deep features from
the input data for flood mapping. In this study, the flood
mapping is applied in three main steps: (1) preprocessing,
(2) deep feature extraction based on multiscale kernel
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convolution and CNN’s parameter optimization by fusing
the datasets, (3) and flood mapping based on optimized
model. Mainly, the flood mapping is applied based on a sin-
gle postflood dataset, while it is not sufficient to extract per-
manent water bodies during the flood events. For this end,
presenting novel framework for flood mapping based on
fusion (deep feature extraction from multisource datasets)
of freely available datasets is more effective. Moreover, find-
ing the postevent dataset without cloud coverage is a big
challenge due to a specific atmospheric condition in such
hazardous areas. The proposed framework uses the SAR
dataset with capability to penetrate clouds and rains. Thus,
the proposed method has high potential for flood mapping.
Based on many studies and observations, the flood occurs
in low-height-level areas (i.e., area adjacent to rivers). There-
fore, the altimetry dataset is the key source information in
accurately detecting such areas. It helps to improve the result
of flood mapping that was underestimated by most studies.
Generally, flood mapping by conventional methods works
in two parts: feature extraction, and classification by ML
methods. These methods require more time for processing,
while the proposed method is applied in an end-to-end
framework without any additional processing in a timely
manner. Furthermore, the most methods fuse the multi-
source dataset in lower level; however, it is proved that the
fusion of deep feature in a deeper level can improve the
result of mapping [82]. Thus, the proposed method is able

to extract deep features by parallel computing of CNN net-
works and fusing them in another network with a higher
level of deep features. The key contributions of this research
are as follows:

(I) Presenting novel framework for flood mapping
based on fusion (deep feature extraction from mul-
tisource datasets) of freely available datasets

(II) Deploying multidimensional kernel convolution
for deep feature extraction

(III) Improving the results by fusing altimetry data in
heterogeneous change detection for flood mapping

(IV) Deep feature extraction by combining spatial and
spectral features instead of single spectral features

(V) Proposing an end-to-end framework without any
additional processing

2. Study Area and Datasets

2.1. Study Area. In this study, two study areas were selected
(Figure 1(a)). The first one is located in the Aq Qala prov-
ince in the north of Iran. The Gorganrood River is one of
the most important rivers crossing Aq Qala city [83]. This
province has a temperate climate with occasional heavy rain-
fall with a maximum height of 2100m above mean sea level.
On the 19th March 2019, the area was flooded after a heavy
rainfall. The flood led to the loss of more than 20 people’s
lives, and high damage to buildings, infrastructures, and
wildlife was reported. Due to the special topography (lower
slope toward the sea side) of Aq Qala province, the flood
lasted for 20 days in the region worsening the damages.
Figure 1(b) shows the location of the first study area. The
second area is located in Khuzestan province, south of Iran.
Karun River is one of the largest rivers in Khuzestan prov-
ince [84, 85], and the maximum elevation of the region is
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Figure 7: The main difference of 2D and 3D kernel convolution: (a) 2D kernel convolution; (b) 3D kernel convolution.

Table 2: The number of training data for two classes.

Study area
Name
class

Whole
sample

Training
(65%)

Validation
(15%)

Testing
(20%)

Aq Qala
Flood 4567 2969 685 913

Nonflood 10459 6798 1569 2092

Khuzestan
Flood 7340 4771 1101 1468

Nonflood 12962 8425 1944 2593
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250m above mean sea level. Similarly, after a heavy rainfall
on 20th March 2019, flooding occurred in this province, as
well. Mainly, the flood was as a result of human activities
and construction in Karun River basin. The second study
area is presented in Figure 1(c).

2.2. Datasets. This research used altimetry data, Sentinel-1,
and Sentinel-2 datasets for flood mapping. Figure 2 illus-

trates the datasets for mapping the flood areas in the Aq
Qala province. The second study area is located in the Khu-
zestan province covering a large area (Figure 3).

2.2.1. Sentinel-1 Data. Sentinel-1 is a constellation of two
satellites A and 1B lunched on 3th April 2014 and 16th April
2016, respectively [86, 87]. The sensor is considered as an
active sensor capturing data in a C-band, and it is equipped
by two channels including two polarizations (VV and VH).
As an active sensor, it is capable of day and night data collec-
tion in all weather conditions. For this research, the Level-1
ground range detected (GRD) product was used for flood
mapping.

2.2.2. Sentinel-2 Data. The Sentinel-2 mission comprises a
constellation of two polar-orbiting satellites with an optical
multispectral instrument [88]. Sentinel-2 collects data in 13
spectral bands in visible, near infrared (NIR), and shortwave
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Figure 8: The result of flood mapping for Aq Qala county: (a) 3D-CNN; (b) hybrid-CNN; (c) proposed Flood-Net; (d) ground truth
(reference map).

Table 3: Accuracy assessment of flood mapping for Aq Qala
province.

Method
OA
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

KC

3D-CNN 95.59 65.85 93.78 77.37 0.705

Hybrid-CNN 97.27 76.80 94.66 84.80 0.833

Proposed
method

98.07 77.85 98.45 86.94 0.859
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Figure 9: Continued.
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infrared (SWIR) domains at different spatial resolutions
from 10m to 60m. This satellite has the revisiting time of
5 days and is freely available at Sentinel Scientific Data
Hub (https://scihub.copernicus.eu). Description of the data-
sets can be seen in Table 1.

2.2.3. Altimetry Data. The ALOS (advanced land observing
satellite) World-3D-30m (AW3D30) provides a global digi-
tal surface model (DSM) dataset [89]. This dataset is
obtained by Panchromatic Remote-sensing Instrument for
Stereo Mapping [90]. The spatial resolution of this product
is approximately 30m. This product is freely available as well
(https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index
.htm).

3. Methodology

The proposed framework is applied in three steps according
to the flowchart in Figure 4. First, image preprocessing is
applied in two main steps: (1) spectral correction such as cal-
ibration and atmospheric correction and (2) spatial correc-
tion that refers to geometry of pixels (e.g., registration and
topographic correction). Secondly, to build optimum model
by model parameter tuning based on a sample dataset, the
proposed network is trained by reference sample data. The
sample data is usually divided into three parts: (1) training
data, (2) validation data, and (3) testing data. The training
and validation datasets are exploited in the training process.
Besides, the testing dataset evaluates the performance of the
network. After training of the proposed network, the model
is used for mapping the flooded areas. Finally, the whole
flooded zones are mapped based on tuning and training
process.

3.1. Image Preprocessing. The image preprocessing is one of
the most important steps in flood mapping. This process is
applied to the Sentinel-1 and Sentinel-2 datasets, separately.
In Snap software, the Sentinel-1 dataset preprocessing
phases include applying orbit file, thermal noise removal,
border noise removal, calibration, despeckle, and terrain
correction [91]. The sentinel-2 Level-1-C product was pre-
processed (i.e., geometric correction and radiometric
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Figure 9: The result of flood mapping for Khuzestan county: (a) 3D-CNN, (b) hybrid-CNN, (c) proposed Flood-Net, and (d) reference map.

Table 4: Accuracy assessment of flood mapping for Khuzestan
province.

Method
OA
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

KC

3D-CNN 79.77 27.06 81.82 40.67 0.0302

Hybrid-CNN 80.66 29.1 89.20 43.88 0.357

Proposed
method

99.82 97.94 99.70 98.96 0.984
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correction) by the provider, and for this study, atmospheric
correction was performed [92, 93] by the Sen2corr module
in the Snap software.

3.2. Proposed Deep Learning Architecture. The proposed DL-
based architecture for flood mapping is illustrated in
Figure 5. Accordingly, the framework has two parts: (1)
ensemble deep feature extraction models and (2) classifica-
tion. Mainly, the flood mapping is applied based on a single
postflood dataset, while this dataset is not sufficient to
extract permanent water bodies during the flood events.
The main differences between the proposed architecture
and other CNN frameworks are (1) utilizing multistream
deep feature extraction instead of low-level feature
concatenating that improves the performance of CNN in
the extraction of deep features, (2) fusion of high-level deep
features by a separate CNN for more deep feature explora-
tion, (3) taking advantage of 3D kernel convolution to
exploit the spectral information content of the Sentinel-2
imagery and then 2D kernel convolution for extracting
high-level deep features, (4) employing multiscale kernel
convolution layers which have a better performance against
the scale variations and increasing the robustness of network
against the change of object sizes.

3.2.1. Deep Feature Extraction. The main core of the CNN
method is convolution layers to extract the deep features,
automatically [94, 95]. Convolution layers investigate the
spatial and spectral features by embedding filters [94]. The
extracted deep features from first layers are fed into the next
layers in a hierarchical manner. Therefore, the qualities of
deep extracted features depend on the design of the architec-
ture of the network. In this study, Figures 6(a)–6(d) show
the four CNN models for deep feature extraction.

Mainly, feature extraction from multisource datasets by
the traditional method is based on staking datasets and then
extracting the features [65, 96, 97]. The stacking layer gener-
ates high-dimensional data leading to dimensionality and
overfitting problems, and it might affect the quality of the
extracted features and, as a consequence, fail to detect some
details [98]. Therefore, this research presents a novel archi-
tecture based on ensemble deep feature extraction models.
The proposed architecture includes three CNN models
(i.e., CNN-1, CNN-2, and CNN-3) for deep feature extrac-
tion (separately for each dataset) and one CNN model (i.e.,
CNN-4) for classification. Then, the concatenate function
stacks the extracted deep features from three previous
models and feeds it to the next layers for extracting high-
level deep features. The CNN-1 and CNN-3 models investi-
gate deep features based on 2D kernel convolutions from
SAR and altimetry datasets, respectively. The CNN-2 model
extracts the deep features based on hybrid 2D and 3D kernel
convolutions from the optical dataset. The main differences
between CNN-3 and CNN-2 and CNN-1 are in the number
of convolution layers and the type of kernel convolution.
The difference of 2D and 3D kernel convolution is presented
in Figure 7. The 3D kernel convolution allows to fully deploy
the content of spectral information [99]. The final concate-
nate function explores the deep features based on 2D CNN

layers by taking the outputs of three CNN models and stack-
ing the deep features.

3.2.2. Classification. After feature extraction, the deep fea-
tures are converted into a one-dimensional vector by a flat-
ten layer. The feature vectors are fed, first to fully
connected layers, and then are transformed to fully connect
layers. The latest layer is “soft-max” that assigns probabili-
ties to each class for the input pixel. Figure 6(d) presents
the classification procedure for this framework.

3.2.3. Evaluation Indices and Accuracy Assessment. Accuracy
assessment is necessary in any RS dataset analysis and
modeling [15]. Hence, this research evaluates the result of
flood mapping based on numerical and visual analysis. The
numerical analysis has been conducted by measurement
indices. The most common quantitative assessment metrics,
namely, OA, kappa coefficient (KC), user accuracy (UA),
and producer accuracy (PA), are selected for evaluating the
results of flood mapping. The accuracy assessment is applied
by evaluating the sample data (Figures 2(d) and 3(d))
derived from the reference map. Furthermore, the sample
data is divided into three parts, namely, the training data
(65% of the samples), validation (15% of the samples), and
testing (20% of the samples) (Table 2) [2]. In addition, the
performance of the proposed method is compared with
two state-of-the-art deep learning-based methods, the
hybrid-CNN- [90, 100] based method and 3D-CNN [101,
102].

4. Results

The results of flood mapping and the performances of our
proposed method for the two study areas are discussed in
this section.

4.1. Parameter Setting. The DL-based methods have some
parameters to be set. These parameters are set manually
based on trial and error. Here, the optimum values of the
proposed method’s parameters are as follows: input patch
size 11 × 11; batch size 1000; number of neurons in the first
and second layer 1500 and 500, respectively; and number of
epochs 300 and learning rate 10-3. The proposed method is
trained by an Adam (Adaptive Moment Estimation) opti-
mizer [103] in a backpropagation manner, and all weights
are initialized by Glorot initialization [104]. Furthermore,
the shuffle technique is deployed for increasing the perfor-
mance of the network during the training process. More-
over, these set values are applied for the hybrid-CNN and
3D-CNN methods.

4.2. Aq Qala Flood. The results of flood mapping for the first
study area are presented in Figure 8. The reference map is
presented in Figure 8(d). The visual inspection of the pro-
posed method (Figure 8(c)) shows that it provides a better
performance compared to the hybrid-CNN and 3D-CNN
methods (Figures 8(a) and 8(b)) in the Aq Qala region.
There are some false pixels in the flood map resulting from
the hybrid-CNN method, especially in the north-west and
south-east of the study area. Besides, the effect of flooded
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river (north-east) can be seen in the result of the proposed
method, while the hybrid-CNN method fails to point out
those flooded pixels. Generally, the proposed method
exhibits a less “pepper and salt” look.

The numerical result of flood mapping for the Aq Qala
province is provided in Table 3. The best OA is obtained
by the proposed method (98.07%) followed by hybrid-
CNN (97.27%) and 3D-CNN (95.59%). Predominantly, all
methods provide an accuracy better than 76% against OA,
F1-score, precision, and recall. Vividly, the performances of
the proposed method are higher and more accurate (up to
9.57%) than the hybrid-CNN and 3D-CNN against all indi-
ces. On the other hand, 3D-CNN exhibits the less certain
classification of the flooded area by a kappa of 0.705.

4.3. Khuzestan Flood. The results of flood mapping for Khu-
zestan province are shown in Figure 9. Similarly, the pro-
posed method provides higher performance for mapping
the flooded areas compared with the reference map
(Figure 9(d)). In general, the 3D-CNN (Figure 9(a)) and
hybrid-CNN (Figure 9(b)) have similar performance in the
detection of flood areas, misclassifying many of nonflood
pixels as flood pixels. This pattern is obvious in vast areas
in the town (south, south-east, and south-west) in Khuze-
stan region showing many false pixels. Consequently, the
false positive in the flood map might distract the analysis
and decision making during the hazard. In contrast, the pro-
posed method effectively detects the stream, river, and water
bodies (nonflood) pixels. Specifically, south-west and south-
ern parts of Khuzestan belong to the Shadegan wetland
which hybrid-CNN and 3D-CNN methods mistakenly clas-
sified as flooded areas. Furthermore, there are many noisy
pixels and “salt and pepper” appearances in the result of
hybrid-CNN and 3D-CNN methods, whereas the map pro-
duced by our proposed method has a smooth and clear
appearance and the effects of noisy pixels are insignificant.

The accuracy assessments of flood mapping against the
evaluation indices are shown in Table 4. Unlike the previous
study area, the hybrid-CNN and 3D-CNN methods show
disappointing results, while the proposed method proves to
be highly accurate and certain. The accuracy of the proposed
method (OA = 99:82%, precision = 97:94) is considerably
higher than that of hybrid-CNN (OA = 80:66% and
precision = 29:1%) and 3D-CNN (OA = 79:77% and
precision = 27:06%) referring to higher level of reliability
and robustness in the result.

5. Discussion

Accurate and timely flood mapping plays a significant role in
disaster management, and RS satellite imagery provides
valuable information wherever direct data collection is not
viable. This research conducted a novel framework for flood
mapping based on DL and multisource data fusion. Accord-
ing to the qualitative and quantitative assessment of the
algorithms, all methods classified the first study area (Aq
Qala, Golestan) with high accuracy and certainty on the
sample data. However, the two CNN models failed to detect
the flooded areas in the second zone (Khuzestan). Our find-

ing was in agreement with [55] using support vector
machine (SVM) to detect flooded areas. The reason for the
misclassified areas in Khuzestan by the two aforementioned
models is the presence of wetlands and ponds in the region
which created a complex scene to be identified by other algo-
rithms. The higher performances of the proposed method
verified the robustness of this ensemble model using 10m
resolution satellite datasets in flood mapping in the two
study areas in the north and south of Iran.

One of the most important issues in rapid flood mapping
based on satellite imagery is the availability of RS datasets.
Mainly, the flood-prone areas are often cloudy, and the opti-
cal imagery cannot provide a good coverage, reversing the
speed and accuracy of flood mapping. The fusion of multi-
source datasets can be the best solution to meet this chal-
lenge. This research used the feature-level fusion for
mapping the flooded areas. Three CNN-based architectures
were designed. The deep features were extracted by the three
models, and then, the stacked results were fed to the latest
CNN model and classification layer to reduce the dimen-
sionality of the big data. The hybrid-CNN- and 3D-CNN-
based methods stack the multisource datasets directly and
then extract the deep features and classify them. This kind
of fusion might fail to detect the details leading to unreliable
result. The proposed method fused the high-level deep fea-
tures leading to reliable flood map results. Moreover, the
ensemble 3D and 2D structure and design of the proposed
model rather than only 3D kernel in 3D-CNN could signif-
icantly improve the accuracy of the flood detection.

Mainly, the flood mapping is conducted based on mod-
erate spatial and high temporal resolution dataset such as
MODIS and VIRIS. These datasets have sufficient revisit
time for earth observation and hazard monitoring, but they
suffer from low spatial resolution (300m) and some small
areas (rivers prone to flood with width under 300m) are
not detected in the aforementioned RS datasets due to low
resolution and missing pixels. The Sentinel series of satellite
imagery with high spatial resolution (10m) proves to be
effective in the mapping of flood areas with more details.
The altimetry dataset also proves promising results in many
RS applications. This research takes advantages of altimetry
data and fusion in flood mapping by providing promising
results. Most of the algorithms consider the water bodies as
flood in the flood mapping, which is very subjective, while
the proposed methodology overcomes this challenge by
fusion of multisource data in the complex and heteroge-
neous scene and wetlands.

The CNN-based methods are applied by the different
architectures for flood mapping. The suitable design archi-
tecture plays the key role in obtaining accurate results in
flood mapping. Based on presented results, hybrid-CNN,
3D-CNN, and the proposed method use the deep features,
but they provide different results that emphasize the benefits
of hybrid 2D and 3D convolution, instead of only 3D convo-
lution in flood mapping. Editing some false-negative or
false-positive pixels based on postprocessing filter such as
majority voting and refining based on professional experts
(relies on expert knowledge from the region) would be
heavily time-consuming and costly [105]. The presences of
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false positives and misclassifications in both hybrid-CNN
and 3D-CNN methods increase the postclassification pro-
cessing and decrease the reliability of decision making at
the time of the hazard. It refers to the importance of deep
feature extraction manner in DL-based methods. This
research successfully designed the novel architecture based
on ensemble CNN models intended to extract high-level fea-
tures to obtain high accuracy and reliability for flood map-
ping and support decision making. Therefore, the use of
the robust ensemble algorithm (instead of hybrid-CNN
and 3D-CNN) for such dynamic phenomena is
recommended.

6. Conclusion

Accurate, reliable, and timely detection of flooded areas is
vital in disaster management. This study presents a novel
flood mapping framework based on fusion of multisource
datasets at the feature level. The preflood Sentinel-2 dataset,
postflood Sentinel-1, and the altimetry dataset were used for
flood area mapping, and an ensemble of 2D and 3D CNN
models were deployed for deep feature extraction. The per-
formance of the proposed method was compared with other
state-of-the-art methods (e.g., hybrid-CNN) in two flooded
regions. The accuracy assessment of the results showed that
the multisource RS datasets have a high potential in flood
area detection. Therefore, the fusion of active and passive
RS datasets is one of the best solutions in areas with high
cloud coverage and rainfall. The result of this study proved
that the proposed method has high efficiency in mapping
of flooded areas and more certainty in heterogeneous zones.
Generally, the proposed method has many advantages in
flood mapping compared to other methods including (1)
high accuracy in mapping flood areas and a better fit with
multisource datasets and big data; (2) applying in an end-
to-end framework without any additional processing such
as manual feature extraction; (3) providing lower false or
miss detection pixels in mapping flood areas, in addition to
high sensitivity to permanent water areas (e.g., lake and
river); and (4) the need to use a lower number of sample data
compared to other architecture such as semantic segmenta-
tion based on DL methods.
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